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Regeneration Theory and Experiment *

By
E. PETERSON, J. G. KREER, AND L. A. WARE

A comprehensive criterion for the stability of linear feed-back circuits
has recently been formulated by H. Nyquist, in terms of the transfer factor
around the feed-back loop. The importance of any such general criterion
lends interest to an experimental verification, with which the paper is
primarily concerned.

The subject is dealt with under five principal headings. The first sec-
tion reviews some of the criteria for oscillation to be found in the literature of
vacuum tube oscillators. The second describes the derivation of Nyquist's
criterion somewhat along the lines followed by Routh in one of his investiga-
tions of the stability of dynamical systems. The third part deals with two
experimental methods used in measuring the transfer factor. The fourth is
concerned with the particular amplifier circuit used in the test of Nyquist's
criterion, The last section applies the criterion to a nonlinear case, and to
circuits including two-terminal negative impedance elements,

N a comparatively recent paper on ‘‘Regeneration Theory,” ! Dr.

Nyquist presented a mathematical investigation of the conditions
under which instability ? exists in a system made up of a linear ampli-
fier and a transmission path connected between its input and output
circuits. The results of the investigation are of interest because of
their obvious application to amplifiers provided with feed-back paths,?
as well as to the starting conditions in oscillators. As a result of his
general analysis, Dr. Nyquist arrived at a criterion for stability, ex-
pressed in particularly simple and convenient form, which is not re-
stricted in its range of application to particular amplifier and circuit
configurations.

The great value attached to a criterion as precise and as general as
Nyquist’s makes it desirable to submit the criterion to an experimental
test. One particularly striking conclusion drawn from this criterion is
that under certain conditions a feed-back amplifier may sing within
certain limits of gain, but either reduction or increase of gain beyond
these limits may stop singing. A feed-back amplifier satisfying these
conditions was set up, and the experimental results were found to be in
agreement with this conclusion.

* Published in Proc. I. R. E., October, 1934,

1 Bell. Sys. Tech. Jour., vol. XI, p. 126.

% [nstability is used in the sense that a small impressed force, which dies out in

course of time, gives rise to a response which does not die out.
3 Electrical Engineering, July, 1933; Bell Sys. Tech. Jour., p. 258, July, 1933.

680



REGENERATION THEORY AND EXPERIMENT 681

It is interesting to compare the criterion with those derived for the
mechanical systems of classical dynamics. In his Adams Prize Paper
on “The Stability of Motion,” * and again in his “Advanced Rigid
Dynamics,” ® Routh investigated the general problem of dynamic
stability and established a number of criteria based upon various
properties of dynamical systems. When applied to the problem of
feed-back amplifiers, keeping Nyquist’s result in mind, one of them is
found to be equivalent to Nyquist's criterion, although expressed in
different terms and derived in a different way.

To provide a background for the experiments, we propose to state
some of the criteria for stability which are to be found in the literature
of vacuum tube oscillators, and to compare them with Nyquist’s or
Routh’s criterion, the development of which is most conveniently de-
scribed somewhat along the lines followed by Routh. Following this
we shall deal with the experimental methods and apparatus which were
used in testing the criterion, and conclude with some extensions of the
criterion.

CIRCUIT ANALYSIS AND STABILITY

Conditions required for the starting of oscillations in linear feed-
back circuits, corresponding to instability, are to be found in the litera-
ture of vacuum tube oscillator circuits, expressed in a number of os-
tensibly different forms. These are usually based upon the familiar
mesh differential equations for the system which involve differentia-
tions and integrations of the mesh amplitudes with respect to time.
Using the symbol p to denote differentiation with respect to time, each
mesh equation becomes formally an algebraic one in 2, involving the
circuit constants and the mesh amplitudes. The solution of this sys-
tem of equations is known to be expressible as the sum of steady state
and transient terms. The transient terms are each of the form By
enst, the B,'s being fixed by initial conditions, and the g's being de-
termined from the circuit equations. If we set up the determinant of
the system of equations—the discriminant—and equate it to zero, the
roots of the resulting equation are the p:'s above. In general each
mesh equation involves p to the second degree at most, and with »
meshes the discriminant is of degree 2% at most. Accordingly we may
express the determinantal equation as

F(p) = 0= K(p — p)(p — p2) -~ (b — P2 (1)
As for the steady state term, in the simplest case in which a sinu-
soidal wave of frequency w/2r is impressed, it is equal to the impressed

