LM2671

LM2671 SIMPLE SWITCHER Power Converter High Efficiency 500mA Step-Down

Voltage Regulator with Features

Literature Number: SNVS008G

LM2671 SIMPLE SWITCHER[®] Power Converter High Efficiency 500mA Step-Down Voltage Regulator with Features

General Description

The LM2671 series of regulators are monolithic integrated circuits built with a LMDMOS process. These regulators provide all the active functions for a step-down (buck) switching regulator, capable of driving a 500mA load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5.0V, 12V, and an adjustable output version.

Requiring a minimum number of external components, these regulators are simple to use and include patented internal frequency compensation (Patent Nos. 5,382,918 and 5,514,947), fixed frequency oscillator, external shutdown, soft-start, and frequency synchronization.

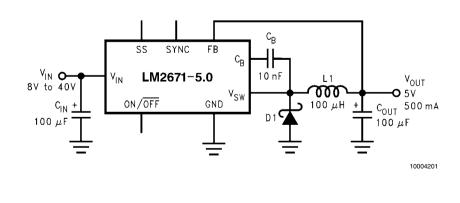
The LM2671 series operates at a switching frequency of 260 kHz, thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Because of its very high efficiency (>90%), the copper traces on the printed circuit board are the only heat sinking needed.

A family of standard inductors for use with the LM2671 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies using these advanced ICs. Also included in the datasheet are selector guides for diodes and capacitors designed to work in switch-mode power supplies.

Other features include a guaranteed $\pm 1.5\%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10\%$ on the oscillator frequency. External shutdown is included, featuring typically 50 µA stand-by current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

To simplify the LM2671 buck regulator design procedure, there exists computer design software, *LM267X Made Simple* (version 6.0).

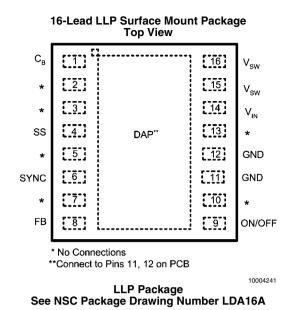
Features

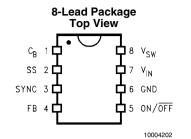

- Efficiency up to 96%
- Available in SO-8, 8-pin DIP and LLP packages
- Computer Design Software LM267X Made Simple (version 6.0)
- Simple and easy to design with
- Requires only 5 external components
- Uses readily available standard inductors
- 3.3V, 5.0V, 12V, and adjustable output versions
- Adjustable version output voltage range: 1.21V to 37V
- ±1.5% max output voltage tolerance over line and load conditions
- Guaranteed 500mA output load current
- 0.25Ω DMOS Output Switch
- Wide input voltage range: 8V to 40V
- 260 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- Soft-start and frequency synchronization
- Thermal shutdown and current limit protection

Applications

- Simple High Efficiency (>90%) Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators

Typical Application


(Fixed Output Voltage Versions)



 $\label{eq:SIMPLESWITCHER®} SIMPLE SWITCHER® is a registered trademark of National Semiconductor Corporation Windows® is a registered trademark of Microsoft Corporation.$

April 2007

Connection Diagrams

SO-8/DIP Package See NSC Package Drawing Number MO8A/N08E

Output Voltage	Order Information	Package Marking	Supplied as:
6 Lead LLP			
12	LM2671LD-12	S0005B	1000 Units on Tape and Reel
12	LM2671LDX-12	S0005B	4500 Units on Tape and Reel
3.3	LM2671LD-3.3	S0006B	1000 Units on Tape and Reel
3.3	LM2671LDX-3.3	S0006B	4500 Units on Tape and Reel
5.0	LM2671LD-5.0	S0007B	1000 Units on Tape and Reel
5.0	LM2671LDX-5.0	S0007B	4500 Units on Tape and Reel
ADJ	LM2671LD-ADJ	S0008B	1000 Units on Tape and Reel
ADJ	LM2671LDX-ADJ	S0008B	4500 Units on Tape and Reel
SO-8			
12	LM2671M-12	2671M-12	Shipped in Anti-Static Rails
12	LM2671MX-12	2671M-12	2500 Units on Tape and Reel
3.3	LM2671M-3.3	2671M-3.3	Shipped in Anti-Static Rails
3.3	LM2671MX-3.3	2671M-3.3	2500 Units on Tape and Reel
5.0	LM2671M-5.0	2671M-5.0	Shipped in Anti-Static Rails
5.0	LM2671MX-5.0	2671M-5.0	2500 Units on Tape and Reel
ADJ	LM2671M-ADJ	2671M-ADJ	Shipped in Anti-Static Rails
ADJ	LM2671MX-ADJ	2671M-ADJ	2500 Units on Tape and Reel
DIP			
12	LM2671N-12	LM2671N-12	Shipped in Anti-Static Rails
3.3	LM2671N-3.3	LM2671N-3.3	Shipped in Anti-Static Rails
5.0	LM2671N-5.0	LM2671N-5.0	Shipped in Anti-Static Rails
ADJ	LM2671N-ADJ	LM2671N-ADJ	Shipped in Anti-Static Rail

TABLE 1. Package Marking and Ordering Information

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors
for availability and specifications.

for availability and opcontoallonor	
Supply Voltage	45V
ON/OFF Pin Voltage	$-0.1V \le V_{SH} \le 6V$
Switch Voltage to Ground	-1V
Boost Pin Voltage	V _{SW} + 8V
Feedback Pin Voltage	$-0.3V \le V_{FB} \le 14V$
ESD Susceptibility	
Human Body Model (Note 2)	2 kV
Power Dissipation	Internally Limited
Operating Ratings	
Supply Voltage	6.5V to 40V
Temperature Range	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$

5	Storage Temperature Range	–65°C to +150°C
l	_ead Temperature	
I	M Package	
	Vapor Phase (60s)	+215°C
	Infrared (15s)	+220°C
I	N Package (Soldering, 10s)	+260°C
l	LP Package (See AN-1187)	
I	Maximum Junction Temperature	+150°C

Electrical Characteristics

LM2671-3.3 Specifications with standard type face are for $T_J = 25^{\circ}C$, and those in **bold type face** apply over **full Operating Temperature Range**.

