

NPN Silicon Power Darlington Transistors

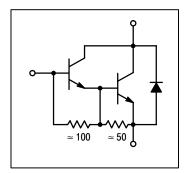
The MJE5740 and MJE5742 Darlington transistors are designed for high-voltage power switching in inductive circuits. They are particularly suited for operation in applications such as:

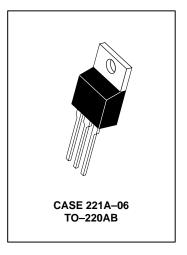
- Small Engine Ignition
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls

MAXIMUM RATINGS

Rating	Symbol	MJE5740	MJE5742	Unit		
Collector–Emitter Voltage	V _{CEO(sus)}	300	400	Vdc		
Collector–Emitter Voltage	V _{CEV}	600	800	Vdc		
Emitter Base Voltage	V _{EB}	8		Vdc		
Collector Current – Continuous – Peak (1)	I _C	8 16		-		Adc
Base Current - Continuous - Peak (1)	I _B I _{BM}	2.5 5		Adc		
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2 16		Watts mW/°C		
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	80 640		Watts mW/°C		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150		°C		

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle = 10%.


THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit			
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.56	°C/W			
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	62.5	°C/W			
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	275	°C			

MJE5740 MJE5742*

*ON Semiconductor Preferred Device

POWER DARLINGTON TRANSISTORS 8 AMPERES 300, 400 VOLTS 80 WATTS

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Base–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, T_C = 100 $^{\circ}$ C)

Characteristic		Min	Тур	мах	Unit
OFF CHARACTERISTICS (2)		•			
Collector–Emitter Sustaining Voltage MJE57 $(I_C = 50 \text{ mA}, I_B = 0)$ MJE57	000(303)	300 400	_ _	_ _	Vdc
Collector Cutoff Current (V_{CEV} = Rated Value, $V_{BE(off)}$ = 1.5 Vdc) (V_{CEV} = Rated Value, $V_{BE(off)}$ = 1.5 Vdc, T_C = 100°C)	I _{CEV}	_ _	_ _	1 5	mAdc
Emitter Cutoff Current (V _{EB} = 8 Vdc, I _C = 0)	I _{EBO}	-	-	75	mAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased		See Figure 6			
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 7			
Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS (3)					
DC Current Gain ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 5 \text{ Vdc}$) ($I_C = 4 \text{ Adc}$, $V_{CE} = 5 \text{ Vdc}$)	h _{FE}	50 200	100 400	_ _	_
Collector–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, I_C = 100°C)	V _{CE(sat)}	- - -	- - -	2 3 2.2	Vdc

SWITCHING CHARACTERISTICS

Diode Forward Voltage (4) (I_F = 5 Adc)

Typical Resistive Load (Table 1)						
Delay Time		t _d	-	0.04	-	μs
Rise Time	$(V_{CC} = 250 \text{ Vdc}, I_{C(pk)} = 6 \text{ A}$ $I_{B1} = I_{B2} = 0.25 \text{ A}, t_p = 25 \mu s,$	t _r	-	0.5	-	μs
Storage Time	i _{B1} = i _{B2} = 0.25 A, i _p = 25 μs, Duty Cycle ≤ 1%)	t _s	-	8	-	μs
Fall Time		t _f	-	2	-	μs
Inductive Load, Clamped (Table 1)						
Voltage Storage Time	$(I_{C(pk)} = 6 \text{ A}, V_{CF(pk)} = 250 \text{ Vdc}$	t _{sv}	_	4	-	μs
Crossover Time	$(I_{C(pk)} = 6 \text{ A}, V_{CE(pk)} = 250 \text{ Vdc}$ $I_{B1} = 0.06 \text{ A}, V_{BE(off)} = 5 \text{ Vdc})$	t _c	-	2	-	μs

 $V_{BE(sat)}$

 V_{f}

_

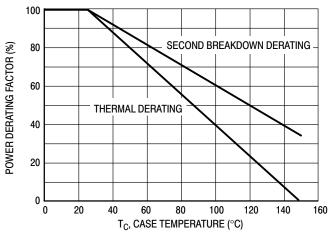
Vdc

Vdc

2.5

3.5 2.4

2.5


⁽²⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2%.

⁽continued)

⁽³⁾ Pulse Test: Pulse Width 300 μ s, Duty Cycle = 2%.

⁽⁴⁾ The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V_f) of this diode is comparable to that of typical fast recovery rectifiers.

