Power MOSFET

30 V, 44 A, Single N-Channel, DPAK/IPAK

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Three Package Variations for Design Flexibility
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

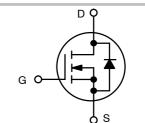
- CPU Power Delivery
- DC–DC Converters
- Recommended for High Side (Control)

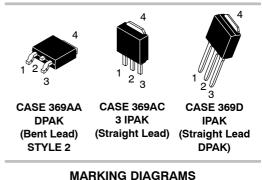
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

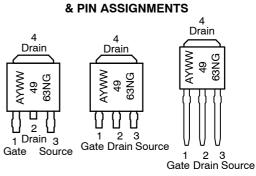
Para	ameter		Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Vol	tage		V _{GS}	±20	V
Continuous Drain		T _A = 25°C	۱ _D	10.0	А
Current R _{θJA} (Note 1)		T _A = 85°C		7.2	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	PD	1.64	W
Continuous Drain		T _A = 25°C	ID	8.1	A
Current R _{θJA} (Note 2)	Steady State	T _A = 85°C		5.8	
Power Dissipation $R_{\theta JA}$ (Note 2)	Sidle	T _A = 25°C	PD	1.1	W
Continuous Drain Current R _{BJC}		T _C = 25°C	۱ _D	44	А
(Note 1)		T _C = 85°C		32	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	35.7	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	132	A
Current Limited by P	ackage	T _A = 25°C	I _{DmaxPkg}	35	А
Operating Junction a Temperature	nd Storage		T _J , T _{STG}	–55 to +175	°C
Source Current (Body Diode)			IS	30	Α
Drain to Source dV/dt			dV/dt	6.0	V/ns
$ \begin{array}{l} \mbox{Single Pulse Drain-to-Source Avalanche} \\ \mbox{Energy } (T_J = 25^\circ C, V_{DD} = 50 \ V, V_{GS} = 10 \ V, \\ I_L = 26 \ A_{pk}, \ L = 0.1 \ mH, \ R_G = 25 \ \Omega) \end{array} $			EAS	33.8	mJ
Lead Temperature for (1/8" from case for 1		Purposes	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.


2. Surface-mounted on FR4 board using the minimum recommended pad size.


ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	9.6 mΩ @ 10 V	44 A
	16 mΩ @ 4.5 V	44 A

N-CHANNEL MOSFET

A = Assembly Location

(R, NF = ON Semi, Nantong Fujitsu Assembly Site Code)

Y = Year

WW = Work Week

4963N = Device Code G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	4.1	°C/W
Junction-to-TAB (Drain)	$R_{\thetaJC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	77	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	118	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D =	= 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				25		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1.0	
		$V_{DS} = 24 V$	T _J = 125°C			10	μA
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$; = ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)						-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS},I_{D}=250\;\mu A$		1.45		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		8.2	9.6	
			I _D = 15 A		8.2		
		V _{GS} = 4.5 V	I _D = 30 A		13.6	16	mΩ
			I _D = 15 A		13.6		
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I	_D = 30 A		40		S
CHARGES, CAPACITANCES AND GATE	RESISTANCE						
Input Capacitance	C _{ISS}				1035		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MI	Hz, V _{DS} = 12 V		220		pF
Reverse Transfer Capacitance	C _{RSS}				115		
Total Gate Charge	Q _{G(TOT)}				8.1		
Threshold Gate Charge	Q _{G(TH)}				1.2		
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 30 A			3.5		nC

SWITCHING CHARACTERISTICS (Note 6)

Gate-to-Drain Charge

Total Gate Charge

Turn–On Delay Time	t _{d(ON)}		12	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	20	20
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D}$ = 15 A, R _G = 3.0 Ω	14	ns
Fall Time	t _f		3	

 V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 30 A

3.5

16.2

nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.
 Assume terminal length of 110 mils.