Symbol	Parameter	Conditions	Typical	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM	PARAMETERS Test Circuit Figure 2 (Note 3)					
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 500 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
V _{OUT}	Output Voltage	$V_{IN} = 6.5V$ to 40V, $I_{LOAD} = 20$ mA to 250 mA	3.3	3.251/ 3.201	3.350/ 3.399	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 500 mA	86			%

LM2671-5.0

Symbol	Parameter	Conditions	Typical	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)						
V _{OUT}	Output Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 500 mA	5.0	4.925/ 4.850	5.075/ 5.150	V
V _{OUT}	Output Voltage	V _{IN} = 6.5V to 40V, I _{LOAD} = 20 mA to 250 mA	5.0	4.925/ 4.850	5.075/ 5.150	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 500 mA	90			%

LM2671-12

Symbol	Parameter	Conditions	Typical	Min	Мах	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM PARAMETERS Test Circuit Figure 2 (Note 3)						
V _{OUT}	V _{OUT} Output Voltage V _{IN} = 15V to 40V, I _{LOAD} = 20 mA to 500 mA 12 11.82/11.64 12.18/12.36 V					V
η	Efficiency	V _{IN} = 24V, I _{LOAD} = 500 mA	94			%

LM2671-ADJ

Symbol	Parameter	Conditions	Тур	Min	Max	Units
			(Note 4)	(Note 5)	(Note 5)	
SYSTEM	PARAMETERS Tes	st Circuit Figure 3 (Note 3)				
V _{FB}	Feedback Voltage	$V_{IN} = 8V$ to 40V, $I_{LOAD} = 20$ mA to 500 mA	1.210	1.192/ 1.174	1.228/ 1.246	V
		V _{OUT} Programmed for 5V				
		(see Circuit of <i>Figure 3</i>)				

M2671

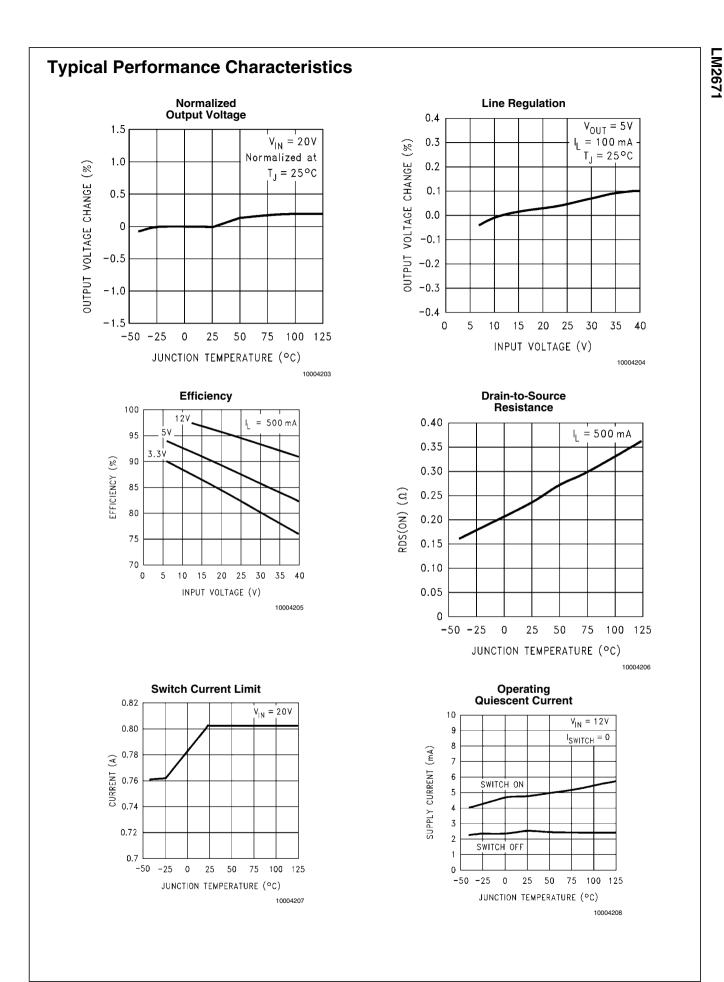
Symbol	Parameter	Conditions	Тур	Min	Мах	Units
			(Note 4)	(Note 5)	(Note 5)	
V _{FB}	Feedback Voltage	$V_{IN} = 6.5V$ to 40V, $I_{LOAD} = 20$ mA to 250 mA	1.210	1.192/ 1.174	1.228/ 1.246	V
		V _{OUT} Programmed for 5V				
		(see Circuit of Figure 3)				
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 500 mA	90			%

All Output Voltage Versions

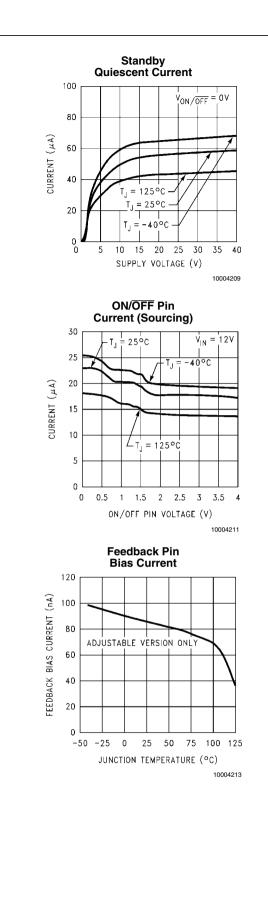
Specifications with standard type face are for $T_J = 25^{\circ}$ C, and those in **bold type face** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = 12$ V for the 3.3V, 5V, and Adjustable versions and $V_{IN} = 24$ V for the 12V version, and $I_{LOAD} = 100$ mA.

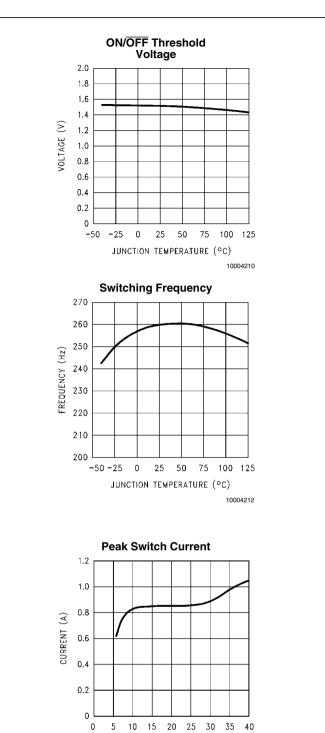
Symbol	Parameters	Conditions	Тур	Min	Max	Units
DEVICE	PARAMETERS			•		
Ι _Q	Quiescent Current	V _{FEEDBACK} = 8V For 3.3V, 5.0V, and ADJ Versions	2.5		3.6	mA
		V _{FEEDBACK} = 15V For 12V Versions	2.5			mA
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 0V	50		100/ 150	μA
I _{CL}	Current Limit		0.8	0.62/ 0.575	1.2/ 1.25	A
ľ	Output Leakage Current	$V_{IN} = 40V, ON/\overline{OFF}$ Pin = 0V $V_{SWITCH} = 0V$	1		25	μA
		$V_{\text{SWITCH}} = -1V$, ON/ $\overline{\text{OFF}}$ Pin = 0V	6		15	mA
R _{DS(ON)}	Switch On-Resistance	I _{SWITCH} = 500 mA	0.25		0.40/ 0.60	Ω
f _O	Oscillator Frequency	Measured at Switch Pin	260	225	275	kHz
D	Maximum Duty Cycle		95			%
	Minimum Duty Cycle		0			%
I _{BIAS}	Feedback Bias Current	V _{FEEDBACK} = 1.3V ADJ Version Only	85			nA
V _{S/D}	ON/OFF Pin Voltage Thesholds		1.4	0.8	2.0	V
I _{S/D}	ON/OFF Pin Current	ON/OFF Pin = 0V	20	7	37	μA
F _{SYNC}	Synchronization Frequency	V _{SYNC} = 3.5V, 50% duty cycle	400			kHz
V _{SYNC}	Synchronization Threshold Voltage		1.4			v
V _{SS}	Soft-Start Voltage		0.63	0.53	0.73	V
I _{SS}	Soft-Start Current		4.5	1.5	6.9	μA
θ _{JA}	Thermal Resistance	N Package, Junction to Ambient (Note 6)	95			°C/W
		M Package, Junction to Ambient (Note 6)	105			

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.