4+ Macmillan, 1877.
& Macmillan, 6th edition, 1905.
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voltage divided by the discriminant and multiplied by the appropriate
minor of the determinant, in which p is replaced by jw. The character
of the response due to a slight disturbance and in the absence of any
periodic force is determined by the exponentials. In general, $; is a
complex quantity which may be written as a; 4+ jwi. It is apparent
that in the critical case for which ay is zero, the corresponding term be-
comes e/“kt, corresponding to an oscillation invariable in amplitude,
of frequency wi/2w. If a; is negative, as is ordinarily the case when
the system is passive (containing no amplifier or negative impedance),
then the oscillation diminishes in course of time. When g, is positive,
however, the oscillation increases with time, and the system is said to
be unstable. Evidently the stability of a system is determined by the
signs of the a;'s.

Several criteria which have previously been enunciated for the
maintenance of free oscillations are deducible from the above. One
states that the discriminant must vanish when p takes on the value jw.
Another states that the damping (e:) must be zero at the frequency of
oscillation. These are clearly equivalent. Two derived criteria may
also be mentioned, based upon the properties of the system when the
circuit is broken. The first of these states that if the impedance is
measured looking into the two terminals provided by the break. the
impedance must be zero at the frequency of steady oscillation.

The second criterion involving the transfer factor has become fairly
widespread, perhaps because it leads to a simple and plausible physical
picture. To determine the transfer factor around the feed-back loop,
the loop is broken at a convenient point, and the two sets of terminals
formed by the break are each terminated in a passive impedance equal
to that which is connected in the normal (unbroken) condition. Then
when a voltage of frequency w/2r is applied to one of the pairs of ter-
minals so provided—the input terminals “—and the corresponding
voltage is measured across the other pair, the transfer factor 4 (jw) is
obtained as the vector ratio of the output voltage to the input voltage.

The manner in which the transfer factor enters into the problem may
be demonstrated directly by comparing the voltages at any point of the
main amplifier circuit under the two conditions in which the feed-back
path is opened and closed respectively. If with the feed-back path
open the voltage at any such point is Ee?, then when the feed-back
path is closed the voltage will be changed 7 to

Eert[[1 — A(p)].

¢ Input terminals are those across which an impressed potential leads to propaga-
tion in the normal direction of amplifier transmission.
7 Bell Sys. Tech. Jour., Vol. XI, p. 128.
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This may be shown as follows with reference to the particular circuit
of Fig. 1: If the feed-back circuit is broken and then properly termi-
nated, the voltage existing across the input is taken ase. Now suppose
the feed-back path to be restored. Designating the voltage existing
across the input in the presence of feed-back as e; we havee; = e 4 Ae,
from which the above equation follows.

& |AMPLI- I él AMPL! -
FIER v\ ¥ FER

NET- E NET-
WORK WORK

Fig. 1—Series type feed-back; loop broken and terminated at left, normal feed-back
circuit at right.

If we let Fi(p) represent the discriminant of the system when the
loop is broken and terminated, then the roots of the equation formed
by setting the discriminant equal to zero are assumed to have positive
real parts. Now for the corresponding discriminant when the loop is
restored, we have in accordance with the above considerations

F(p) = [(1 — A(p) JFu(p).

In setting this discriminant equal to zero to obtain the roots, the
only ones which have nonnegative real parts are those corresponding to

the feed-back term
f(p) =1 — A(p). (2)

The above-mentioned criterion may be deduced from this expression.
For steady oscillations to exist the output potential must be identical
in amplitude and in phase with that existing across the input at the fre-
quency of oscillation (p = jw), in which case the transfer factor is unity.
This seems reasonable on the basis that when the input and output
terminals are connected through, the oscillation will neither increase
nor decrease with time. It may be demonstrated by direct analysis
that these several criteria, framed for the critical case of undamped
oscillations, all lead to the same correct conclusion.

Of course in any actual oscillating circuit it is practically impossible
to get these conditions fulfilled exactly, and what is ordinarily done
in the practical design of oscillating circuits is to ensure that the
voltage fed back will be greater than that required to produce oscilla-
tion. This evidently goes a step further than the above criteria, and
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reliance is placed upon the nonlinear properties of the circuit to ful-
fill the criteria automatically. The procedure is known by experiment
to be effective in the usual type of oscillating circuit. In particular
forms of feed-back circuits, however, it may be demonstrated that
the transfer factor may be made greater than unity without giving rise to
oscillations. Thissituation was investigated experimentally, and found
to be in accord with the stability criterion stated by Nyquist.

