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ABSTRACT 
 

This paper explores various issues of a counterintuitive 
negative frequency phenomenon. A generic two 
dimensional frequency model has been presented to 
signify this mysterious mathematical consequence of 
complex analysis. The phasor treatment of the sinusoidal 
signals offers the profound mathematical tools for their 
effective explanation, subsequently devising this 
mystifying concept. So the real essence of negative 
frequency is explored in the context of phasor analysis. 
Issues related to its physical reality and existence along 
with its significance in modeling real systems is also 
discussed. An approach is developed to characterize 
different orientations relative to this negative frequency 
notion investigating the modern status of our 
mathematical constructs and schemes. 

1. INTRODUCTION 

An effective representation that can facilitate and assist 
the mathematical manipulations of a system and is also 
consistent with its conceptual roots is quite influential in 
characterizing that system. So a large number of 
approaches and tools have been developed that focus on 
various features of a system’s performance. Multi 
dimensional mapping scheme has proved to be quite 
significant in outlining the system’s attributes. Any 
explanation for a particular phenomenon is valid if it is 
rational, coherent with the actual observable facts, and 
also self consistent. 

The development of Fourier series and Fourier 
Transform is an excellent example of this progressive 
design in which we represent a signal in terms of various 
combinations of basic sinusoidal signal. The Fourier 
Transform and the frequency spectrum are powerful 
tools for analyzing and measuring signals [1] .  For  
example, we can effectively acquire time-domain 
signals, measure the frequency content, and convert the 
results to real-world units and displays. 

So an effective illustration and representation of a system 
is inevitable for the comprehensive perception of a 
certain phenomenon. Thus, for an efficient treatment of 
the basic sinusoidal signals that serve as eigen functions  

 

of linear systems, phasor analysis in association with the 
complex numbers has been developed. The neat thing 

about a sine wave such as v(t) = A sin(w  t +  d) is that it 
can be considered to be directly related to a vector of 
length A revolving in a circle with an angular velocity 

w - in fact just the y component of the vector. 

The negative frequency concept is a consequence of the 
phasor treatment of sinusoidal signals. Negative 
frequencies seem counterintuitive as in time domain we 
tend to perceive everything from its physical perspective 
but this constraint is not valid when we are dealing with 
our mathematical generalizations. Perhaps it is this 
violation of physical embodiment that has enabled us to 
develop enormous manifestations and versions of the 
same physical phenomenon. Most of the physics (but not 
all) can be expressed accurately in terms of math, but not 
all the math has “comprehensible” physical 
interpretations. Negative frequency is one of such 
challenging issues. 

2. PHASOR AN A L Y S I S  F O R  THE 

CHARACTERIZATION OF SINUSOIDAL SIGNALS 

Complex analysis with its complex plane serves as a tool 
in simplifying the coordination between algebra and 
geometry of signals [2]. The domain of real numbers is 
limited to one dimension but the provision of including a 
direction (phase) in complex mathematics elevates their 
significance. This is why we can call them a 2D 
numbers. A complex number specifies its projections on 
real and imaginary axes either by a certain coefficient or 
through equations. Complex numbers may be called as 
existent invisible numbers as opposed to non-existent 
imaginary numbers. 

A vector starting from the origin of complex plane to 
another point in that plane is a phasor. A phasor 
represents the amplitude and phase of a sinusoidal 
function and may have many forms. Probing deep into 
this phasor demonstration reveals its excellent potential 
and ease in explaining the sine and cosine functions. 
Euler’s identity, given below, is the greatest contributor 
in this context: 

http://mathworld.wolfram.com/Eigenfunction.html
http://mathworld.wolfram.com/Eigenfunction.html
http://mathworld.wolfram.com/Eigenfunction.html


( )1sincos xjxe jx +=
 

This formula can be interpreted as saying that the 
function ejx traces out the unit circle in the complex 
number plane a s  x ranges through the real numbers. 
Here, x is the angle that a line connecting the origin with 
a point on the unit circle makes with the positive real 
axis, measured counter clockwise and in radians. This 
complex exponential contains within it the whole range 
of sine and cosine functions that are being depicted on 
the imaginary and real axis respectively. So what we 
have in the real plane is the line segment whose length is 
cos x while the complex plane's line segment takes the 
values of sin x [F igure 1]. So with this complex 
exponential, sinusoidal signals have been transformed 
simply into vectors that exclusively characterize them. 

