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OSCILLATORS

An oscillator is a circuit, which produces a periodic signal without
any input signal.  It converts DC power (from the supply) to a 
periodic signal.

Oscillators are extensively used in both receive and transmit paths.
They are used to provide the local oscillation for the mixers for up
and down conversion.

On this topic, we cover:

1. Oscillator basics
2. Oscillator topologies
3. Phase noise issues
4. Oscillator implementations and design
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Oscillator types:

1. Crystal oscillators
2. Active-RC and Gm-C oscillators
3. Ring oscillators
4. LC timed oscillators
5. Relaxation oscillators.

… etc.

Voltage Controlled Oscillators:

VCO’s are used in RF applications, usually, in a Phase locked loop 
to provide Different LO frequencies needed for channel selection.  
Besides frequency synthesis it is used for other applications. 
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OSCILLATOR BASICS

Most RF oscillators can be viewed as + ve feedback system. 
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The Barkhausen Criterion states that sustained oscillation can be achieved.

if                                               Loop gain equal to unity.

and 
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For zero vi the output will be finite at a given frequency (ωo).  
For loop gain >1 oscillation will grow.  
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Two-Port vs One-Port Models
The previously shown model is known as the two-port model, because the A(s) and β(s) 
Networks are both two-port nets in a closed loop.  

The one-port model of oscillators is shown below:

-Rp Rp L C

Active Network Resonator

The resonator (LC tank for example) has parasitic resistances (RP) which prevents the 
resonator from oscillating because the stored energy will leak through the resistance.  To 
compensate for this loss a positive feedback negative parallel resistances (-Rp) will be 
added to the resonator so that the energy loss in Rp is replenished by the negative 
resistance.  The negative resistance’s implementation is typically an active network.
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What sets the Frequency and Amplitude of an Oscillator?

The frequency is usually set by Barkhausen Criterion.  It is the frequency 
at which the loop gain is greater or equal to 1 and the phase is zero.

In many cases, as in LC tuned oscillators, the ideal oscillation frequency 
is determined by the LC tank.
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The amplitude is, however, more a complicated parameter to set.
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More on Oscillator Theory:
Ideal Oscillator:
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Once the tank is excited (by a current pulse for example) a certain amount of energy
will be conserved.  This energy will alternate between magnetic and electric forms.

In the time domain:
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The Differential Equation of the Ideal Oscillator
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Choosing the case where the phase angle is zero at t=0
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Real Oscillator:

Initial  excitation well  start some oscillation.
This  will  die  out  after  a while because the
Energy leaks through the parasitic resistances.
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If oscillation is to be maintained.  The  energy  loss  (due to parasitic resistance) is to be
compensated for.  This energy is usually provided from the power supply via a negative
resistance,  a  nonlinear  conductance or regenerative feedback, which convert dc power 
to signal power. 
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The following model equation can be written
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The above DE describes the behaviour of many oscillator implementations.
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At the quiescent bias point (which is the equilibrium point)
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In the frequency domain, the characteristic  equation at the equilibrium point is given by:

( ) 012 =+−+ saGLLCs
Solving for the poles of the system:

βα j
C

aG
LC

j
C

aGs

±=

⎟
⎠
⎞

⎜
⎝
⎛ −

−±⎟
⎠
⎞

⎜
⎝
⎛ −

−=

      
2

1
2

2

2,1

In the time domain:
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From the above equ., the following observations can be made:

1. The oscillator frequency is determined by 

2. if 

3. if 
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In practical oscillators, the slope of the negative resistance or nonlinear element (a) is made 

greater than G                 .  This results in growing oscillations as long as the swing is limited 

between points p and q.

( )Ga 3≅

p q
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If the oscillation swing grows beyond p or q, the

slope (a-G) or α become negative and the poles

move the LHP causing the oscillation to decay

tempe.  Until the swing drops within below p

and/or q.  This is how a sustained oscillation is

produced and a steady sate can be reached.

Note that the oscillations will not be pure sinusoid.  The harmonics are

Usually far out and can be easily filtered.

Also note that it is hard to determine the oscillation swing exactly!
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The van der Pol Approximation

In the 1920’s , Van der Pol proposed to model the total I-V Chc
is the simplest possible manner.  He assumed a cubic approximation.
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Van der Pol’s analysis leads to the following time domain expression for the 
Oscillation voltage.
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At steady state, the zero-to-peak voltage amplitude reaches a maximum
value of 
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Basic LC Oscillator Topologies
(a) Feedback model:
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(b)    Negative Resistance Model:
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See the sustained on the next page.  The frequency LC
1
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Full Oscillator Realization:

To avoid loading the LC tank (to prevent 
reducing its Q), an impedance transformer
to up-convert the impedance                 .  ( )12 ZZ >

Different realization for the impedance transformation are shown below:
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Note that a resonance, the phase shift of the loop is supposed to be zero (according to
The Barkhausan Criterion).  That is why the output signal is fed back to the emitter.  The
Zero-phase condition may be satisfied if the output signal is inverted and then fed back to 
the base as shown below:

This topology is widely used and is known as the –v Gm oscillator

inverter

Load

CCV

LC

2Q 1Q

C

L
v v−

2Q 1Q
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It is interesting to note that the cross-coupled pair (BJT an MOS) presents a negative
resistance to the tank.  That is why it can be classified as a negative resistance oscillator.