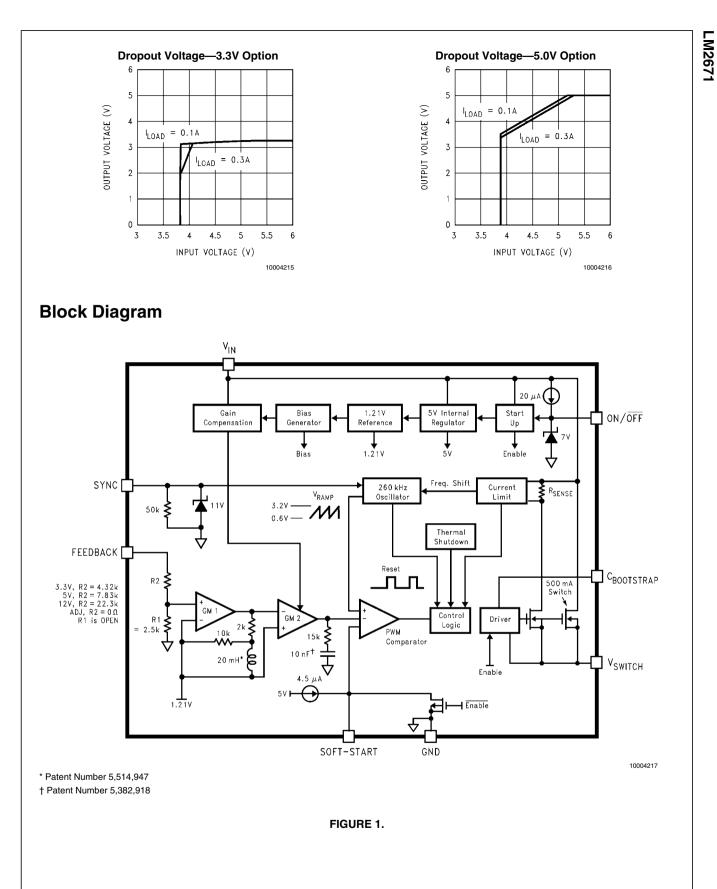

Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k $\!\Omega$ resistor into each pin.

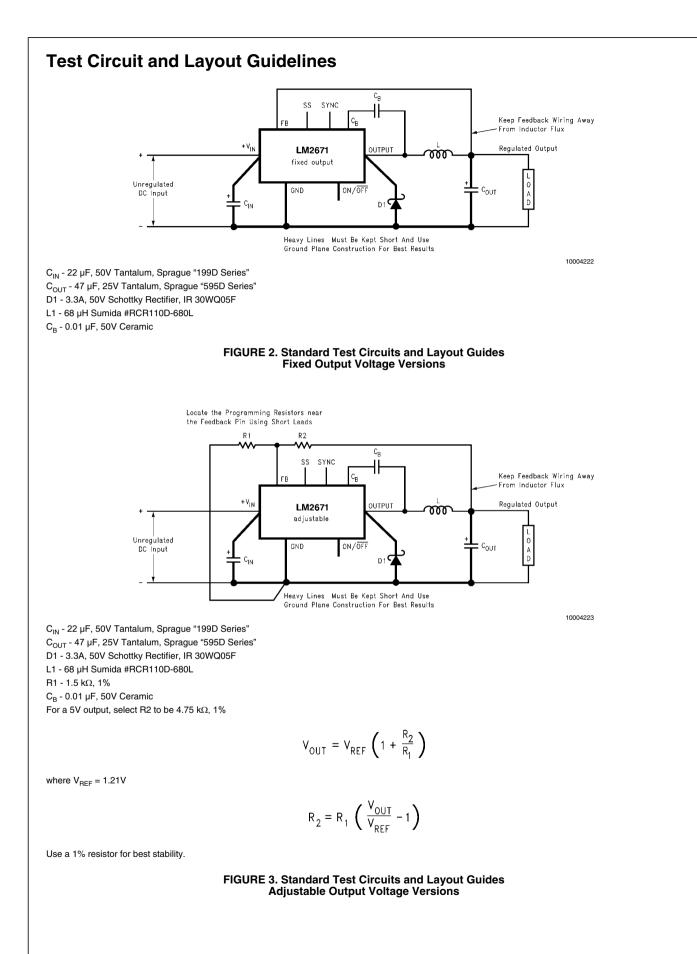
Note 3: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator performance. When the LM2671 is used as shown in *Figure 2* and *Figure 3* test circuits, system performance will be as specified by the system parameters section of the Electrical Characteristics.


Note 4: Typical numbers are at 25°C and represent the most likely norm.


Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 6: Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See Application Information section in the application note accompanying this datasheet and the thermal model in *LM267X Made Simple* version 6.0 software. The value θ_{J-A} for the LLP (LD) package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the LLP package, refer to Application Note AN-1187.


LM2671



10004214

INPUT VOLTAGE (V)

LM2671

9

LM2671 Series Buck Regulator Design Procedure (Fixed Output)

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
To simplify the buck regulator design procedure, National	
Semiconductor is making available computer design software to be	
used with the SIMPLE SWITCHER line of switching regulators.	
LM267X Made Simple (version 6.0) is available on Windows® 3.1,	
NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage (3.3V, 5V, or 12V)	$V_{OUT} = 5V$
V _{IN} (max) = Maximum DC Input Voltage	$V_{IN}(max) = 12V$
I _{LOAD} (max) = Maximum Load Current	$I_{LOAD}(max) = 500 \text{ mA}$
	1. Inductor Selection (L1)
. ,	A. Use the inductor selection guide for the 5V version shown in
	Figure 5.
	B. From the inductor value selection guide shown in <i>Figure 5</i> , the
region intersected by the Maximum Input Voltage line and the	inductance region intersected by the 12V horizontal line and the 500 mA vertical line is 47 μ H, and the inductor code is L13.
C. Select an appropriate inductor from the four manufacturer's part	C. The inductance value required is 47 μ H. From the table in <i>Figure</i>
numbers listed in <i>Figure 8</i> . Each manufacturer makes a different style of inductor to allow flexibility in meeting various design requirements. Listed below are some of the differentiating	8, go to the L13 line and choose an inductor part number from any of the four manufacturers shown. (In most instances, both through hole and surface mount inductors are available.)
characteristics of each manufacturer's inductors:	
Schott: ferrite EP core inductors; these have very low leakage	
magnetic fields to reduce electro-magnetic interference (EMI) and are the lowest power loss inductors	
<i>Renco:</i> ferrite stick core inductors; benefits are typically lowest cost	
inductors and can withstand E•T and transient peak currents above rated value. Be aware that these inductors have an external magnetic field which may generate more EMI than other types of	
inductors.	
<i>Pulse:</i> powered iron toroid core inductors; these can also be low cost and can withstand larger than normal E•T and transient peak currents. Toroid inductors have low EMI.	
Coilcraft: ferrite drum core inductors; these are the smallest	
physical size inductors, available only as SMT components. Be aware that these inductors also generate EMI—but less than stick inductors.	
Complete specifications for these inductors are available from the respective manufacturers. A table listing the manufacturers' phone numbers is located in <i>Figure 9</i> .	
2. Output Capacitor Selection (C _{OUT})	2. Output Capacitor Selection (C _{OUT})
A. Select an output capacitor from the output capacitor table in <i>Figure 10.</i> Using the output voltage and the inductance value found	A. Use the 5.0V section in the output capacitor table in <i>Figure 10</i> . Choose a capacitor value and voltage rating from the line that contains the inductance value of 47 μ H. The capacitance and

