ME 360 Control Systems Dominant (or Insignificant) Poles

- The *slowest poles* of a system (those closest to the imaginary axis in the s-plane) give rise to the longest lasting terms in the transient response of the system.
- If a pole or set of poles are *very slow compared to others* in the transfer function, then they may *dominate* the transient response.
- If we plot the transient response of the system without accounting for the transient response of the fastest poles, we may find little difference from the transient response of the original system.

Example: A Third Order System

Consider a third order system that has one real and two complex conjugate poles.

$$T(s) = \frac{K}{(s+p)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

In general, these systems exhibit both first and second order responses. However, they may exhibit dominant first or second order behavior.

Dominant First Order Behavior

If $\zeta \omega_n \ge 10p$, then the system exhibits *dominant first order* behavior. The

approximate lower order transfer function is $T(s) \approx \frac{K/\omega_n^2}{(s+p)}$. The plot below shows

results using K = 6000, $\zeta = 0.6$, $\omega_n = 10$, and p = 0.6.

Dominant Second Order Behavior

If $p \ge 10\zeta \omega_n$, then the system exhibits *dominant second order* behavior. The

approximate lower order transfer function is

 $T(s) \approx \frac{K/p}{(s^2 + 2\zeta\omega_n s + \omega_n^2)}$. The plot below

shows results using K = 6000, $\zeta = 0.6$, $\omega_n = 10$, and p = 65.

Note: In each case we *"drop" the s-dependence* of the *insignificant* pole, but keep the constant part to maintain the correct steady-state response.