NyQuisT's CRITERION

The explicit solution of (1) for the $;'s demands an exact knowl-
edge of the configuration of the amplifier and feed-back circuits. When
the number of meshes is large, the solution involves much labor. If we
wish simply to observe whether or not the system is stable, however,
we need not obtain explicit solutions for the roots; in fact, all we need
to know is whether or not any one of the $.'s has its real part positive.
It turns out that when we know the transfer factor as a function of fre-
quency, by calculation or by measurement, a simple inspection of the
transfer factor polar diagram suffices for this purpose. This diagram is
constructed by plotting the imaginary part of the transfer factor
against the real part for all frequencies from minus to plus infinity.?

To obtain Nyquist's criterion we consider the vector drawn from
the point (1, 0) to a point moving along the polar diagram; if the net
angle which the vector swings through in traversing the curve is zero,
the system is stable; if not, it is unstable. To express it in the terms
used by Routh, if wesét1 — A (jw) = P + jQ, and observe the changes
of sign which the ratio P/Q makes when P goes through zero as the
frequency steadily increases, the system is stable when there are the
same number of changes from plus to minus as from minus to plus.
It may be demonstrated that these two statements are equivalent.

The way in which the above procedures may be shown to reveal the
existence of a root with positive real part may be outlined somewhat
along the lines followed by Routh in his analysis.® Since p is a com-

8 The transfer factor for negative frequencies A (—jw) is the complex conjugate of
that for positive frequencies 4 (jw). Thus, if

AQw) = X + 57,
A(—juw) = X — jV.

9 A number of restrictions on the generality of the analysis may be noted. It is
assumed that 4 (p) has no purely imaginary roots, although the result in this case is
othefwise evident. Further it is assumed that A(p) goes to zero as |p| becomes
infinite, and that no negative resistance elements are included in the amplifier.
Another point which should be mentioned is that the analysis does not apply to the
stability in any conjugate paths that may exist. This point may be exemplified by

the balanced tube or push-pull amplifier, in the normal transmission path of which the
tubes of a stage act in series. When the series output is connected back to the series

then
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plex quantity in general, any value which it may take is representable
as a point on a plane—the p-plane of Fig. 2. Since only values of p
with positive real parts concern us, attention may be confined to the
right-hand half of the p-plane. Now draw a closed contour C in the
right-hand half of the p-plane which encloses the root px. It is evident

Jw

<

-a

—-Jw

Fig. 2—Plot of two contours C and C, in the p-plane. C encloses the root py
while C; does not enclose pr. The vector p — px covers 360 degrees as p traverses C,
and covers the net angle of zero as p traverses C).

upon inspection of Fig. 2 that the vector extending from the root g
to the contour makes a complete revolution (360 degrees) in following
the closed path. If the contour does not enclose the root, however, as
for C1, then it is clear that when the vector from the root to the contour
traverses the whole contour, the net angle turned through by the vec-
tor is zero. In the region under consideration we may write

f(p) = (p — pr)o(P),

where ¢(p) has no zeros within the contour. Hence, when p traverses
a closed path and (p — i) turns through 360 degrees or through zero
the same angle is covered by f(p). If for some different contour sev-
eral roots are enclosed, it may be shown that f(p) turns through one
complete revolution for each of the enclosed roots when p traverses the
contour.

In the form in which these considerations are stated, they are not
suitable to practical application since complex values of p are in-
volved. Ordinarily, of course, only imaginary values (¢ = jw) are con-
veniently accessible to us since it is a comparatively simple matter to

input, stability of the resultant loop has in general no bearing upon the stability of
the path formed with the two tubes of each stage in parallel, since the series and shunt
paths are conjugate to one another. To establish the stability of the shunt or parallel
path, the transfer factor for that path must be separately determined. In general,
the stability criterion applies only to the particular loop investigated, and not to any
other existent loop.
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measure the response with a sinusoidal impressed wave, but it would
involve great difficulties of experiment as well as of interpretation to
determine the response with negatively damped waves corresponding
to values of p in the right-hand half of the plane. However, these re-
sults may be brought within the field of practical experience by a pro-
cedure widely used for the purpose.