This excellent relationship may be considered as the 
most influential equation of mathematics. It is actually a 
special case of a broader relation that links two entirely 
different branches of mathematics; geometry which is the 
study of space and algebra that focuses on the structure 
and quantity. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Relation of circular motion to sinusoidal 
motion via Euler’s identity. 

Now we will see the sine and cosine functions with a 
different perspective and in the context of this phasor 
treatment that will subsequently lead us to the real 
concept of negative frequency. Euler's identity provides 
an interpretation of the sine and cosine functions as 
weighted sums of the exponential function. This 
consequence of Euler’s relation allows u s  to represent 
cosine function as a sum of two phasors; one revolving 
in the clockwise direction (negative) and the other in the 
counter clockwise direction (positive). Both of these 
phasors contribute equally to the result. This can be 
efficiently seen from the geometry as shown in Figure 2. 
Similarly we can demonstrate for the sine function. The 
presence of ‘j’ in the sine function only means that it is -
90o to the other term and hence we can mentally neglect 
it for a better understanding. 

 

Figure 2. Opposite circular motions add to give 
real sinusoidal motion. 

The phasors are plotted with time dimension suppressed, 
so they look like vector frozen in time with its plane 
rotating with the angular frequency. But actually the 
addition of a time dimension creates a corkscrew pattern 
[Figure 3]. The function thus looks like a helix moving 
forward in time to the right [1]. The x-z projection and y-
z projection if plotted would give us the sine and cosine 
functions. So we have: 

( )2cos tx w=
 

( )3sin ty w=
 

( )4tz =
 

Here t is a real parameter. As t increases, the point 
(x,y,z) traces a right-handed helix of pitch 2 π about the 
z-axis. 
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Figure 3. Three-dimensional view of the phasor ejωt. 

2.1. MAIN POINTS 

These facts can be summarized into following main 
points: 

· Euler's identity says that a complex sinusoid 
corresponds to a circular motion in the complex 
plane, and is the vector sum of two sinusoidal 
motions. 

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Angle
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Pi


· Adding two complex conjugate waveforms 
together cancels out the imaginary parts and 
doubles the real part of each, thus giving a 
cosine. 

· Sine wave is the difference of same two phasors 
divided by 2j. 

· Since any real periodic signal can be 
represented as a sum of sine and cosine terms, 
thus it can also be represented by positive and 
negative phasors. 

· As we could create a spectrum out of the 
coefficients of sinusoids, we can do the same 
thing out of the coefficients of phasors. 

· For the signal to be real, every positive 
frequency complex sinusoid must be summed 
with a negative frequency sinusoid of equal 
amplitude. In other words, any 
counterclockwise circular motion must be 
matched by an equal and opposite clockwise 
circular motion in order that the imaginary parts 
always cancel to yield a real signal  

2.2. SIGNIFICANCE OF THE PHASOR TREATMENT 

The complex exponential provides a useful technique for 
conceptualizing the sinusoidally oscillating electrical 
signals. Its importance also comes from its tendency to 
develop a basic view for the understanding of periodic 
signals and to characterize the linear time-invariant 
signals [3]-[4]. 

From the Euler's identity we can easily break the signal 
down into its real and imaginary components. Also we 
can see how exponentials can be combined to represent a 
real signal. By modifying their frequency and phase, we 
can represent any signal through a superposity of many 
signals [ 5 ] - all capable of being represented by an 
exponential. 

With this, a very convenient way to graph general 
complex frequency domain quantities at one instant of 
time is developed. The positions of the vectors on the + 
frequency axes are the frequencies of rotation. This 
scheme allows the presentation of either real and 
imaginary parts (or amplitude and phase values) on a 
single plot. So the inflexibility associated with the 
arithmetic of trigonometric identities is now confined to 
vector addition and subtraction problems. 

3. NEGATIVE FREQUENCY 

The exponential form of the Fourier series allows for 
negative frequency components. To this effect, the 
exponential series is often known as the "Bi-Sided 
Fourier Series", because the spectrum has both a positive 
and negative side [6]. Actually this concept is the 

outcome of the trade off between the two approaches or 
the tools: either a "physically correct" view that requires 
hard work but does not induce any controversial issues, 
or one that is easy to work with but comes at the expense 
of possible confusion over the "negative frequency" 
concept. 

The negative frequency is there to make sure that the 
signal itself is real valued. The reason for negative 
frequencies being there is the Euler's equation: 

( )52)(sin jeet tjtj www --=
 

( )62)(cos tjtj eet www -+=
 

Note that the concept of "negative frequency" comes 
from the exponents of the second terms, -jω t, that contain 
three factors, namely j, ω  a n d  t. Exactly which one of 
these contains the "-" sign, is a matter of choice. If we 
keep j = sqrt ( -1) out of it, physics says that t is always 
increasing. Then, the only physical parameter left where 
the "-" sign can be "hooked on", is ω . For base band time 
signals, speaking purely in time domain, this is a purely 
mathematical construct. 