Q_{GD}

Q_{G(TOT)}

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Not	e 6)			•	-		
Turn-On Delay Time	t _{d(ON)}				7.0		
Rise Time	t _r	V _{GS} = 11.5 V, V	_{DS} = 15 V,		17		ns
Turn-Off Delay Time	t _{d(OFF)}	I _D = 15 A, R _G	= 3.0 Ω		20		
Fall Time	t _f				2		
DRAIN-SOURCE DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V _{SD}	$V_{SD} \qquad V_{GS} = 0 \text{ V}, \\ I_S = 30 \text{ A} \qquad T_J = 25^{\circ}\text{C} \\ T_J = 125^{\circ}\text{C}$		0.96	1.2	V	
				0.83		Ň	
Reverse Recovery Time	t _{RR}	•			17		
Charge Time	t _a	V _{GS} = 0 V, dIS/dt	= 100 A/μs,		9		ns
Discharge Time	t _b	$I_{\rm S} = 30 {\rm A}$			8		
Reverse Recovery Charge	Q _{RR}				6		nC
PACKAGE PARASITIC VALUES							
Source Inductance (Note 7)	L _S				2.49		nH
Drain Inductance, DPAK	LD	T _A = 25°C			0.0164		
Drain Inductance, IPAK (Note 7)	LD				1.88		
Gate Inductance (Note 7)	L _G				3.46		
					1		

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

Switching characteristics are independent of operating junction temperatures.
 Assume terminal length of 110 mils.

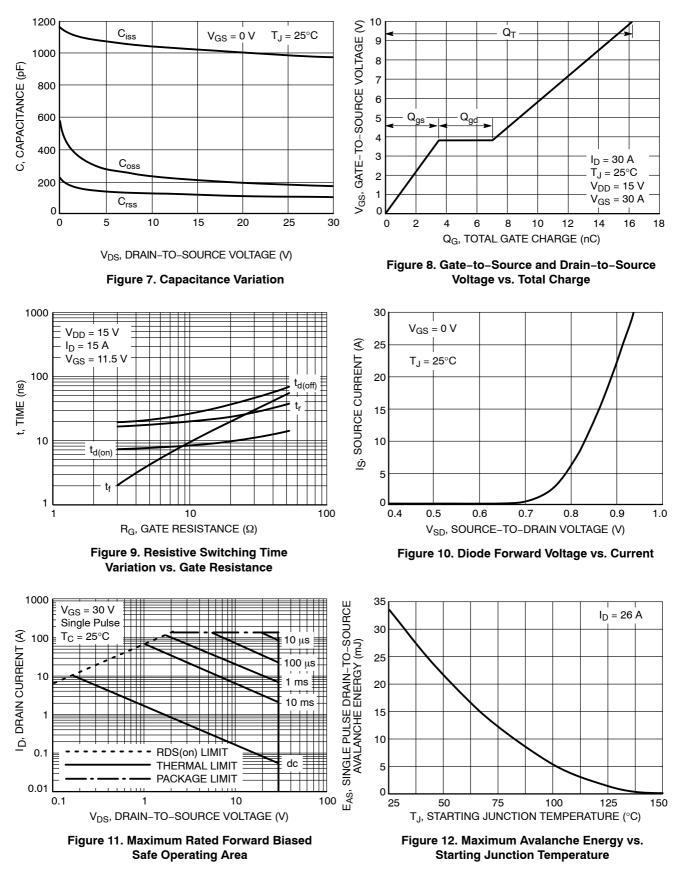
R_G

ORDERING INFORMATION

Gate Resistance

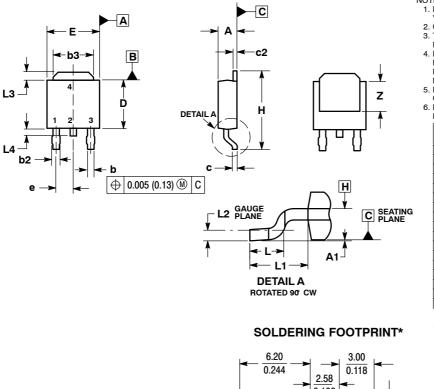
Device	Package	Shipping [†]
NTD4963NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD4963N-1G	IPAK (Pb–Free)	75 Units / Rail
NTD4963N-35G	IPAK Trimmed Lead (Pb-Free)	75 Units / Rail