PROCEDURE (Fixed Output Voltage Version)	EXAMPLE (Fixed Output Voltage Version)
he capacitor list contains through-hole electrolytic capacitors from	
our different capacitor manufacturers and surface mount tantalum	68 μF/10V Sprague 594D Series.
apacitors from two different capacitor manufacturers. It is	100 µF/10V AVX TPS Series.
ecommended that both the manufacturers and the manufacturer's	Through Hole:
eries that are listed in the table be used. A table listing the	68 µF/10V Sanyo OS-CON SA Series.
nanufacturers' phone numbers is located in <i>Figure 11</i> .	150 µF/35V Sanyo MV-GX Series.
	150 µF/35V Nichicon PL Series.
	150 μF/35V Panasonic HFQ Series.
. Catch Diode Selection (D1)	3. Catch Diode Selection (D1)
In normal operation, the average current of the catch diode is	A. Refer to the table shown in <i>Figure 12</i> . In this example, a 1A,
he load current times the catch diode duty cycle, 1-D (D is the witch duty cycle, which is approximately the output voltage divided	20V Schottky diode will provide the best performance. If the circuit must withstand a continuous shorted output, a higher current
y the input voltage). The largest value of the catch diode average urrent occurs at the maximum load current and maximum input	Schottky diode is recommended.
oltage (minimum D). For normal operation, the catch diode current	
ating must be at least 1.3 times greater than its maximum average	
urrent. However, if the power supply design must withstand a ontinuous output short, the diode should have a current rating	
equal to the maximum current limit of the LM2671. The most tressful condition for this diode is a shorted output condition.	
3. The reverse voltage rating of the diode should be at least 1.25 mes the maximum input voltage.	
. Because of their fast switching speed and low forward voltage	
Irop, Schottky diodes provide the best performance and efficiency.	
his Schottky diode must be located close to the LM2671 using hort leads and short printed circuit traces.	
. Input Capacitor (C _{IN})	4. Input Capacitor (C _{IN})
Now ESR aluminum or tantalum bypass capacitor is needed	The important parameters for the input capacitor are the input
etween the input pin and ground to prevent large voltage ransients from appearing at the input. This capacitor should be	voltage rating and the RMS current rating. With a maximum input voltage of 12V, an aluminum electrolytic capacitor with a voltage
ocated close to the IC using short leads. In addition, the RMS	rating greater than 15V (1.25 \times V $_{\rm IN})$ would be needed. The next
urrent rating of the input capacitor should be selected to be at least	
	The RMS current rating requirement for the input capacitor in a
e checked to assure that this current rating is not exceeded. The urves shown in <i>Figure 14</i> show typical RMS current ratings for	buck regulator is approximately $\frac{1}{2}$ the DC load current. In this example, with a 500 mA load, a capacitor with a RMS current rating
	of at least 250 mA is needed. The curves shown in <i>Figure 14</i> can
onnection of two or more capacitors may be required to increase ne total minimum RMS current rating to suit the application	be used to select an appropriate input capacitor. From the curves, locate the 16V line and note which capacitor values have RMS
equirements.	current ratings greater than 250 mA.
t least 1.25 times the maximum input voltage. Caution must be	For a through hole design, a 100 μ F/16V electrolytic capacitor (Panasonic HFQ series, Nichicon PL, Sanyo MV-GX series or
xercised if solid tantalum capacitors are used. The tantalum	equivalent) would be adequate. Other types or other
apacitor voltage rating should be twice the maximum input	manufacturers' capacitors can be used provided the RMS ripple
oltage. The tables in <i>Figure 15</i> show the recommended pplication voltage for AVX TPS and Sprague 594D tantalum	current ratings are adequate. Additionally, for a complete surface
apacitors. It is also recommended that they be surge current	mount design, electrolytic capacitors such as the Sanyo CV-C or
	CV-BS and the Nichicon WF or UR and the NIC Components NACZ
ested by the manufacturer. The TPS series available from AVX,	series could be considered.
nd the 593D and 594D series from Sprague are all surge current ested. Another approach to minimize the surge current stresses	For surface mount designs, solid tantalum capacitors can be used, but acution must be supraired with regard to the capacitor surge
n the input capacitor is to add a small inductor in series with the	but caution must be exercised with regard to the capacitor surge
nute input capacitor is to add a small inductor in series with the apply line.	current rating and voltage rating. In this example, checking <i>Figure</i>
lse caution when using ceramic capacitors for input bypassing,	15, and the Sprague 594D series datasheet, a Sprague 594D 15 μ F, 25V capacitor is adequate.

5. Boost Capacitor (C _B) For this application, and all applications, use a 0.01 µF, 50V seramic capacitor. 5. Soft-Start Capacitor (C _{SS} - optional) For this application, selecting a start-up time of 10 ms and usin the formula for C _{SS} results in a value of: $C_{SS} \approx (4.5 \ \mu\text{A} \cdot 10 \ \text{ms}) / [0.63\text{V} + 2.6\text{V} \cdot (\frac{5\text{V} + 0.4\text{V}}{12\text{V}})]$ $= 25 \ \text{nF} \approx 0.022 \ \mu\text{F}.$
For this application, and all applications, use a 0.01 μ F, 50V examic capacitor. 5. Soft-Start Capacitor (C_{SS} - optional) For this application, selecting a start-up time of 10 ms and usin the formula for C _{SS} results in a value of: C _{SS} ≈ (4.5 μ A • 10 ms) / [0.63V + 2.6V • ($\frac{5V + 0.4V}{12V}$)
the formula for C _{SS} ~ (4.5 μ A · 10 ms) / [0.63V + 2.6V · ($\frac{5V + 0.4V}{12V}$)
5. Soft-Start Capacitor (C_{ss} - optional) For this application, selecting a start-up time of 10 ms and usin the formula for C _{ss} results in a value of: $C_{SS} \approx (4.5 \ \mu \text{A} \cdot 10 \ \text{ms}) / [0.63\text{V} + 2.6\text{V} \cdot (\frac{5\text{V} + 0.4\text{V}}{12\text{V}})]$
For this application, selecting a start-up time of 10 ms and usin the formula for C _{SS} results in a value of: $C_{SS} \approx (4.5 \ \mu \text{A} \cdot 10 \ \text{ms}) / [0.63\text{V} + 2.6\text{V} \cdot (\frac{5\text{V} + 0.4\text{V}}{12\text{V}})]$
For this application, selecting a start-up time of 10 ms and usin the formula for C _{SS} results in a value of: $C_{SS} \approx (4.5 \ \mu \text{A} \cdot 10 \ \text{ms}) / [0.63\text{V} + 2.6\text{V} \cdot (\frac{5\text{V} + 0.4\text{V}}{12\text{V}})]$
he formula for C _{SS} results in a value of: $C_{SS} \approx (4.5 \ \mu \text{A} \cdot 10 \ \text{ms}) / [0.63\text{V} + 2.6\text{V} \cdot (\frac{5\text{V} + 0.4\text{V}}{12\text{V}})]$
$C_{SS} \approx (4.5 \ \mu A \cdot 10 \ ms) / [0.63V + 2.6V \cdot (\frac{5V + 0.4V}{12V})]$
= 25 nF ≈ 0.022 μF.
7. Frequency Synchronization (optional) For all applications, use a 1 kΩ resistor and a 100 pF capaciton he RC filter.
-

