CHAPTER

4

ENERGY
AND
POTENTIAL

In the previous two chapters we became acquainted with Coulomb’s law and its
use in finding the electric field about several simple distributions of charge, and
also with Gauss’s law and its application in determining the field about some
symmetrical charge arrangements. The use of Gauss’s law was invariably easier
for these highly symmetrical distributions, because the problem of integration
always disappeared when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field,
such as that of two unlike point charges separated by a small distance, we would
have found it impossible to choose a suitable gaussian surface and obtain an
answer. Coulomb’s law, however, is more powerful and enables us to solve
problems for which Gauss’s law is not applicable. The application of
Coulomb’s law is laborious, detailed, and often quite complex, the reason for
this being precisely the fact that the electric field intensity, a vector field, must be
found directly from the charge distribution. Three different integrations are
needed in general, one for each component, and the resolution of the vector
into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar
function with a single integration and then determine the electric field from this
scalar by some simple straightforward procedure, such as differentiation.
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This scalar function does exist and is known as the potential or potential

field. We shall find that it has a very real physical interpretation and is more

familiar to most of us than is the electric field which it will be used to find.
We should expect, then, to be equipped soon with a third method of finding
electric fields—a single scalar integration, although not always as simple as we
might wish, followed by a pleasant differentiation.
The remaining difficult portion of the task, the integration, we intend to
remove in Chap. 7.

4.1 ENERGY EXPENDED IN MOVING A
POINT CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that
point at which we wish to find the value of this vector field. If we attempt to
move the test charge against the electric field, we have to exert a force equal and
opposite to that exerted by the field, and this requires us to expend energy, or do
work. If we wish to move the charge in the direction of the field, our energy
expenditure turns out to be negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance dL in an electric field E.
The force on Q due to the electric field is

Fp=QE ()

where the subscript reminds us that this force is due to the field. The component
of this force in the direction dL. which we must overcome is

Fgp =F-a, =QFE-a;

where a; = a unit vector in the direction of dL.
The force which we must apply is equal and opposite to the force due to the
field,

Fappl =—QE-a,
and our expenditure of energy is the product of the force and distance. That is,

Differential work done by external source moving Q
= —QE-a;dL = —QFE-dL

or dW = —QE-dL (2)

where we have replaced a;dL by the simpler expression dL.

This differential amount of work required may be zero under several con-
ditions determined easily from (2). There are the trivial conditions for which E,
Q, or dL is zero, and a much more important case in which E and dL are
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perpendicular. Here the charge is moved always in a direction at right angles to
the electric field. We can draw on a good analogy between the electric field and
the gravitational field, where, again, energy must be expended to move against
the field. Sliding a mass around with constant velocity on a frictionless surface is
an effortless process if the mass is moved along a constant elevation contour;
positive or negative work must be done in moving it to a higher or lower eleva-
tion, respectively.

Returning to the charge in the electric field, the work required to move the
charge a finite distance must be determined by integrating,

final
W= —QJ E-dL 3)

init

where the path must be specified before the integral can be evaluated. The charge
is assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the follow-
ing section to its interpretation and evaluation.

1
‘/ D4.1. Given the electric field E = —2(8xyzax + 4xzzay — 4y? va;) V/m, find the differen-
VA

tial amount of work done in moving a 6-nC charge a distance of 2 pum, starting at
P(2,-2,3) and proceeding in the direction a,=: (a) —S$a.+3a,+3a; (b)

6 3 20 . (346
Zay —za, —5a; (¢) 5 +3a,.

Ans. —149.3; 149.3; 0]

4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge Q from one
position to another, Eq. (3), is an example of a line integral, which in vector-
analysis notation always takes the form of the integral along some prescribed
path of the dot product of a vector field and a differential vector path length dL.
Without using vector analysis we should have to write

final

W= —QJ EpdL

mit
where E; = component of E along dL.

A line integral is like many other integrals which appear in advanced ana-
lysis, including the surface integral appearing in Gauss’s law, in that it is essen-
tially descriptive. We like to look at it much more than we like to work it out. It
tells us to choose a path, break it up into a large number of very small segments,
multiply the component of the field along each segment by the length of the
segment, and then add the results for all the segments. This is a summation, of
course, and the integral is obtained exactly only when the number of segments
becomes infinite.
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This procedure is indicated in Fig. 4.1, where a path has been chosen from
an initial position B to a final position! A and a uniform electric field selected for
simplicity. The path is divided into six segments, AL, AL,, ..., AL, and the
components of E along each segment denoted by E;|, Ef», ..., Erg. The work
involved in moving a charge Q from B to 4 is then approximately

W =—-Q(ELAL + EnAL + ...+ Er6ALg)
or, using vector notation,
W=—-0QE;-AL + E;- AL, +... + E¢- ALy)
and since we have assumed a uniform field,
E =E,=...=FE
W =—QE-(AL; + AL, + ... + ALy)

What is this sum of vector segments in the parentheses above? Vectors add
by the parallelogram law, and the sum is just the vector directed from the initial
point B to the final point A4, Lp,. Therefore

W =—QE-Lgy (uniform E) 4)

Final position

Initial position

FIGURE 4.1

A graphical interpretation of a line integral in a uniform field. The line integral of E between points B and
A is independent of the path selected, even in a nonuniform field; this result is not, in general, true for time-
varying fields.