To include all roots in the right-hand half of the p-plane, the con-
tour must be taken of infinite extent. The path ordinarily followed for
this purpose extends from the value 4+ R to — R on the imaginary axis,
and is closed by a semicircle of radius R, where R is assumed to expand
without limit. It may be noted that in actual amplifier circuits the
transfer factor becomes zero when |p| becomes infinite, so that A(p)
is zero along the semicircular part of the closed contour. Conse-
quently, the only values of 4 (p) which differ from zero are those corre-
sponding to finite values of p, along the imaginary axis. In other
words, the plot of 4(p) under these conditions comes down to the plot
of A(jw) where w is finite. Hence, if we plot 4 (jw) for all values of w
from minus to plus infinity, there will be no roots with positive real
parts and the system will be stable when the vector from (1, 0) to the
curve sweeps through a net angle of zero. The system will be unstable
when the vector sweeps through 360 degrees, or an integral multiple
thereof.

Two types of transfer factor curves may be considered as illustra-
tions. The first of these shown in Fig. 3 corresponds to that for a re-

£ 3

a b

Fig. 3—Schematic of a reversed feed-back oscllator circuit at the left. At the
right plot of the transfer factor A (jw) around the feed-back loop of Fig. 3a over the
frequency range from zero to very high frequencies. The imaginary part of the
transfer factor is plotted as ordinate against the real part as abscissa for the three
curves a, b, ¢, which correspond to increasing gains around the loop. Condition a
is stable, while b and ¢ are unstable.
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versed feed-back oscillator circuit, the three curves marked a, b, ¢, cor-
responding to progressively increasing gains around the loop. It will
be observed that after the maximum gain has reached and exceeded
unity, that the circuit is unstable, since the point (1, 0) is then enclosed.
This state of affairs may be contrasted with that existing in the par-
ticular form of feed-back circuit to which Fig. 4 applies. Again the

Fig, 4—Transfer factor diagram for a particular form of feed-back circuit, curves
a, b, ¢, corresponding to increasing gains around the feed-back loop. Conditions a
and ¢ are stable, b is unstable.

three curves a, b, ¢, correspond to progressively increasing gains around
the feed-back loop. As the gain is increased the system is first stable
(a), then unstable (), and finally stable (¢), since it is only within
curve (b) that the point (1, 0) is enclosed. This striking example is the
one which was investigated experimentally. The methods used in de-
termining the transfer factor diagram form the subject of the next

section.
MEASURING METHODS

Application of the Nyquist stability criterion requires the de-
termination of the vector transfer factor around the feed-back loop
atall frequencies. Thisisusually effected by opening the circuit at any
point which provides convenient impedances looking in both directions
from the break. These points are then connected to an oscillator and
to suitable measuring circuits, which are to be described. Care must
be taken to ensure that the oscillator and measuring circuit impedances
are equal to the output and input impedances respectively of the
circuit under test. This precaution is necessary in order that the trans-
fer factor in the measuring condition may not differ significantly
from that existing in the operating condition.
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Two methods of measurement have been found useful. The first is
a null method capable of good precision over a wide frequency range.
The second is a visual method in which the transfer factor polar dia-
gram is traced on the screen of a cathode ray oscillograph. This
method is not capable of very great precision and, in the model used,
the frequency range is somewhat restricted. However, it permits of a
rapid survey of the situation for which its precision is adequate, before
proceeding with the slower and more precise measurements of the null
method, where the latter are required. By making such a preliminary
survey the critical frequency ranges can be mapped out for precise
measurement, thereby eliminating a large amount of unnecessary labor.

Null Method

In the more precise measurements extending over a wide frequency
range, special care is required to ensure freedom from errors in the
measurement of phase angles and amplitudes. Much of the difficulty
associated with direct measurement over wide frequency ranges is
avoided by the use of a simple demodulation scheme. In this scheme,
the potentials to be compared are modulated down to a fixed frequency
(in actual use 1000 cycles) regardless of the frequency at which the test
is being made. In this way a minimum portion of the circuit carries
the high frequency. Further this permits the use of voice frequency at-
tenuators, phase shifters, and amplifiers which in fact require calibra-
tion at only a single frequency.

In this arrangement, as shown in Fig. 5, demodulators are shunted
across the input and output terminals of the circuit under test. A
single oscillator supplies the carrier to both demodulators, its frequency
differing by 1000 cycles from the frequency supplied to the circuit
under test. The demodulated outputs are connected through attenua-
tors and phase shifters to a common amplifier detector. The attenua-
tors and phase shifters are adjusted until the detector gives a null read-
ing. When this condition obtains the difference in the attenuator set-
tings in the two branches is equal to the gain or loss of the circuit
under test, and the difference in the phase shifter settings is either
equal to or the negative of the phase shift of the circuit under test.
To show this, denote the amplifier output voltage by Py cos (2nft — ¢),
and the beat frequency voltage supplied to the demodulators by P cos
27(f & 1000)¢. The demodulated output, proportional to the product
of the two applied waves, is then

PP, cos (2r-1000¢ F ¢).
Correspondingly, the demodulated output from the other demodulator
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Fig. 5—Schematic diagram of the null method used to measure the transfer factor.

connected across the input is given by
PP; cos (27-10008).