INDUCTOR VALUE SELECTION GUIDES

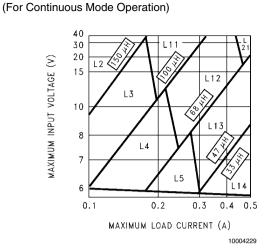
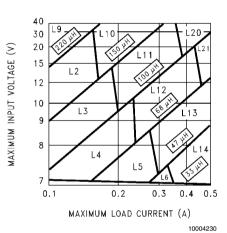
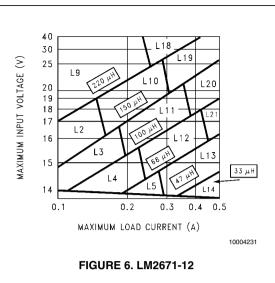




FIGURE 4. LM2671-3.3

FIGURE 5. LM2671-5.0

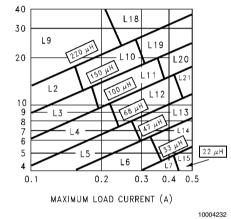


FIGURE 7. LM2671-ADJ

Ind.	Inducta	a Scho	nott	Rene	co	Pulse E	ngineering	Coilcraft	
Ref.	nce	Current	Through	Surface	Through	Surface	Through	Surface	Surface
Desg.	(µH)	(A)	Hole	Mount	Hole	Mount	Hole	Mount	Mount
L2	150	0.21	67143920	67144290	RL-5470-4	RL1500-150	PE-53802	PE-53802-S	DO1608-154
L3	100	0.26	67143930	67144300	RL-5470-5	RL1500-100	PE-53803	PE-53803-S	DO1608-104
L4	68	0.32	67143940	67144310	RL-1284-68-43	RL1500-68	PE-53804	PE-53804-S	DO1608-683
L5	47	0.37	67148310	67148420	RL-1284-47-43	RL1500-47	PE-53805	PE-53805-S	DO1608-473
L6	33	0.44	67148320	67148430	RL-1284-33-43	RL1500-33	PE-53806	PE-53806-S	DO1608-333
L7	22	0.52	67148330	67148440	RL-1284-22-43	RL1500-22	PE-53807	PE-53807-S	DO1608-223
L9	220	0.32	67143960	67144330	RL-5470-3	RL1500-220	PE-53809	PE-53809-S	DO3308-224
L10	150	0.39	67143970	67144340	RL-5470-4	RL1500-150	PE-53810	PE-53810-S	DO3308-154
L11	100	0.48	67143980	67144350	RL-5470-5	RL1500-100	PE-53811	PE-53811-S	DO3308-104
L12	68	0.58	67143990	67144360	RL-5470-6	RL1500-68	PE-53812	PE-53812-S	DO3308-683
L13	47	0.70	67144000	67144380	RL-5470-7	RL1500-47	PE-53813	PE-53813-S	DO3308-473
L14	33	0.83	67148340	67148450	RL-1284-33-43	RL1500-33	PE-53814	PE-53814-S	DO3308-333
L15	22	0.99	67148350	67148460	RL-1284-22-43	RL1500-22	PE-53815	PE-53815-S	DO3308-223
L18	220	0.55	67144040	67144420	RL-5471-2	RL1500-220	PE-53818	PE-53818-S	DO3316-224
L19	150	0.66	67144050	67144430	RL-5471-3	RL1500-150	PE-53819	PE-53819-S	DO3316-154
L20	100	0.82	67144060	67144440	RL-5471-4	RL1500-100	PE-53820	PE-53820-S	DO3316-104
L21	68	0.99	67144070	67144450	RL-5471-5	RL1500-68	PE-53821	PE-53821-S	DO3316-683

 $E \bullet T (V \bullet \mu S)$

FIGURE 8. Inductor Manufacturers' Part Numbers

Coilcraft Inc.	Phone	(800) 322-2645
	FAX	(708) 639-1469
Coilcraft Inc., Europe	Phone	+44 1236 730 595
	FAX	+44 1236 730 627
Pulse Engineering Inc.	Phone	(619) 674-8100
	FAX	(619) 674-8262
Pulse Engineering Inc.,	Phone	+353 93 24 107
Europe	FAX	+353 93 24 459
Renco Electronics Inc.	Phone	(800) 645-5828
	FAX	(516) 586-5562
Schott Corp.	Phone	(612) 475-1173
	FAX	(612) 475-1786

FIGURE 9. Inductor Manufacturers' Phone Numbers

				Output Ca	apacitor		
Output	la di cata a ca	Surface Mount		Through Hole			
Voltage		Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic
(V)	(μH)	594D Series	Series	SA Series	Series	PL Series	HFQ Series
		(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)
	22	120/6.3	100/10	100/10	330/35	330/35	330/35
	33	120/6.3	100/10	68/10	220/35	220/35	220/35
3.3	47	68/10	100/10	68/10	150/35	150/35	150/35
3.3	68	120/6.3	100/10	100/10	120/35	120/35	120/35
	100	120/6.3	100/10	100/10	120/35	120/35	120/35
	150	120/6.3	100/10	100/10	120/35	120/35	120/35
	22	100/16	100/10	100/10	330/35	330/35	330/35
	33	68/10	10010	68/10	220/35	220/35	220/35
5.0	47	68/10	100/10	68/10	150/35	150/35	150/35
5.0	68	100/16	100/10	100/10	120/35	120/35	120/35
	100	100/16	100/10	100/10	120/35	120/35	120/35
	150	100/16	100/10	100/10	120/35	120/35	120/35
	22	120/20	(2×) 68/20	68/20	330/35	330/35	330/35
	33	68/25	68/20	68/20	220/35	220/35	220/35
	47	47/20	68/20	47/20	150/35	150/35	150/35
12	68	47/20	68/20	47/20	120/35	120/35	120/35
	100	47/20	68/20	47/20	120/35	120/35	120/35
	150	47/20	68/20	47/20	120/35	120/35	120/35
	220	47/20	68/20	47/20	120/35	120/35	120/35

FIGURE 10. Output Capacitor Table

Nichicon Corp.	Phone	(847) 843-7500
	FAX	(847) 843-2798
Panasonic	Phone	(714) 373-7857
	FAX	(714) 373-7102
AVX Corp.	Phone	(845) 448-9411

