EXPERIMENT 1 SAMPLING THEORY

OBJECTIVES

In this experiment you will investigate Sampling Theorem.

PRE-LAB ASSIGNMENT

Given signal x(t) = sinc(t):

- **1.** Find out the Fourier transform of x(t), X(f), sketch them.
- **2.** Find out the Nyquist sampling frequency of x(t).
- **3.** Given sampling rate f_s , write down the expression of the Fourier transform of $x_s(t)$, $X_s(f)$ in terms of X(f).
- 4. Let sampling frequency $f_s = 1$ Hz. Sketch the sampled signal $x_s(t) = x(kT_s)$ and the Fourier transform of $x_s(t)$, $X_s(f)$.
- 5. Let sampling frequency $f_s = 2$ Hz. Repeat 4.
- 6. Let sampling frequency $f_s = 0.5$ Hz. Repeat 4.
- 7. Let sampling frequency $f_s = 1.5$ Hz. Repeat 4.
- 8. Let sampling frequency $f_s = 2/3$ Hz. Repeat 4.
- **9.** Design a Matlab function to calculate the Fourier transform of a sampled signal $x_s(t)$, $X_s(f) = \sum_k x(kT_s) \exp(-j \cdot 2\pi f \cdot kT_s)$. This is necessary in your experiments.

NOTE: In Matlab and this experiment, $\operatorname{sinc}(t)$ is defined as $\operatorname{sinc}(t) = \frac{\sin(\pi t)}{(\pi t)}$. Under this definition: $\operatorname{sinc}(2Wt) \to \frac{1}{(2W)} \operatorname{rect}(f/2W)$.

PROCEDURE

- 1. Design Matlab programs to illustrate items 4-8 in Prelab. You need to plot all the graphs.
- 2. Compare your results with your sketches in your Prelab assignment and explain them.