1.0

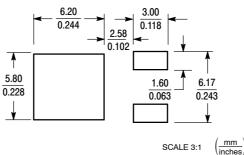

Ω

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

60 60 4.6 V thru 10 V V_{GS} = 4.4 V V_{DS} = 10 V T.I = 25°C 50 50 4.2 V € ID, DRAIN CURRENT (A) ID, DRAIN CURRENT 40 4.0 V 40 3.8 V 30 30 T_J = 25℃ 3.6 V 20 20 3.4 V 10 10 3.2 V $T_J = 125^{\circ}C$ -55°C 2.8 V Τι= 0 0 0 2 3 4 5 2 2.5 3 3.5 4 4.5 5 5.5 1 1.5 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 1. On-Region Characteristics **Figure 2. Transfer Characteristics** G G 5) BO 2E-02 1.9E-02 5,1.8E-02 5,1.7E-02 BH 1.6E-02 2011 5) 20E-03 20E-03 UNCL SIS 15E-03 $T_J = 25^{\circ}C$ I_D = 30 A $T_J = 25^{\circ}C$ $V_{GS} = 4.5 V$ ш1.5E-02 2 1.4E-02 DRAIN-TO-SOURCE 001.3E-02 10E-03 $V_{GS} = 10 V$ 01.1E-02 01.1E-02 1.0E-02 NE-03 NE-03 NE-03 7E-03 5E-03 R_{DS(on)}, [(uo)su) BDS(ou) 6E-03 0E+00 5E-03 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) I_D, DRAIN CURRENT (A) Figure 3. On-Resistance vs. Gate-to-Source Figure 4. On-Resistance vs. Drain Current and **Gate Voltage** RDS(on), DRAIN-TO-SOURCE RESISTANCE (NORMALIZED) Voltage 10,000 1.8 $V_{GS} = 0 V$ T_J = 150°C I_D = 30 A 1.6 1,000 V_{GS} = 10 V I_{DSS}, LEAKAGE (nA) T_J = 125°C 1.4 100 1.2 10 1.0 T_{.1} = 25°C 1 0.8 0.1 0.6 25 -50 -25 0 25 50 75 100 125 150 5 10 15 20 30 TJ, JUNCTION TEMPERATURE (°C) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 5. On-Resistance Variation with Figure 6. Drain-to-Source Leakage Current Temperature vs. Voltage


TYPICAL PERFORMANCE CURVES

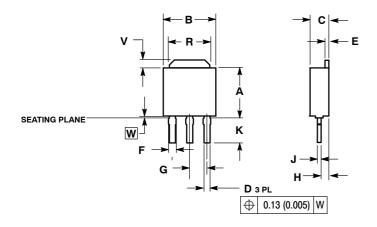
PACKAGE DIMENSIONS


DPAK (SINGLE GUAGE) CASE 369AA-01 **ISSUE B**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 DIMENSIONE ON DE ADD ECTETERMIED AT THE DIMENSIONE DAND E ADD ECTETERMIED AT THE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
c	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
ш	0.250	0.265	6.35	6.73
e	0.090 BSC		2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Ζ	0.155		3.93	


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

3 IPAK, STRAIGHT LEAD CASE 369AC-01

ISSUE O

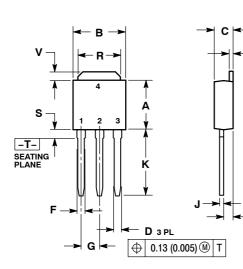
NOTES:

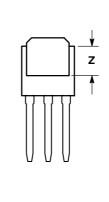
- 1.. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 SEATING PLANE IS ON TOP OF

DAMBAR POSITION.

 DIMENSION A DOES NOT INCLUDE DAMBAR POSITION OR MOLD GATE.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.043	0.94	1.09
G	0.090 BSC		2.29	BSC
н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
К	0.134	0.142	3.40	3.60
R	0.180	0.215	4.57	5.46
V	0.035	0.050	0.89	1.27
W	0.000	0.010	0.000	0.25


IPAK (STRAIGHT LEAD DPAK)


CASE 369D-01

E

H

NOTES: 1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
К	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

4. DRAIN

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cauld create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pays and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pays to all claims, costs, damages, and expenses, and reasonable attorney fees arising out of

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTD4963N/D