	FAX	(845) 448-1943
Sprague/Vishay	Phone	(207) 324-4140
	FAX	(207) 324-7223
Sanyo Corp.	Phone	(619) 661-6322
	FAX	(619) 661-1055

FIGURE 11. Capacitor Manufacturers' Phone Numbers

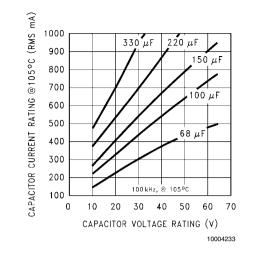

	1A Diodes		3A Di	iodes
V _R	Surface	Through	Surface	Through
	Mount	Hole	Mount	Hole
20V	SK12	1N5817	SK32	1N5820
	B120	SR102		SR302
30V	SK13	1N5818	SK33	1N5821
	B130	11DQ03	30WQ03F	31DQ03
	MBRS130	SR103		
40V	SK14	1N5819	SK34	1N5822
	B140	11DQ04	30BQ040	MBR340
	MBRS140	SR104	30WQ04F	31DQ04
	10BQ040		MBRS340	SR304
	10MQ040		MBRD340	
	15MQ040			
50V	SK15	MBR150	SK35	MBR350
	B150	11DQ05	30WQ05F	31DQ05
	10BQ050	SR105		SR305

FIGURE 12. Schottky Diode Selection Table

International Rectifier Corp.	Phone	(310) 322-3331
	FAX	(310) 322-3332
Motorola, Inc.	Phone	(800) 521-6274
	FAX	(602) 244-6609
General Instruments Corp.	Phone	(516) 847-3000
	FAX	(516) 847-3236
Diodes, Inc.	Phone	(805) 446-4800
	FAX	(805) 446-4850

FIGURE 13. Diode Manufacturers' Phone Numbers

LM2671

AVX TPS			
Recommended Application Voltage	Voltage Rating		
+85°C Rating			
3.3	6.3		
5	10		
10	20		
12	25		
15	35		

Recommended Application Voltage	Voltage Rating	
+85°C Rating		
5	10	
8	16	
12	20	
18	25	
24	35	
29	50	

Sprague 594D

Recommended Application Voltage	Voltage Rating	
+85°C Rating		
2.5	4	
3.3	6.3	

FIGURE 15. Recommended Application Voltage for AVX TPS and Sprague 594D Tantalum Chip Capacitors Derated for 85°C.

LM2671 Series Buck Regulator Design Procedure (Adjustable Output)

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
To simplify the buck regulator design procedure, National	
Semiconductor is making available computer design software to be	
used with the SIMPLE SWITCHER line of switching regulators.	
LM267X Made Simple is available on (version 6.0) Windows 3.1,	
NT, or 95 operating systems.	
Given:	Given:
V _{OUT} = Regulated Output Voltage	$V_{OUT} = 20V$
V _{IN} (max) = Maximum Input Voltage	V _{IN} (max) = 28V
I _{LOAD} (max) = Maximum Load Current	I _{LOAD} (max) = 500 mA
F = Switching Frequency (Fixed at a nominal 260 kHz).	F = Switching Frequency (Fixed at a nominal 260 kHz).
1. Programming Output Voltage (Selecting R_1 and R_2 , as shown	1. Programming Output Voltage (Selecting R ₁ and R ₂ , as shown
in <i>Figure 3</i>)	in Figure 3)
Use the following formula to select the appropriate resistor values.	Select R_1 to be 1 k Ω , 1%. Solve for R_2 .

PROCEDURE (Adjustable Output Voltage Version)	EXAMPLE (Adjustable Output Voltage Version)
$V_{OUT} = V_{REF} \left(1 + \frac{R_2}{R_1} \right)$	$R_{2} = R_{1} \left(\frac{V_{OUT}}{V_{REF}} - 1 \right) = 1 k\Omega \left(\frac{20V}{1.23V} - 1 \right)$
owest temperature coefficient and the best stability with time, use 1% metal film resistors.)	$R_2 = 1 k\Omega (16.53 - 1) = 15.53 kΩ$, closest 1% value is 15.4 kΩ. $R_2 = 15.4 kΩ$.
$R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$	
 Inductor Selection (L1) Calculate the inductor Volt • microsecond constant E • T (V • μs), from the following formula: 	 2. Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant (E • T),
$E \cdot T = (V_{IN(MAX)} - V_{OUT} - V_{SAT}) \cdot \frac{V_{OUT} + V_D}{V_{IN(MAX)} - V_{SAT} + V_D} \cdot \frac{1000}{260} (V \cdot \mu s)$	$E \cdot T = (28 - 20 - 0.25) \cdot \frac{20 + 0.5}{28 - 0.25 + 0.5} \cdot \frac{1000}{260} (V \cdot \mu s)$ $E \cdot T = (7.75) \cdot \frac{20.5}{28.25} \cdot 3.85 (V \cdot \mu s) = 21.6 (V \cdot \mu s)$
where V_{SAT} =internal switch saturation voltage=0.25V and V_D = diode forward voltage drop = 0.5V	28.25
B. Use the E • T value from the previous formula and match it with the E • T number on the vertical axis of the Inductor Value Selection Guide shown in <i>Figure 7</i> .	B. E • T = 21.6 (V • μs)
C. On the horizontal axis, select the maximum load current.	C. $I_{LOAD}(max) = 500 \text{ mA}$
	D. From the inductor value selection guide shown in <i>Figure 7</i> , the inductance region intersected by the 21.6 (V \cdot µs) horizontal line and the 500 mA vertical line is 100 µH, and the inductor code is L20.
	E. From the table in <i>Figure 8</i> , locate line L20, and select an inductor part number from the list of manufacturers' part numbers.
 B. Output Capacitor Selection (C_{OUT}) A. Select an output capacitor from the capacitor code selection 	 3. Output Capacitor Selection (C_{OUT}) A. Use the appropriate row of the capacitor code selection guide,
	in <i>Figure 16</i> . For this example, use the 15–20V row. The capacitor code corresponding to an inductance of 100 μ H is C20.
B. Select an appropriate capacitor value and voltage rating, using he capacitor code, from the output capacitor selection table in	B. From the output capacitor selection table in <i>Figure 17</i> , choose a capacitor value (and voltage rating) that intersects the capacitor code(s) selected in section A, C20.
manufacturers and four electrolytic (through hole) capacitor manufacturers to choose from. It is recommended that both the	The capacitance and voltage rating values corresponding to the capacitor code C20 are the: Surface Mount:
able be used. A table listing the manufacturers' phone numbers is	33 μF/25V Sprague 594D Series.
ocated in <i>Figure 11</i> .	33 μF/25V AVX TPS Series. Through Hole:
	33 μF/25V Sanyo OS-CON SC Series.
	120 μF/35V Sanyo MV-GX Series.
	120 μF/35V Nichicon PL Series.
	120 µF/35V Panasonic HFQ Series.
	Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the 100 kHz ESR)
	closely match the characteristics of the capacitors listed in the output capacitor table. Refer to the capacitor manufacturers' data