Positive and negative frequencies have nothing to do 
with causality and the direction of time; rather they 
simply have to do with the direction of rotation [1]. 
Counterclockwise rotation is a positive angular 
frequency and clockwise rotation is a negative angular 
frequency. This terminology is confusing as in complex 
domain we are not talking about the frequency but 
explicitly the exponent of the exponential. The Q+ 
phasor represents the positive frequency content and the 
Q- phasor represents the negative frequency content 
because of the sign of the exponent. 

Parallel to this is another outlook that it is possible to 
express Fourier transforms with positive frequencies 
only using trigonometric functions [6]. So we can say 
that exponential functions are easier to work with, but 
they require negative frequencies to do the same job. The 
choice of ejwt + e-jwt with ω  both negative and positive 
instead of sin(ωt) + cos(ωt) with only positive ω  is made 
for convenience. The formulations are mathematically 
equivalent. So their existence depends on domain under 
observation. 

3.1. A TWO - DIMENSIONAL APPROACH 

Frequency is really a two dimensional concept and it is 
always related to a physical quality of a wave as a single 
dimension. Spectrum analyzers and other electrical 
measuring instruments are also single dimensional and 
thus limit our insight on this concept. The general 
concept of frequency can be written as: 

( )7/ dtdf j=
 

where φ is the phase of a sinusoidal signal. Thus, we can 
define frequency as the rate of change of phase over 

http://cnx.org/content/m10084/latest/
http://cnx.org/content/m10084/latest/
http://cnx.org/content/m10084/latest/


time. So a 2π rotation over half a second means that the 
frequency is 2 Hz (cycles/sec.) and if the phase rotates 
counter clockwise it is positive: the frequency is negative 
if the rotation is clockwise. A much simpler and intuitive 
reality of this notion can be viewed with reference to 
time domain justification of a sine wave. If at some 
vertical axis we are examining the sine function signal, 
two parameters can entirely explain this situation: The 
magnitude telling us how fast the oscillations are being 
performed. It corresponds to the first dimension of our 
two-dimensional approach. 

The direction of oscillation seen easily by the pattern 
being represented on the vertical axis i.e., either upward 
or downward [Figure 4]. One of them corresponding to 
positive frequency and the other one to the negative 
frequency. This direction corresponds to second 
dimension of our model. 

 

Figure 4. Change of direction in sine wave. 

This all can be incorporated into the complex numbers 
effectively that consequently give the precise 
mathematical picture of negative frequency. If the trivial 
definition of frequency is taken as to how often 
something repeats - then the answer is certainly a simple 
positive number. But if we expand our viewpoint to two 
dimensional things, a natural extension is to say not only 
how often something repeats but, we can now include a 
direction. While this is a natural philosophical idea, it is 
motivated by mathematics. The primary reason complex 
numbers (two dimensional) were developed, was that 
one dimensional numbers proved inadequate for large 
classes of problems. Complex signals are nothing more 
than two different and separate real signals: one labeled 
"real" while the other labeled "imaginary" but which 
must be handled throughout the processing as a pair and 
operated upon using the rules of complex arithmetic [7]. 

3.2. THE PHYSICAL EXISTENCE 

Again we have to convince ourselves that mathematical 
modeling of a system that is resourcefully enunciating 
has many byproduct entities. These offshoots may seem 
to be counter intuitive at a first glance. But since our 
mathematical model is an accurate one, so some physical 
phenomenon can be associated with its derivatives. 
Although this reality may not be simple and clear, yet it 
c a n  b e acquired through some clever reasoning. 
Similarly the negative frequency notion is the result of 
our phasor treatment and can be justified in many ways 
by focusing more at various issues at different times. 

The negative frequency may very well be a mathematical 
abstraction, but with a measurable appearance. In AM 
modulated systems the signal is represented as two 
sidebands "mirrored" around the carrier frequency. The 
upper side band comes from modulating the baseband 
signal [4]. The lower side band is due to the negative 
frequencies. To save bandwidth one sideband can be 
removed, in which case we have a single-sideband (SSB) 
modulation scheme. The tendency of this modulating 
scheme to remove the negative frequency spectrum tells 
us about the existence of negative frequency. 

