Lecture 11: RF Power Amplifiers

- Important components in every wireless system including cordless and cellular telephone, base station equipment, spaceborne, airborne, and ground-based (fixed/mobile) satellite communications, wirelss LAN, etc.
- All these systems require low-cost (high volume) and more reliable solid-state power amplifiers.
- Cordless and cellular phones require low-bias voltage operation (2-5 V), single power supply, very high efficiency (analog version) or high linearity (digital version).
- The cellular phones may require dual- or triple-mode operations including multiple frequencies in both digital and analog versions. The power output is in the range of 0.2-3 W.

ELEC518, Kevin Chen, HKUST

Amplifier parameter definitions

- Input and output VSWR ٠
- Power gain: usually the transducer gain, ratio of the power delivered to the load (P_0) to the power available from the source (P_{in}) .
- Output power (P_{out}): a strong function of the input power. P_{1dB} ٠
- PAE ٠

$$PAE = \frac{\text{output signal power - input signal power}}{\text{dc power}} = \frac{P_{out} - P_{in}}{P_{dc}}$$
$$= \frac{P_{out}}{P_{dc}} \left(1 - \frac{1}{G}\right) = \eta_d \left(1 - \frac{1}{G}\right)$$

Where η_d is known as the drain efficiency. For high-efficiency amplifiers, single-stage gain is required to be on the order of 10 dB or higher. 2

ELEC518, Kevin Chen, HKUST

• Intermodulation distortion: introduced by any nonlinear devices

• ACPR (adjacent channel power ratio)

power spectral density in the main channel 1 ACPR =power spectral density in the offset channel 2 or 3 Channel 1-----Commonly used for evaluating the 30 kHz intermodulation 1.23 MHz distortion Channel 2 🗲 30 kHz Channel 3 performance of RF ←30 kHz 885 kHz +885 kHz Channel power amplifiers offset1 designed for Channel offset 2-CDMA or W-1.98 MHz .98 MHz-CDMA. **CDMA ACPR** measurement Center frequency

frequency spectrum. ELEC518, Kevin Chen, HKUST 3

1

General Considerations:

Consider a transmitter that delivers 1W of power to a 50- Ω antenna

- The peak-to-peak swing, Vpp, at the antenna is then equal to 20V and the peak of the load current is 200 mA.
- The configurations shown in (a) and (b) require a supply voltage greater than Vpp.

- When a RFC is used, the supply voltage can be lowered by a factor of two because Vx can swing from approximately 0 to 2 V_{DD} .
- The RFC approximates a current source that can sustain both positive and negative voltages.
- The maximum Vds experienced by M1 is not relaxed by the use of the RFC.
- A matching network can be interposed between the PA and the load to lower supply voltages.

TABLE 9.1 Typical PA performance.

+20 to $+30$ dBm
30% to 60%
-30 dBc
3.8 to 5.8 V
20 to 30 dB
-50 to -70 dBc
On-Off or 1-dB Steps
> 1

Linear and nonlinear PAs: linearity of Pas becomes important with certain modulation schemes, e.g., p/4-QPSK

Spectral regrowth and ultimately adjacent channel power.

- Usually operate with the active device displaying some (maybe even gross) nonlinear behavior.
- So a big issue for PA design is the nonlinear device modeling
- The major difference between linear RF amplifiers design and PA design is that, for optimum power, the output of the device (PA) is not presented with the impedance required for a linear conjugate match.
- In the world of PA design, we often struggle to obtain adequate signal gain, as well as extract optimum power from a device. This is an inevitable consequence of cost-driven design; large periphery transistors have lower gain and designers usually are constrained to use the lowest cost technology.

Device Models: Linear and Nonlinear

- An essential part of CAD tools
- Reduced design cycle time and possible "first-pass" design
- Most common method of model development is to measure DC and S-parameters.
- Model extractions are carried out to replicate the measured Sparameters

 \bullet Cgs, Cgd, $g_{\rm m}$ and Rds are a strong function of device bias conditions.

• At given bias, this model describes basic linear operation of a FET and the model reproduces the small-signal RF terminal characteristics of the device with good accuracy.