If now these two waves are to be made to cancel, there must be a dif-
ference in the attenuation of the two branches equal to the ratio
P,/P;, and a difference in the phase shift equal tc F ¢. The change in
sign of the phase angle introduced by setting the beat oscillator above
or below the test frequency is most conveniently handled by setting
the carrier oscillator consistently on the same side of the test frequency
in making a run over the frequency range.

By using a high gain amplifier preceding the detector, the precision
may be made great, limited only by circuit noise and by interference.
The attenuators and phase shifters are calibrated separately. It should
be noted that any difference in the transfer constants of the two de-
modulator circuits may be compensated by an initial adjustment which
is carried out by paralleling the input terminals of the two demodula-
tors across a source of electromotive force. With the particular type
of phase shifter used the phase shift may be changed without altering
the attenuation, so that the two settings for amplitude and phase may
be made independently.
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Visual Method

In the visual method of observation, a steady potential proportional
to the inphase component of the transfer factor is impressed across
one pair of plates of a cathode ray oscillograph and another steady
potential proportional to the quadrature component is impressed
across the other pair of plates, the constant of proportionality being
the same for the two components. In this way the transfer factor
at any frequency appears as a single point, the vector from the origin
to the displaced beam constituting the transfer factor. The locus
of all these points, i.e., vector tips, over the frequency range constitutes
the transfer factor polar diagram.

To provide rectified potentials proportional to inphase and to quad-
rature components respectively, use is made of the properties of the so-
called vacuum tube wattmeter.'® As used in practice, this device con-
sists of two triodes in push-pull connection (Fig. 6), the series arm of
the grid circuit being connected to the unknown potential, and the

0

TO PLATES OF
|| J||._ CATHODE RAY
OSCILLOGRAPH

—

[ ¢ 0

Fig. 6—Circuit of a vacuum tube wattmeter used to provide a rectified potential
proportional to the product of the two impressed grid potentials (both of the same
frequency) multiplied by the cosine of the phase angle between them.

shunt arm of the grid circuit being connected to a source of the same
frequency but of standard phase. Under these conditions the rectified
output in the plate circuit flowing in series with the two plates is pro-
portional to the product of the two impressed voltages multipled by
the cosine of the angle between them.

As shown in Fig. 7, two separate wattmeters are employed, one for
each phase, their series input terminals being connected together across
the output of the circuit under test. To the common branch of one of
these wattmeters is supplied the same potential as is fed to the input
of the circuit under test. The rectified output of this wattmeter there-
fore is proportional to the product of the input and output voltages
multiplied by the cosine of the transfer factor phase angle. This po-

U, S. Patent 1,586,533; Turner and McNamara, Proc. I. R. E., vol. 18, p. 1743;
October (1930).
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tential is supplied to those plates of the oscillograph which produce a
horizontal deflection. To the common branch of the other wattmeter
is applied a potential equal in amplitude to the input voltage but lag-
ging behind it by 90 degrees. The rectified output of this wattmeter is
proportional to the product of input and output voltages multiplied
by the cosine of the transfer factor phase angle minus 90 degrees, or in
other words proportional to the sine of the transfer factor phase angle.
This voltage is supplied to those plates of the oscillograph which pro-
duce a vertical deflection. We have then across one pair of plates of
the oscillograph a steady potential proportional to the real component

FROM CIRCUIT
OSCILLATOR —» UNDER
PHASE 1 TEST AN
- 1 |
WATT
METER
CATHODE RAY __ |
OSCILLOGRAPH
' WATT
METER
FROM I
OSCILLATOR ~=—>
PHASE 2

Fig. 7—Schematic diagram of the circuit used to plot the transfer factor diagram on
the screen of a cathode ray oscillograph.

of the transfer factor, and across the other pair of plates we have im-
pressed a steady potential proportional to the imaginary component
of the transfer factor. These two components act upon the beam of the
oscillograph to produce a deflection which in amplitude and in phase is
the resultant of the two component deflections and so corresponds to
the transfer factor.