TYPICAL CHARACTERISTICS

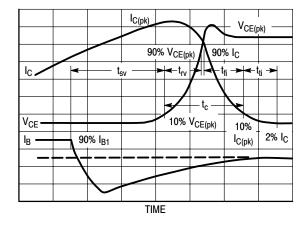
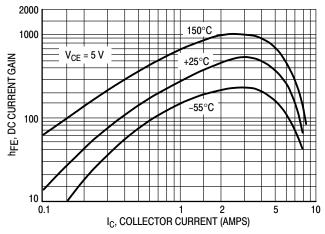



Figure 1. Power Derating

Figure 2. Inductive Switching Measurements

2.4

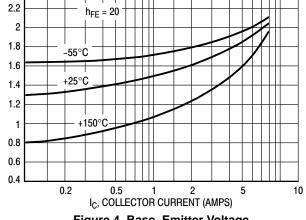
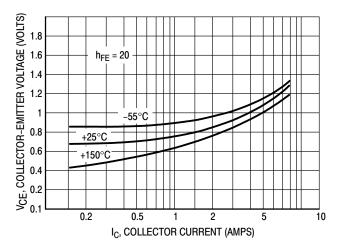



Figure 3. DC Current Gain

Figure 4. Base-Emitter Voltage

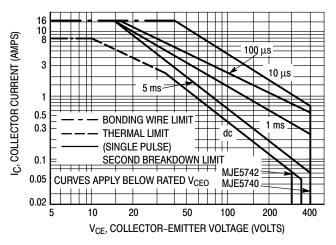
Table 1. Test Conditions for Dynamic Performance

	REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING	RESISTIVE SWITCHING
TEST CIRCUITS	DUTY CYCLE \leq 10% $_{1}^{4}$ \leq 10 ns $_{1}^{4}$	+V _{CC} R _C TUT SCOPE 1 -4 V
CIRCUIT	COIL DATA: GAP FOR 200 μ H/20 A FERROXCUBE CORE #6656 FULL BOBBIN (~16 TURNS) #16 CORE μ H/20 A μ H/20 A μ CC = 30 V μ CE(μ k) = 250 Vdc μ CE(μ k) = 6 A	V _{CC} = 250 V D1 = 1N5820 OR EQUIV.
TEST WAVEFORMS	OUTPUT WAVEFORMS $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+10 V 25 μs 0 -9.2 V 2 t _p , t _f < 10 ns DUTY CYCLE = 1% R _B AND R _C ADJUSTED FOR DESIRED I _B AND I _C

Figure 5. Inductive Switching Measurements

SAFE OPERATING AREA INFORMATION

FORWARD BIAS


There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $T_C = 25\,^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25\,^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 1.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turnoff. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 7 gives the complete RBSOA characteristics.

The Safe Operating Area figures shown in Figures 6 and 7 are specified ratings for these devices under the test conditions shown.

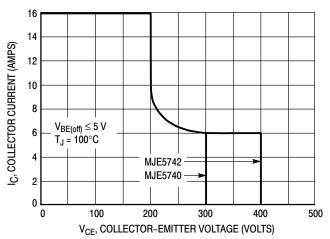


Figure 6. Forward Bias Safe Operating Area

Figure 7. Reverse Bias Safe Operating Area

RESISTIVE SWITCHING PERFORMANCE

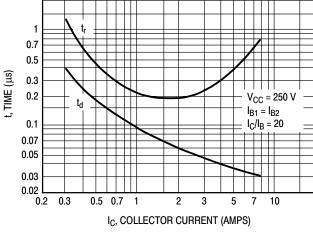


Figure 8. Turn-On Time

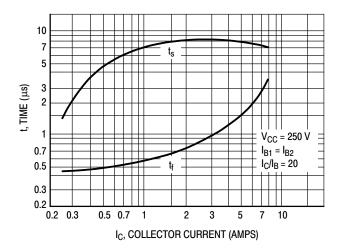
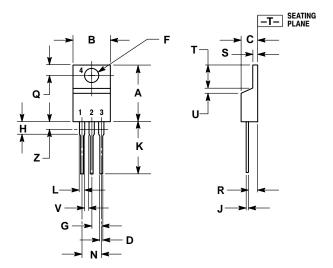



Figure 9. Turn-Off Time

PACKAGE DIMENSIONS

TO-220AA **CASE 221A-09 ISSUE AA**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN MAX	
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00 1.27	
٧	0.045		1.15	
Z		0.080		2.04

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular without during the statistics of any products releast. Solicition makes its warranty, representation of guarantee regarding the statistics of any product or any product or any product or any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.