When sampling real-valued signals, the negative 
frequencies are repeated in the band between Fs/2 and Fs 
(Fs is the sampling frequency). The existence of these 
frequency components are the sole cause of Nyquist's 
sampling theorem [3], that restricts the bandwidth of the 
signal to be sampled to f <Fs/2. 

T h i s  r e presentation is an example o f  elegant 
computational scheme. If spectrum analysis (positive 
frequencies only) is performed at baseband and then of 
the modulated signal, we find that the bandwidth of the 
modulated signal is twice the bandwidth of the baseband 
signal thus specifying the role of negative frequency 
components. So it is appreciative to conclude that 
negative frequencies exist. 

The distinction between circular and cycloid filters based 
on the projective properties also gives a clear notion of 
negative frequency phenomenon. By rejecting negative 
frequencies circular filters produce circular paths while 
negative frequency infiltration in cycloid filters generates 
cycloid curves at the output [5]. 

For an angular frequency w =  2pf,  w h e r e  w is in 
radians/second and f is in Hz, w can either be a positive 
or negative quantity and the physical reality of this is 
easily seen when we explicitly write out the real and 
imaginary parts. For example, positive frequency [rotates 
counter clockwise]: 

( )8sincos2 wwpw jee fjj +==
 

Real part carries the signal "cos (wt)" and imaginary part 

carries the signal "sin (wt)". 

With sufficiently low frequency signals, using an 
oscilloscope with separate x and y-axes inputs, which can 
be done with a complex analog signal processor, one can 
display the real part on the horizontal axis and the 
imaginary part on the vertical axis and actually see the 
dot tracing out a circle in the counter-clockwise direction 
[positive frequency]. Negative frequency [rotates 
clockwise]: 

( )9sincos2 wwpw jee fj -== --

 

Again using an oscilloscope with separate x and y inputs 
displaying the real and imaginary parts we can see the 
dot tracing out the circle in the opposite direction 
[clockwise or negative frequency]. 



Systems supporting positive and negative frequencies 
must simultaneously support complex signals together 
with their “real” and “imaginary” signals [2]. Simulating 
such a system where we have separate sources for real 
and imaginary part of complex signal, gives us an insight 
on the physical reality of this phenomenon. By 
simulating the schematic of Figure 5 (a) and using an x-y 
grapher with separate x-axis (real signal) and y-axis 
(imaginary signal) inputs, we can actually see the dot 
tracing a circle in the counter-clockwise direction. 

The x-y graph block plots data in the first input (the x 
direction) against data in the second input (the y 
direction). The clockwise rotation of the dot in the x-y  
grapher gives the notion of negative frequency. It can be 
verified by making the y-axis input (imaginary signal) 
negative. In this case we trace a circle in the opposite 
direction which is clockwise direction [Figure 6 (d)]. 

Negative frequencies follow the important rule of 
symmetry: Negative frequency components are always 
mirror-images of the positive frequency components. If 
we are to generate real signals from complex 
exponentials, complex conjugate pairs of eigen functions 
are required [8]. So, negative frequencies whether analog 
or digital are just as "real" as positive frequencies. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5. A schematic showing the existence of 
positive frequency: (a) Schematic (b) Scope 
revealing x-axis input (real part of complex signal) 
which is cos ωt ( c )  Scope revealing y-axis input 
(imaginary part of complex) which is sin ωt (d) x-y 
graph showing a unit circle due to the counter-
clockwise rotation of trace. 

 

(a) 

 

 

(b) 

 

(c) 



 

(d) 

Fig. 6. A schematic showing the existence of 
negative frequency: (a) Schematic (b) Scope 
revealing x-axis input (real part of complex signal) 
which is cos ωt ( c )  Scope revealing y-axis input 
(imaginary part of complex signal) which is -sin ωt 
(d) x-y graph showing a unit circle due to the 
clockwise rotation of trace. 

4. CONCLUSION 

The negative frequency concept can have many flexible 
details depending on its various aspects. The projections 
of both the clockwise and anticlockwise phasors of our 
complex analysis on the real axis are simply added up in 
time domain giving us the cosine function. So, it is just 
the shifting from one reference system to other or 
transformation from one domain to other that highlights 
its significance. The time domain version of this concept 
is confusing due to our conventional single dimensional 
consideration of frequency concept. More insight can be 
achieved in this argument by treating frequency as a two-
dimensional reality. Nevertheless the negative frequency 
notion is a mathematical necessity and is an outcome of 

phasor analysis signifying an admirable model for 
simplifying mathematical and subsequent frequency 
domain issues. 
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