It will be observed that the above procedure requires a two-phase
source of constant amplitude, the frequency of which is variable over
the range necessary to establish the properties of the amplifier. In the
present instance the frequency range extends from 0.5 to 30 kilocycles,
and the accuracy required is of the order of five per cent.

A schematic of the two-phase oscillator used is shown in Fig. 8.
This oscillator is of the heterodyne type. Two independent sources
are used, one of constant frequency (100 kilocycles), the other variable
in frequency and practically constant in amplitude over the range of
100 to 130 kilocycles. As indicated in the figure, the variable fre-
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Fig. 8—Circuit diagram of a heterodyne type two-phase oscillator, the output
frequency of which is continuously variable from 0.5 to 30 kilocycles. The output
of each phase and the 90-degree difference between the two phases are practically
constant over the frequency range.

quency oscillator is connected to the common branches of the two push-
pull modulators. The fixed frequency oscillator is connected in series
with the grid circuits of the two modulators. The resistance-capacity
networks shown in the circuits of the fixed frequency oscillator are pro-
vided to produce phase shifts of 90 degrees between the two series
voltages of the two modulators. In the same manner as that discussed
before in connection with the null method measuring circuit, the phase
shift introduced to the fixed frequency is maintained in the beat fre-
quency output, so that the phase difference of 90 degrees is preserved
in the outputs of the two modulators when the variable frequency
oscillator goes from about 100.5 to 130 kilocycles. The outputs of the
two phases are connected to the test amplifier and to the wattmeters as
shown in the preceding Fig. 7.

Comparison of the Methods
Measurements of transfer factors by the two methods outlined
above were found to be in agreement within the error of measurement.
The visual method as developed was capable of use over only a very re-



REGENERATION THEORY AND EXPERIMENT 693

stricted frequency range as compared to the null method, but it
covered the region of particular interest in the experiments conducted
for the purpose of testing the stability criterion. Through its use,
measurements over its frequency range could be made in a few minutes
time, whereas corresponding measurements by the more precise null
method required three to six hours. Of course the time intervals cited
do not include time occupied in setting up and adjusting the apparatus.

TEST AMPLIFIER AND EXPERIMENTAL RESULTS
Test Amplifier

The stability criterion indicates three distinct conditions of in-
terest, one of which is unstable, the other two being stable. The un-
stable condition (1) is that in which the transfer factor curve encloses
the point (1, 0). Two stable conditions are those in which (1, 0) is not
enclosed by the curve, but in which (2) the curve crosses the zero phase
shift axis at points greater than unity, and (3) the curve does not cross
the zero phase shift axis at points greater than unity. Condition (2)
is of particular interest because while it is judged stable on the basis '
of Nyquist's criterion it would appear to be unstable on the basis of the
older transfer criterion discussed in the first and second sections.

For test purposes an amplifier was designed which, upon variation
of an attenuator in the feed-back path, would satisfy each of the three
above conditions in turn. The amplifier schematic is shown in Fig. 9.

11 i1

o if il | é 1

- 2 g 3 -

M

l
|
|

P
I

p—— e

]

Fig. 9—Circuit diagram of the feed-back amplifier used in testing the stability
criterion. The dashed line indicates the point at which the loop was broken for
measurement of the transfer factor. At the left of this line is shown the resistance
attenuator provided to vary the gain around the feed-back loop.
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It has three stages, the first two tubes being space charge grid pentodes,
and the last one a triode. The interstage coupling circuits were made
up of simple inductances and resistances as shown. The amplifier was
designed by E. L. Norton and E. E. Aldrich to provide a transfer factor
characteristic having the desired shape, i.e., a loop crossing the zero
phase axis in the neighborhood of 10 kilocycles. It will be observed
that the feed-back circuit is connected between bridge networks in
both input and output circuits, which were provided to eliminate reac-
tion of the input and output circuits upon the feed-back network.1!