PROCEDURE	E (Adjustable Output	ut Voltage Vo	ersion)	EX/	AMPLE (Adju	ustable Outp	out Voltage V	/ersion)
4. Catch Diode Sele A. In normal operation the load current time switch duty cycle, with value of the catch di input voltage (minim current rating must be average current. How withstand a continue current rating greate LM2671. The most se	ection (D1) ion, the average cur es the catch diode d hich is approximatel iode average curren oum D). For normal of be at least 1.3 times wever, if the power bus output short, the er than the maximun	rrent of the ca luty cycle, 1-E ly V _{OUT} /V _{IN}). It occurs at th operation, the greater than supply design diode should n current limit	atch diode is 0 (D is the The largest e maximum e catch diode its maximum n must d have a of the	4. Catch Di A. Refer to the best per would be a shorted out recommend	iode Selection the table sho formance, an good choice. put, a higher	on (D1) own in <i>Figure</i> Id in this exan If the circuit	e 12. Schottky nple a 1A, 40\ must withsta east 1.2A) Scl	/ diodes pr / Schottky nd a contir
output condition. B. The reverse volta times the maximum	input voltage.							
C. Because of their drop, Schottky diode The Schottky diode short leads and shor	es provide the best p must be located clo	erformance a se to the LM2	nd efficiency.					
short leads and short printed circuit traces. 5. Input Capacitor (C _{IN}) A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground to prevent large voltage transients from appearing at the input. This capacitor should be located close to the IC using short leads. In addition, the RMS current rating of the input capacitor should be selected to be at least $\frac{1}{2}$ the DC load current. The capacitor manufacturer data sheet must be checked to assure that this current rating is not exceeded. The curves shown in <i>Figure 14</i> show typical RMS current ratings for several different aluminum electrolytic capacitor values. A parallel connection of two or more capacitors may be required to increase the total minimum RMS current rating to suit the application requirements. For an aluminum electrolytic capacitor, the voltage rating should be at least 1.25 times the maximum input voltage. Caution must be exercised if solid tantalum capacitors are used. The tantalum capacitor voltage rating should be twice the maximum input voltage. The tables in <i>Figure 15</i> show the recommended application voltage for AVX TPS and Sprague 594D tantalum capacitors. It is also recommended that they be surge current tested by the manufacturer. The TPS series available from AVX, and the 593D and 594D series from Sprague are all surge current tested. Another approach to minimize the surge current stresses on the input capacitor is to add a small inductor in series with the input supply line.			The importa voltage ratii voltage of 2 rating of at The RMS c buck regula example, w of at least 2 be used to s locate the 3 current ratii For a throug (Panasonic equivalent) manufactur current ratii mount desig CV-BS and series could For surface but caution current ratiir 15, and the	ng and the R 18V, an alumi least 35V (1.1 urrent rating tor is approx ith a 500 mA 250 mA is new select an app 5V line and r ngs greater th gh hole desig HFQ series, would be add ers' capacitor ngs are adeq gn, electrolyti the Nichicon d be consider mount desig must be exe ng and voltag	rs for the inpu MS current ra num electroly $25 \times V_{\rm IN}$) would requirement imately ½ the load, a capace eded. The cu propriate inpu note which ca nan 250 mA. yn, a 68 µF/38 Nichicon PL, equate. Othe rs can be use uate. Addition ic capacitors WF or UR and red. ns, solid tanta rcised with re ge rating. In the D series date	ut capacitor a ating. With a le ytic capacitor uld be needed for the input of e DC load cur citor with a RM rves shown in at capacitor. F apacitor value 5V electrolytic , Sanyo MV-0 r types or oth ed provided th nally, for a co such as the S d the NIC Cor alum capacito egard to the c is example, of asheet, a Spr	maximum i with a volt d. capacitor ir rent. In thi IS current if S current if a <i>Figure 12</i> from the cu as have RM c capacitor a capacitor applete sur Sanyo CV- nponents N ors can be apacitor su checking <i>F</i>	
6. Boost Capacitor This capacitor devel	(C _B)	voltage to turn					ns, use a 0.0	1 µF, 50V
		σα σ. στ μι , σ			540101.			
capacitor. If the soft-start and fr look at steps 6 and 7								
capacitor. If the soft-start and fr					ductance (µ			

							- ·
	SM and TH	1.21–2.50	—	—	—		C1
	SM and TH	2.50–3.75	—	—	—	C1	C2

C2

СЗ

СЗ

СЗ

Case	Output	Inductance (µH)						
Style (Note 7)	Voltage (V)	22	33	47	68	100	150	220
SM and TH	3.75–5.0	_	_	C4	C5	C6	C6	C6
SM and TH	5.0-6.25	_	C4	C7	C6	C6	C6	C6
SM and TH	6.25–7.5	C8	C4	C7	C6	C6	C6	C6
SM and TH	7.5–10.0	C9	C10	C11	C12	C13	C13	C13
SM and TH	10.0–12.5	C14	C11	C12	C12	C13	C13	C13
SM and TH	12.5–15.0	C15	C16	C17	C17	C17	C17	C17
SM and TH	15.0–20.0	C18	C19	C20	C20	C20	C20	C20
SM and TH	20.0–30.0	C21	C22	C22	C22	C22	C22	C22
TH	30.0–37.0	C23	C24	C24	C25	C25	C25	C25

Note 7: SM - Surface Mount, TH - Through Hole

FIGURE 16. Capacitor Code Selection Guide

Output Capacitor								
Cap.	Surface Mount		Through Hole					
Ref.	Sprague	AVX TPS	Sanyo OS-CON	Sanyo MV-GX	Nichicon	Panasonic		
Desg.	594D Series	Series	SA Series	Series	PL Series	HFQ Series		
#	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)	(µF/V)		
C1	120/6.3	100/10	100/10	220/35	220/35	220/35		
C2	120/6.3	100/10	100/10	150/35	150/35	150/35		
C3	120/6.3	100/10	100/35	120/35	120/35	120/35		
C4	68/10	100/10	68/10	220/35	220/35	220/35		
C5	100/16	100/10	100/10	150/35	150/35	150/35		
C6	100/16	100/10	100/10	120/35	120/35	120/35		
C7	68/10	100/10	68/10	150/35	150/35	150/35		
C8	100/16	100/10	100/10	330/35	330/35	330/35		
C9	100/16	100/16	100/16	330/35	330/35	330/35		
C10	100/16	100/16	68/16	220/35	220/35	220/35		
C11	100/16	100/16	68/16	150/35	150/35	150/35		
C12	100/16	100/16	68/16	120/35	120/35	120/35		
C13	100/16	100/16	100/16	120/35	120/35	120/35		
C14	100/16	100/16	100/16	220/35	220/35	220/35		
C15	47/20	68/20	47/20	220/35	220/35	220/35		
C16	47/20	68/20	47/20	150/35	150/35	150/35		
C17	47/20	68/20	47/20	120/35	120/35	120/35		
C18	68/25	(2×) 33/25	47/25 (Note 8)	220/35	220/35	220/35		
C19	33/25	33/25	33/25 (Note 8)	150/35	150/35	150/35		
C20	33/25	33/25	33/25 (Note 8)	120/35	120/35	120/35		
C21	33/35	(2×) 22/25	(Note 9)	150/35	150/35	150/35		
C22	33/35	22/35	(Note 9)	120/35	120/35	120/35		
C23	(Note 9)	(Note 9)	(Note 9)	220/50	100/50	120/50		
C24	(Note 9)	(Note 9)	(Note 9)	150/50	100/50	120/50		
C25	(Note 9)	(Note 9)	(Note 9)	150/50	82/50	82/50		