Since it is a fully differential circuit we may model the cross-coupled pair as follows:
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1 – BJT Realization:
CCV

L L
vpC vpC

C′ C′

BBV

The capacitor divider is used to reduce the voltage swing at the base compared to
that at the collector to avoid saturating the BJTs.
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The AC coupling resistors add noise.
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2 – NMOS (or PMOS) Realization

It is similar to the BJT except that it does not need capacitive division.

3 – CMOS Realization:
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Current Limited Oscillation

In this case the current of the tail current sources is fully switched from one side of the
pair to the other at a frequency                     Assuming that the BJT or MOS switches

are fast enough, the current waveform in each branch is a square wave with 50% duty
cycle.  Assuming that the tail current is Io , the current wave form in one side of the
pair has the following shape.
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Consider the NMOS oscillator:
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NOTE:  The current components at 3ωο, 5ωο, 7ωο … will produce voltage components
with small power because the impedance at these frequencies is small.
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Now consider the CMOS oscillator with a similar tank as that used for the NMOS
Oscillator (pp 24).

In one half cycle, the devices P1 and N2 are on while N1 and P2 are off, so the 
oscillator can be modeled as follows:

On the second half cycle, the current through R is still Io but flows in the opposite
direction.  So the current waveform (assuming that the PMOS and NMOS devices
switch enough) looks as follows:
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This is different from the wave form previously shown, because it is bipolar.  The
Fourier expansion for the CMOS oscillator is:
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The differential voltage of the CMOS oscillator is hence, given by:
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• Note that swing of the CMOS oscillator is double that of the NMOS (or PMOS)
oscillator as seen before.
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Some Important Points:

1. In  the  oscillators  cases  we  considered  so  far  we have assumed that the swing is
small enough  so  that  the  swing  is determined by the current and the tank parallel 
resistance.  If  this  is  the  case,  we  consider  the oscillator to be current limited. If
The swing grows too much, the swing will be limited by the supply voltage and in 
the oscillator is known to be voltage limited.

2. In current limited cases, the swing increases by increasing the current (tail current)
or by using high Q tank (which increases the resistance.).

3. The switching speed of the core devices will determine the current waveform shape
which in turn determines magnitude of I at ωo (fundamental component).
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Voltage Controlled Oscillators

This is one of the most critical blocks in any RF frequency synthesizers.  Adjustable
oscillators are used for tuning to desired frequencies.  A VCO is used as part of a
PLL to obtain precise frequencies.

The frequency tuning is done by changing the LC tank capacitance value.  This is more
practical than varying the inductance.  Different types of variations have been used to
obtain a voltage controlled capacitance.  Among them are pm junction varactors and
MOS varactors and MOS varactors.

In a pn junction varactor the oscillator output node is connected to either the p or n side
and the controlling voltage is applied to the opposite terminal

orVosc.
VC VC

Vosc.
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(VC)

MOS varactor come in two  types.  Let us consider NMOS varactors.

Conventional 
MOS

p+ p+

p-well

Vosc
VW

On this device even
at high frequencies
the capitance will
return to Cox at 
some point.

n+ n+
p-well

Vosc

VW
(VC)

MOS Cap

For high
frequency

VW
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For MOS Cap:
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At low frequency:

Since the  frequency is low, the minority
charges have time to be pulled from the
bulk  to  the surface to make up the inv.
layer  and  the  depletion layer does not
change any more so
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An ideal VCO has the following law 

CVCOoosc VKff +=

Free running
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The spectrum of is up-converted to )(tnφ Cω±

Cω

Ideal Oscillator

Qn

Cω

Real Oscillator

The phase noise is measured by dividing the power in 1Hz bandwidth at an offset ∆f
by the power of the carrier (fc).
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~

Implications of Phase Noise

In the case of receiver:

If wanted
signal

Interfer

Signal

Interfer

RF
IF

LO
Oscillator
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ωc

Overlap of the
interference with
the wanted signal
after down conversion
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Wanted
signal

ωTX

TX
RX

TXω
~

In the case of transmitter:

If the phase noise of the LO at the transmitters side is large, the skirt
of the RF transmitted signal overlaps nearby wanted signals and hence
reduces the SNR.
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Assume that, from the blocking specs, that

Pint  - Psig = YdB

Psig = the signal power integrated over

channel BW.

Assume also that a given signal to noise ratio (SNR) is to be met.
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LEESON’S MODEL

Based on a linear time in variant approach for timed LC tank oscillators, one can
derive an expression for the phase noise.

In(w) L C GL -Gactive
Effective noise source
(white noise)

It can be shown that impedance seen by the effective noise source at ωo + 
(where                     is given by:
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The phase noise (for the case of white noise) can, hence be given by:

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⋅+
=

=

ω∆
ω

ω

L

o

Lsig

n

sig

no

sig

noise

QGV

i

V

iBWZ

v
vBWL

2
1

ˆ
2
1
2
1

log10            

ˆ
2
1

2
1

log10            

 log 10)(

2

2

2

22

2

2

2
ni can be written as 4 F KT GL this expression for the effective noise curent density is 

not physical. (Just a model!)  F is difficult to derive and is just a fitting parameter!
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Even though the LTI model is not accurate, it yields important facts for oscillator design:
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Leeson’s model is not accurate and fails top account for the large signal
Behavior of the oscillator.  Yet it gives insight for oscillator design.