Experimental Results

The transfer factor was measured for a zero setting of the feed-back
attenuator over a frequency range of 0.5 to 1200 kilocycles. The re-
sults are shown in Fig. 10. The method of plotting this figure requires
some discussion. In order to keep the curve within a reasonable size
and still show the necessary details the scale has been made logarithmic
by plotting the gain around the loop in decibels instead of the corre-
sponding numerical ratios. It is of course impossible to carry this out
completely on a polar diagram since the transfer factor goes to zero at
high frequencies. To take care of this the scale is made logarithmic
only above zero gain, corresponding to unit transfer ratio, and is linear
below. It should be noted that if the logarithmic portion of the scale
is translated outward so that the zero decibel point lies successively in
the regions marked 4, B, C, and D, the indicated amplifier conditions
correspond to those designated above as (1), (2), (1) and (3) respec-
tively. Experimentally an increase of the feed-back attenuator
corresponds to such a translation of the logarithmic scale by an amount
equal to the increase in attenuation. Therefore, the transition from
one condition to another should occur when the attenuator setting is
equal to the gain at a zero phase point in the curve as measured with a
zero attenuator setting.

The test of the stability criterion consists of a determination of the
attenuator settings at which oscillations begin, and a comparison of
these settings with those at which a transition from a stable to an un-
stable condition is predicted by the theory. Experimentally oscilla-
tions were found to occur in regions 4 and € and not in regions B and D
which is in qualitative agreement with Nyquist’s predictions. Quanti-
tatively the measured and predicted transition points agreed within
one decibel which is estimated to be within the experimental error.

It should be noted that the plotted curve has been drawn up for
A (jw), no points of 4(— jw)} being shown, although both are required

1 H. S. Black, Bell Sys. Tech. Jour., January, 1934.
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Fig. 10—Transfer factor diagram for the amplifier of Fig. 9 with the feed-back
attenuator set at zero decibel.

by the theoretical derivation. Where the transfer factor is zero at zero
frequency, only A4 (jw) is required since the loop then closes for positive
valuesof w. In amplifiers transmittingd.c., however, both positive and
negative values of w are needed® to form a closed loop. In any case
A(— jw) is the mirror image of A (jw) about the x-axis.

ExTENSIONS OF THE CRITERION

Nonlinear Amplifier

The stability criterion which was verified by the experiments re-
ported in the preceding section is framed for linear systems, those in
which the steady state response is linearly proportional to the applied
force. Invacuum tube circuits, linearity is best approximated at small
force amplitudes, and is departed from to an extent dependent upon
the impressed potentials, as well as upon tube and circuit characteris-
tics. The divergence from linearity becomes well marked when the
load capacities of the tubes are approached, or when grid current is
made to flow through large grid impedances. The question then arises
as to the form which the stability criterion takes when a tube circuit is

8 Loc. cit.
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operated in a nonlinear region—let us say by impressing upon the cir-
cuit a sufficiently large alternating potential provided by an external
independent generator.

To answer this question we may consider the response of the am-
plifier, loaded by the independent generator, to a small alternating
potential introduced for test purposes. Since the response of the sys-
tem is known to be linear from the theory of perturbations, we might
attempt to apply the linear criterion to the small superposed force. To
do thisit is necessary to measure the transfer factor for the small super-
posed force over the frequency range at a particular load of interest.

Application of the experimental technique to this extended criterion
introduces difficulties since the opening of the feed-back loop for meas-
uring purposes disturbs to a certain extent the distribution of these
loads, particularly the harmonics, and modulation products in general.
This makes it difficult to get the same loading effect when the loop is
opened for measuring purposes as obtained when the loop is closed.
Another consideration is that the response to the small component
may be expected to vary in general at different points on the loading
wave, so that the measuring procedure averages the response over a
cycle of the loading wave. A method of measurement analogous to
that of the flutter bridge would be required to evaluate the transfer
factor at points of the loading cycle. Further, the measuring appara-
tus is affected by the presence of the loading currents when these are
sufficiently large. In the present case in which the loading frequency
(60 kilocycles) was far removed in the frequency scale from the test
frequencies, it was found possible to approximate the necessary meas-
urements by the insertion of selective circuits.

The curves of Fig. 11 represent portions of the transfer factor polar
diagram for an amplifier similar to the one previously described, meas-
ured by the visual method with different loading amplitudes. The
effect of the load on this particular amplifier is to change both phase
shift and amplitude so that the curves shrink both radially and tan-
gentially, pulling the loop back across the zero phase axis until, at the
heaviest load, the two low-frequency crossings are completely elimin-
ated. If the extended criterion is valid, we should expect the ampli-
fier to be stable at any setting of the feed-back attenuator. As the
load is decreased from this value, the crossings occur at successively
higher gains so that the start of oscillations would occur at progres-
sively higher settings of the feed-back attenuator.

The curves of Fig. 12 show the attenuator settings predicted by the
extended criterion and those determined by direct observation of the
attenuator setting required for oscillations when the feed-back circuit
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Fig. 11—The transfer factor diagram for the amplifier of Fig. 9 with the feed-back
attenuator set at zero decibel. The four curves shown correspond to different
amounts of the 60-kilocycle load.

was closed. Two sets of curves are shown, one for each of the low-
frequency crossings. These are plotted against the loading amplitude.
The agreement between the experimental and predicted values is close
for the higher gain crossing at small loading amplitudes, but a di-
vergence is apparent at high loads. For the lower crossing there is a
divergence of 1.5 decibels at low loads, which changes sign and be-
comes greater at the higher loads. These divergences may be ascribed
to a variety of causes among which probably the most important are
the effects of harmonics upon the amplifier loading, overloading of the
measuring apparatus by harmonics of the loading electromotive force,
and phase shifts introduced by the selective circuits. The last two
causes may be eliminated by improved technique, but the first cause in
general introduces a fundamental difhculty, particularly important
when large nonlinearities are involved.

Negative Impedances

One of the early forms of stability criterion mentioned in the first
section was that relating to the measured impedance of the circuit.
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Fig. 12—Comparison of feed-back attenuator settings required for the starting
of oscillations, and those deduced from the transfer diagram, plotted as functions of
the 60-kilocycle load. The two dashed curves correspond to the two points (roughly
4.5 and 8 kilocycles) at which the transfer factor diagram (Fig. 11) crosses the zero
phase axis. The gains of Figs. 11 and 12 cannot be compared directly because of a
change made in the amplifier circuit of Fig. 12 which increased the loop gain.

Nyquist's criterion involving the transfer factor may be transformed so
as to formulate a more complete criterion involving such an impedance.

To do this we have to express the factor (1 — 4), on which the
stability criterion was based, in terms of the circuit impedances. For
illustrative purposes we may quote the results obtained with the two
fundamental forms of feed-back circuits, the series and shunt types.!?
These results, while obtained for the input circuit of the amplifier, are
valid for any other point of the feed-back loop. Further, combinations
of the shunt and series type feed-back circuits may be used.

Series Feed-Back

The series circuit is shown in Fig. 13, so called because the feed-
back is applied in series with the amplied electromotive force and the
amplifier input. The passive impedances marked are those existing
when the feed-back loop is broken and terminated as indicated by the

12 Crisson, Bell Sys. Tech. Jour., vol. X, p. 485.
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dotted lines. By direct circuit analysis, the current and voltage ampli-
tudes in the feed-back condition are related by

E=(Z+Zy+ Z)(1 — A,

where 4 and the Z's are functions of frequency. The total effective
circuit impedance is obtained as the multiplifier of I in the right mem-

!
| 7. | AMPLI-
L I
, | FIER A -
. [
N> X X
I
© | Zo— | NET- i
: 0 WORK

Fig. 13—Series type feed-back circuit, The dotted resistances indicate the termi-
nations applied when the feed-back circuit was broken, to which the passive impe-
dances (Z:Z,) apply. Zin represents the effective input impedance with the feed-back
circuit connected through.

ber. Subtracting the generator impedance Z from the total, the input
impedance becomes

Z[N == (Zo + Z,)(l - A) - AZ,

_ Z Zix
1_‘4‘z+zn+z.-(“"7)'

from which,

Of the two factors of the right member, the first one, involving pas-
sive impedances alone, can have no roots with positive real part. Any
such roots must, therefore, be contained in the second bracketed fac-
tor and then only when Zi, is negative. Hence paraphrasing the
transfer factor criterion, if we plot — Z;n/Z over the frequency range,
the circuit is stable when the point (1, 0) is not enclosed by the result-
ant curve.
Shunt Feed-Back

Proceeding as in the series case with the circuit of Fig. 14 we get

! AMPLI-
Zj—
| . FIER Ara |
z = vy
I
ZIN—|
|
E AAR
1 | ZO_" NET- vv Vo
‘F WORK

Fig. 14—Shunt type feed-back circuit. The notation corresponds to that of Fig. 13.
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Z, Z
~rrz(1tz)
where Z, represents the impedance of Z; and Z; in parallel. Again
only the bracketed term can yield undamped transients so that the
criterion involves plotting — Z/Z;» over the frequency range; if the
resultant curve does not enclose (1, 0) the circuit is stable.

It may be remarked that these results are applicable to circuits in-
cluding two-terminal negative impedances sich as the oscillating arc
and the dynatron, which are of the series and the shunt type respec-
tively.

1—4
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