Note 8: The SC series of Os-Con capacitors (others are SA series)

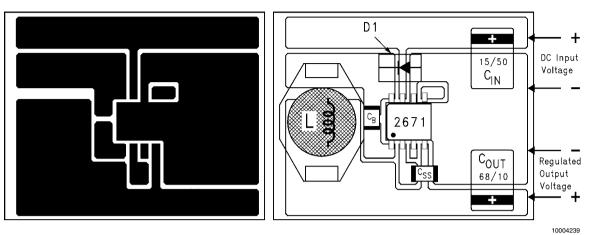
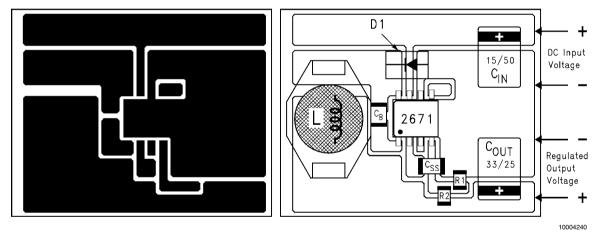

Note 9: The voltage ratings of the surface mount tantalum chip and Os-Con capacitors are too low to work at these voltages.

FIGURE 17. Output Capacitor Selection Table

LM2671

Application Information


TYPICAL SURFACE MOUNT PC BOARD LAYOUT, FIXED OUTPUT (4X SIZE)

 $\begin{array}{l} C_{\text{IN}} - 15 \, \mu\text{F}, 25\text{V}, \text{ Solid Tantalum Sprague, "594D series"} \\ C_{\text{OUT}} - 68 \, \mu\text{F}, 10\text{V}, \text{ Solid Tantalum Sprague, "594D series"} \\ \text{D1} - 1\text{A}, 40\text{V} \text{ Schottky Rectifier, Surface Mount} \\ \text{L1} - 47 \, \mu\text{H}, \text{L13}, \text{ Coilcraft DO3308} \end{array}$

C_B - 0.01 μF, 50V, Ceramic

TYPICAL SURFACE MOUNT PC BOARD LAYOUT, ADJUSTABLE OUTPUT (4X SIZE)

 C_{IN} - 15 $\mu F,$ 50V, Solid Tantalum Sprague, "594D series" C_{OUT} - 33 $\mu F,$ 25V, Solid Tantalum Sprague, "594D series"

D1 - 1A, 40V Schottky Rectifier, Surface Mount

L1 - 100 μH, L20, Coilcraft DO3316

 $C_{\rm B}$ - 0.01 µF, 50V, Ceramic

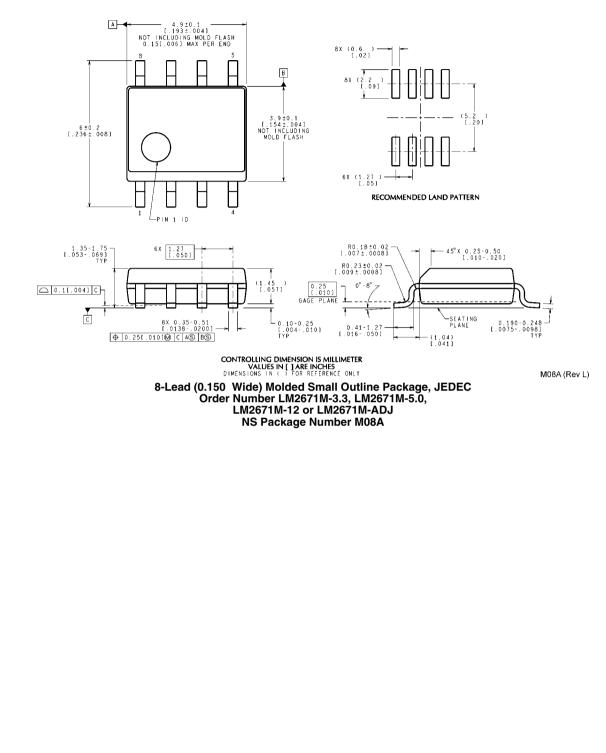
R1 - 1k, 1%

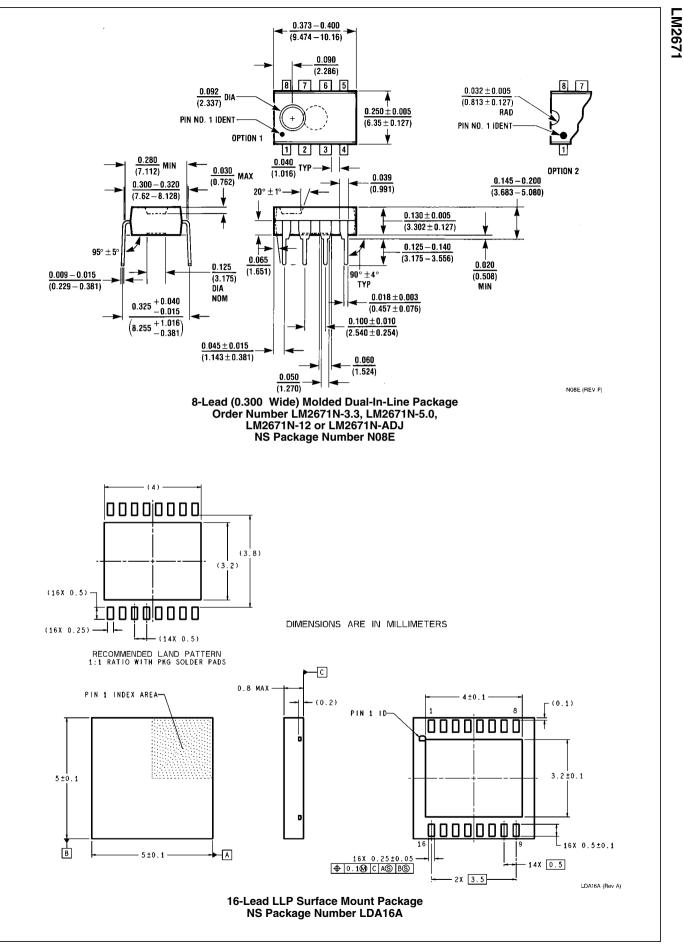
R2 - Use formula in Design Procedure

FIGURE 18. PC Board Layout

Layout is very important in switching regulator designs. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by **heavy lines (in** *Figure 2* and *Figure 3*) should be wide **printed circuit traces and should be kept as short as possible.** For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding. If **open core inductors are used**, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path, and C_{OUT} wiring can cause problems.

When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.


LLP PACKAGE DEVICES


The LM2671 is offered in the 16 lead LLP surface mount package to allow for increased power dissipation compared to the SO-8 and DIP.

The Die Attach Pad (DAP) can and should be connected to PCB Ground plane/island. For CAD and assembly guidelines refer to Application Note AN-1187 at http:// power.national.com.

Physical Dimensions inches (millimeters) unless otherwise noted

LM2671

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2007 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated