
Servo Control

In this exercise, we will learn to control a servo motor with the Arduino. In particular,
we’ll use a continuous rotation servo so that we can make our Arduino rock-and-roll, but
the control procedure that we will learn is applicable to any servo.

Servos
A servo is a small DC motor with the
following components added: some gear
reduction, a position sensor on the motor
shaft, and an electronic circuit that controls
the motor's operation. In other words, a
servo is to a DC motor what the Arduino is
the ATmega microcontroller---components
and housing that make the motor easy to
use. This will become abundantly clear
when we work with unadorned DC motors
next week.

The gear reduction provided in a servo is
large; the basic hobby servo has a 180:1 gear ratio. This means that the DC motor shaft
must make 180 revolutions to produce 1 revolution of the servo shaft. This large gear
ratio reduces the speed of the servo and proportionately increases its torque. What does
this imply about small DC motors?

Servo motors are typically used for angular positioning, such as in radio control
airplanes. They have a movement range of 0 up to 180 degrees, but some extend up to
210 degrees. Typically, a potentiometer measures the position of the output shaft at all
times so the controller can accurately place and maintain its position.

Position Control
An external controller (such as the Arduino) tells the servo where to go with a signal
know as pulse proportional modulation (PPM) or pulse code modulation, not to be
confused with pulse width modulation, PWM---the form of analog output we learned
about in the previous exercise. A control wire communicates the desired angular
movement to the servo. The angle is determined by the duration of the pulse applied to
the control wire.

PPM uses 1 to 2ms out of a 20ms time
period to encode its information. The
servo expects to see a pulse every 20
milliseconds (.02 seconds). The length of
the pulse will determine how far the motor
turns. A 1.5 millisecond pulse will make
the motor turn to the 90 degree position
(often called the neutral position). If the
pulse is shorter than 1.5 ms, then the
motor will turn the shaft to closer to 0
degrees. If the pulse is longer than 1.5ms,
the shaft turns closer to 180 degrees.

The amount of power applied to the motor is proportional to the distance it needs to
travel. So, if the shaft needs to turn a large distance, the motor will run at full speed. If it
needs to turn only a small amount, the motor will run at a slower speed.

Continuous Rotation Servos
A servo motor can be modified to provide continuous rotation as opposed to an angular
position. The process requires 2 steps:

(1) Remove the mechanical stop that prevents full rotation of
the output shaft.

(2) Remove the potentiometer position sensor and replace it
with 2 equal-valued resistors whose combined resistance is
equivalent to that of the pot. The second modification makes
the servo “think” it is in the 90 deg position. For more
information and a demonstration of this process, check the
following link.

As stated above, the modification makes the servo think that the output shaft is always at
90 degrees. This is done by removing the feedback sensor, and replacing it with an
equivalent circuit that creates the same reading as the sensor at 90 degrees. In this
configuration, a control signal for 0 degrees will cause the motor to turn full speed in one
direction, while a signal for 180 degrees will cause the motor to turn full speed in the
other direction. Since feedback from the output shaft has been disconnected, the servo
will continue at the same speed and in the established direction as long as the signal
remains.

http://todbot.com/blog/2009/04/11/tiny-servos-as-continuous-rotation-gearmotors/

Wiring It Up
So now that we know how it works, let’s try it! We are going to use Parallax servos
mounted to a chassis with wheels so we can roll when the servos turn!

Mount your Arduino to the chassis using a tie-strap to secure it over the Board of
Education (BOE)---the board that is mounted to the chassis. Be sure to place a shield
between the Arduino and the BOE so that neither is damaged. Ask your instructor for
material to use as a shield if you were not given anything at the start of class.

Because we plan to move, we will power the Arduino via an external power source---the
battery pack mounted on the chassis. Note that the plug mates with the power connection
on the Arduino. To configure the Arduino for external power, you also need to move the
PWR_SEL jumper: move the jumper to cover the two pins closest to the external power
jack. Ask your instructor if this is not clear.

 HERE-

The connection to the servos must be made on the breadboard attached to the BOE. As
shown below, three connections are required for each servo.

Use the 2 three-pin headers in the BOE-bot kit to connect the servo plugs to the
breadboard. The connections to the Arduino should be as indicated in diagram above.
Be sure to connect the power lead to Vin (not 5V) on the Arduino, and connected the
white lead to the Arduino pin issuing the PWM signals.

The Program
We will use the code presented by Community Robotics for the initial investigation of
our servos. Read the article (it’s quick) and use the code provided. Note that the
procedures servoPulse1() and servoPulse2() are identical and therefore only one of them
is really needed; the developer of this page was not a CS major 

Notice the behavior of the servos when you run the code. Did one servo remain
stationary while the speed and direction of the other servo varied? If the servo intended
to remain stationary (i.e., receiving the 90 deg. control signal) moved, then you should
adjust its trim pot using the small Phillips-head screw driver in the BOE-bot kit. Adjust
the trim-pot until the servo remains stationary when receiving the 90 deg. control signal,
and then test and adjust the other servo in the same manner.

A Better Program
As it turns out, a “Servo” library exists for the Arduino; harrah for open-source! Look at
the reference page for the servo library, and then run the Sweep example linked to the
bottom of the page. This program takes both servos through their full range of motion.
Make sure that you understand how this program works because you will be modifying it
in the next section.

Your Turn
To refine your understanding of servo control, rewrite the Sweep program (you should
also rename it) to move your robot in an interest way. Begin by experimenting with basic
motion such as moving in a straight line, and turning right and left. Try going backwards
and forwards, fast and slow. As your final demonstration, write a program that causes
your robot to move in the shape of a square.

http://arduino.cc/en/Tutorial/Sweep
http://www.arduino.cc/en/Reference/Servo
http://robotics.learnhub.com/lesson/1766-arduino-and-servos

	Servo Control
	Servos
	Position Control
	Continuous Rotation Servos
	Wiring It Up
	The Program
	A Better Program
	Your Turn