ELEC518, Kevin Chen, HKUST

Typical small-signal model parameters for 300-mm power FET biased at Vds = 2.5 V, Ids = 50% Idss

Disadvantages of the Equivalent-Circuit Model

- Difficult to scale to physical structures
- Frequency independent of circuit elements
- No time dependence feature
- Incoherent limitation to linear circuits

Nonlinear Device Models for CAD

- The PA designer is much more sensitive to some of the shortcomings of widely used CAD models than designers of many other kinds of RF devices.
- So a big issue for PA design is the nonlinear device modeling
- Device models for CAD fall into two categories: physical models (bottom up); curve-fit, or top-down approach.
- Interesting to note: bipolar modeling community has, historically, stuck rigidly to the physical model path, while the available FET models are largely of the top-down type.
- Central issue in modeling an RF power transistor: scaling
- Almost always, the detailed modeling and curve fitting are done on a small periphery sample device and may be quite accurate.

9

ELEC518, Kevin Chen, HKUST

10

- The PA designer has to take the small cell and scale it by tens, even hundreds, to "build" a power transistor.
- Such a scaling, unfortunately, is not a simple set of electrical nodal connections.
- Secondary phenomena associated with large periphery devices:
 - Nonuniform thermal effects --- against the customary assumptions made about equal currents and voltages across an array of "identical" circuit elements.
 - Multiple parallel connections also can cause mutual coupling between bondwires.
- The most difficult part of the scale-up RF power transistor models is the difficulty of putting the model and the device through simple comparative tests.
 - DC I-V curves: curve tracers are too slow for RF power transistors. The measured I-V characteristics usually include the transient junction heating effects, which will not occur to any significant extent during an RF cycle.

ELEC518, Kevin Chen, HKUST

- Pulsed I-V measurement is attracting increasing interests, but the measurement system is expensive --- usually provide I-V data quite different from that obtained using curve tracers --results in "dispersion"
- The impedances are typically so low, compared to a 50Ω reference, that even simple linear s-parameter measurement is fraught with calibration problems --- pre-matching --- additional challenging calibration problems in de-embedding the matching networks.

ELEC518, Kevin Chen, HKUST

Nonlinear model

- Using the same basic configuration for equivalent circuit. Measurement-based.
- Various models differ in the expressions for the drain current, gatesource and gate-drain capacitances.
- Commonly used representation of the nonlinear FET model

$$I_{ds} = (A_0 + A_1V_1 + A_2V_1^2 + A_3V_1^3) \tanh(\alpha V_{ds})$$

where

 $V_1 = V_{gs} [1 + \beta (V_{dso} - V_{ds})]$

and

$$C_{gs} = C_{gso} \cdot f(V_{gs}, V_{gd})$$
$$C_{gd} = C_{gdo} \cdot f(V_{gs}, V_{gd})$$

13

Basic steps in nonlinear equivalent Circuit model extraction

- Extract coefficients for I_{ds} to match with measured I-V data. Important data is near the knee of the curves and breakdown near pinchoff.
- Measure S-parameters, extract small-signal model values and derive coefficients for gate-source and gate-drain capacitances to describe its dependence on gate and drain voltages.
- Validate model by comparing measured and simulated data with 50 ohm input and output for P_{1dB} compression point and power levels for other harmonics. Simulations are generally carried out using harmonic balance analysis.

0.5 Amplitude (I___=1)

 2π

AB

(CLASS)

$I_1 =$	$I_{\rm max}$	$\alpha - \sin \alpha$
	2π	$1 - \cos(\alpha/2)$

- DC component decreases • monotonically as the conduction angle is reduced.
- For the class B condition, $\alpha = \pi$, gives

 $I_{dc}(\text{class B}) = I_{\text{max}} / \pi$

Class A gives ٠

 $I_{dc}(\text{class A}) = I_{max}/2$

A	0.5	0.5	2π	
AB	0–0.5	0–0.5	π–2π	
8	0	0	π	
Contra d	<0	ан на О на на на	0π	

- The DC component of the output current will decrease as the conduction angle is reduced.
- The variation of the fundamental and other harmonics as a function of the conduction angle can be found by Fourier analysis of the waveforms.

ELEC518, Kevin Chen, HKUST

r

Conduction

anale

For the class B condition,

 $\alpha = \pi$, gives the fundamental component as

 $I_1(\text{class B}) = I_{\text{max}}/2$

The same as the fundamental component in the class A condition

Hint: there appears to be a possibility for decreasing the dc supply power by a factor of $\pi/2$, without changing the RF fundamental component. In other words, the efficiency should increase from 1/2 in the class A mode to $\pi/4$ (about 78.5%) in class B.

To realize the possible higher efficiency, the output termination and voltage waveform have to be considered first.

• The odd harmonics pass through zero at the class B point, but in AB mode, the third harmonic is not negligible.

21

The dc supply power is given by $P_{dc} = V_{dc}I_{dc}$ The output efficiency is defined by: P_1

The output efficiency is defined by: $\eta = \frac{P_1}{P_{dc}}$ In an RF PA, the RF driver power (input) is quite substantial, which leads to an alternative definition, the so-called power added-efficiency

<u>Circuit analysis for output</u> <u>termination</u>

Conceptually, all harmonics of the load are shorted and generate no voltage. v_w

The harmonic short is realized conceptually with a high-Q parallel resonant "tank" circuit at the fundamental.

The RF fundamental output power is given by

 $P_1 = \frac{V_{dc}}{\sqrt{2}} \frac{I_1}{\sqrt{2}}$

Summary of class A, AB, B, and C PAs

- Between class A and class B operation, the fundamental RF output power is approximately constant, showing an increase of a few tenths of a decibel in the mid-AB range over the class A power output.
- The class B delivers the same power as class A but with a dc supply reduced by a factor of $\pi/2$ compared to class A, giving an ideal efficiency of $\pi/4$.
- The class C condition shows a rapidly increasing efficiency as the conduction angle is reduced to low values; however, that efficiency is accompanied by a substantial reduction in RF output power.

Reduced conduction angle mode analysis: a simple program that computes the necessary Fourier components of the RF current waveforms for a given set of conditions that specify the bias quiescent point and the amplitude of the RF drive signal.

The dotted traces show 3 dB backed-off condition.

ELEC518, Kevin Chen, HKUST

 V_k is a normalized parameter that allows a more realistic turnon ("knee") transistor characteristics to be included in the analysis. Set to be zero here.

 R_L : normalized value of fundamental load resistance, normalized to the optimum class A value of unity. T 25

25

Class AB operation

If the linear gain starts off below 10 dB, the PAE will start to show a markedly less attractive increase in overall efficiency. Required parameters:

$$V_q = 0.25; V_s = 0.75$$

 $V_k = 0; R_L = 0.94$

 R_L is reduced from the class A loadline value, reflecting the higher fundamental current component.

Efficiency now increases to 70%, which comes at the expense of drive power: the increase in Vs from 0.5 to 0.75 translates ideally into about 3.5 dB extra drive power.

ELEC518, Kevin Chen, HKUST

26

Class B operation

Use hotter technology (such as GaAs HBT and PHEMT) for cellular phone handsets below 2 GHz, so that we have a higher gain starting point.

Required parameters: $V_q = 0$; $V_s = 1.0$

 $V_k = 0; \quad R_L = 1.0$

The RF power has returned to its original (class A) value. The dc supply is down by a factor of $\pi/2$ and the efficiency has increased to 78.5%.

EfficiencyThe downside is that, in
theory, 6 dB more drive
power is needed --- a large
reduction in power gain at
RF and microwave
frequencies.ELEC518, Kevin Chen, HKUST27

Class C operation

The major problem with using class C mode in solid state applications is the large negative swing of input voltage --- reverse breakdown involved.

Required parameters:

$$V_q = -0.5; V_s = 1.5$$

 $V_k = 0; R_L = 1.14$

The current waveform is reduced to a train of short pulses, which have low dc component but also a lower fundamental RF component. Very high efficiency can be obtained, but at the expense of lower RF output power and very heavy input drive requirements.

ELEC518, Kevin Chen, HKUST

Switch Mode PAs

Class E: nonlinear PAs that achieve efficiencies approaching 100% while delivering full power, while delivering full power, a remarkable advantage over class C PAs.

VDD

Matching

Network

- The transistor operates as a switch, rather than a voltage-dependent current **RFC** source.
- Requirement for achieving high efficiency
 - M1 sustains a small voltage when it carries current
 - M1 carries a small current when it sustains a finite voltage
 - inevitable transition times between on and off states are minimized.

ELEC518, Kevin Chen, HKUST

29

Class E PAs deal with finite input and output transition times by proper load design.

The components in the load are chosen so that Vx satisfies three conditions:

(1) As the switch turns off, Vx remains low long enough for the current to drop to zero, (2) Vx reaches zero just before the switch turns on, and (3) dVx/dt is also near zero when the switch turns on.

Class E stages exhibit trade-off between efficiency and output harmonic content. Additional filtering can precede the load resistor, but at the cost of power loss in the filter.

Large peak voltage is required for class E PAs. Usually drain-source has to endure three times of the $V_{\text{DD}}.$

Large-Signal Impedance Matching: load-pull measurement

Commercial load-pull equipment

Both mechanical and electronic tuners have been used in commercial loadpull systems.

Systems with independent fundamental and harmonic tuning are also available.

Typical load-pull configuration ELEC518. Kevin Chen. HKUST