! The final position is given the designation A to correspond with the convention for potential difference,
as discussed in the following section.

4| p | eTextMainMenu | Textbook Table of Contents



ENERGY AND POTENTIAL

Remembering the summation interpretation of the line integral, this result
for the uniform field can be obtained rapidly now from the integral expression

A

W =-0 J E-dL (5)
B
as applied to a uniform field
A
W =—-QE. J dL
B

where the last integral becomes Lp,4 and
W = —QE-Lgy (uniform E)

For this special case of a uniform electric field intensity, we should note
that the work involved in moving the charge depends only on Q, E, and Lp,, a
vector drawn from the initial to the final point of the path chosen. It does not
depend on the particular path we have selected along which to carry the charge.
We may proceed from B to 4 on a straight line or via the Old Chisholm Trail; the
answer is the same. We shall show in Sec. 4.5 that an identical statement may be
made for any nonuniform (static) E field.

Let us use several examples to illustrate the mechanics of setting up the line
integral appearing in (5).

|||I»Example 4.1
We are given the nonuniform field
E =ya, + xa, + 2a.

and we are asked to determine the work expended in carrying 2C from B(1,0, 1) to
A(0.8,0.6, 1) along the shorter arc of the circle

N 4+yP=1 z=1

Solution. We use W = —-Q f: E - dL, where E is not necessarily constant. Working in
cartesian coordinates, the differential path dL is dxa, + dya, 4+ dza., and the integral
becomes

A
W=-0 [ E-dL
JB
A
= —ZJ (vay +xa, +2a.)-(dxa, +dya, +dza.)
B

0.8 0.6 1
:—2J ydx—2j xdy—4j dz
1 0 1

where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variable of integration. Using the equation of the circular path
(and selecting the sign of the radical which is correct for the quadrant involved), we have
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0.8 0.6
W=— J «/1—x2dx—2j V1—=3%dy -0
1

0

0.8 0.6
= —[x«/l — x2 +sin”! x]l —[y\/l — 32 +sin”! y]o
= —(0.48 4 0.927 — 0 — 1.571) — (0.48 + 0.644 — 0 — 0)
=-0.96J

IIII»Example 4.2

Again find the work required to carry 2 C from B to 4 in the same field, but this time use
the straight-line path from B to A.

Solution. We start by determining the equations of the straight line. Any two of the
following three equations for planes passing through the line are sufficient to define the

line:

y=yp =22 ()
B i —xp XB

A —ZB
z—zp= v —y8)

—JVB

by
X—Xp= 4 B(Z—ZB)

Zy—Z

From the first equation above we have
y=-3(x-1
and from the second we obtain
z=1

Thus,

0.8 0.6 1
W =- J ydx—2J xdy—4j dz
1 0 1

0.8 0.6
_ 1y N
_611 (x — 1)dx 2L (1 3) dy

=—-0.96]

This is the same answer we found using the circular path between the same
two points, and it again demonstrates the statement (unproved) that the work
done is independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show that
dy = =3 dx and dx = —3 dy. These substitutions may be made in the first two
integrals above, along with a change in limits, and the answer may be obtained
by evaluating the new integrals. This method is often simpler if the integrand is a
function of only one variable.

4| p | eTextMainMenu | Textbook Table of Contents



ENERGY AND POTENTIAL

Note that the expressions for dL in our three coordinate systems utilize the
differential lengths obtained in the first chapter (cartesian in Sec. 1.3, cylindrical
in Sec. 1.8, and spherical in Sec. 1.9):

dL =dxa,+dya, +dza. (cartesian) (6)
dL =dpap+ pdpas+dza. (cylindrical) (7)
dL=dra, +rdfayg+rsind doay (spherical) (8)

The interrelationships among the several variables in each expression are deter-
mined from the specific equations for the path.

As a final example illustrating the evaluation of the line integral, let us
investigate several paths which we might take near an infinite line charge. The
field has been obtained several times and is entirely in the radial direction,

PL

E = Epap =map

Let us first find the work done in carrying the positive charge Q about a
circular path of radius p, centered at the line charge, as illustrated in Fig. 4.2a.
Without lifting a pencil, we see that the work must be nil, for the path is always
perpendicular to the electric field intensity, or the force on the charge is always
exerted at right angles to the direction in which we are moving it. For practice,
however, let us set up the integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the
circular path selected demands that dp and dz be zero, so dL = pid¢a,. The
work is then

W _Q J-ﬁna] oL 2o d¢ 2
init 27€0 01

n PL
= — d . = 0
Q JO 27eg Pa,-ay

Let us now carry the charge from p = a to p = b along a radial path (Fig.
4.2b). Here dL = dpa, and

final b
PL pL dp
W = — a -dloa = — J _
QJinit 2mepp " ! ¢ a2mey P

. OpL lné
2mey  a

or W =

Since b is larger than a, In (b/a) is positive, and we see that the work done is
negative, indicating that the external source that is moving the charge receives
energy.
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Infinite line
charge p;.

~

\_ dL:Pl“"P%

(a) (&)

FIGURE 4.2
(a) A circular path and (b) a radial path along which a charge of Q is carried in the field of an infinite line
charge. No work is expected in the former case.

One of the pitfalls in evaluating line integrals is a tendency to use too many
minus signs when a charge is moved in the direction of a decreasing coordinate
value. This is taken care of completely by the limits on the integral, and no
misguided attempt should be made to change the sign of dL. Suppose we
carry Q from b to a (Fig. 4.2b). We still have dL = dpa, and show the different
direction by recognizing p = b as the initial point and p = « as the final point,

a
pr dp Qpr. b
QL 2wey p  27en na

This is the negative of the previous answer and is obviously correct.

‘/ D4.2. Calculate the work done in moving a 4-C charge from B(1,0,0) to A(0,2,0)
along the path y =2 —2x, z=0 in the field E =: (a) 5a,V/m; (b) 5xa, V/m; (¢)
Sxa, + Sya, V/m.

Ans. 20J; 10J; =307

V D4.3. We shall see later that a time-varying E field need not be conservative. (If it is not
conservative, the work expressed by Eq. (3) may be a function of the path used.) Let
E = ya, V/m at a certain instant of time, and calculate the work required to move a 3-C
charge from (1, 3,5) to (2,0, 3) along the straight line segments joining: (a) (1, 3, 5) to
(2,3,5) to (2,0,5) to (2,0,3); (b) (1,3,5) to (1, 3,3) to (1,0, 3) to (2,0, 3).

Ans. —97J; 0
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4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done
by an external source in moving a charge Q from one point to another in an
electric field E,

final
W:—QJ E-dL

init

In much the same way as we defined the electric field intensity as the force
on a unit test charge, we now define potential difference V as the work done (by
an external source) in moving a unit positive charge from one point to another in
an electric field,

final

Potential difference =V = —J E-dL 9)

init

We shall have to agree on the direction of movement, as implied by our
language, and we do this by stating that Vg signifies the potential difference
between points 4 and B and is the work done in moving the unit charge from B
(last named) to A4 (first named). Thus, in determining V45, B is the initial point
and A is the final point. The reason for this somewhat peculiar definition will
become clearer shortly, when it is seen that the initial point B is often taken at
infinity, whereas the final point 4 represents the fixed position of the charge;
point A4 is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is
defined as a more common unit, abbreviated as V. Hence the potential difference
between points 4 and B is

A
VAB:—J E-dL V (10)
B

and V45 is positive if work is done in carrying the positive charge from B to A.
From the line-charge example of the last section we found that the work
done in taking a charge Q from p = b to p = a was

_ Opr lné

W =
2mey  a
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Thus, the potential difference between points at p = a and p = b is

w PL b
Vip =— = In— 11
ab Q 270 na ( )

We can try out this definition by finding the potential difference between
points A and B at radial distances r4 and r from a point charge Q. Choosing an
origin at Q,

0
E = Er r= 3 5
a 4rreqr? A
and dL = dra,
A T4 1 1
we have VAB:_J E.dL:_J Q2dr: Q <___> (12)
B s Aeqr dweg \rs 13

If rg > r4, the potential difference V45 is positive, indicating that energy is
expended by the external source in bringing the positive charge from rp to r4.
This agrees with the physical picture showing the two like charges repelling each
other.

It is often convenient to speak of the potential, or absolute potential, of a
point, rather than the potential difference between two points, but this means
only that we agree to measure every potential difference with respect to a speci-
fied reference point which we consider to have zero potential. Common agree-
ment must be reached on the zero reference before a statement of the potential
has any significance. A person having one hand on the deflection plates of a
cathode-ray tube which are ““at a potential of 50 V” and the other hand on the
cathode terminal would probably be too shaken up to understand that the
cathode is not the zero reference, but that all potentials in that circuit are cus-
tomarily measured with respect to the metallic shield about the tube. The cath-
ode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical
potential measurements is ““‘ground,” by which we mean the potential of the
surface region of the earth itself. Theoretically, we usually represent this surface
by an infinite plane at zero potential, although some large-scale problems, such
as those involving propagation across the Atlantic Ocean, require a spherical
surface at zero potential.

Another widely used reference ““point” is infinity. This usually appears in
theoretical problems approximating a physical situation in which the earth is
relatively far removed from the region in which we are interested, such as the
static field near the wing tip of an airplane that has acquired a charge in flying
through a thunderhead, or the field inside an atom. Working with the gravita-
tional potential field on earth, the zero reference is normally taken at sea level;
for an interplanetary mission, however, the zero reference is more conveniently
selected at infinity.

4| p | eTextMainMenu | Textbook Table of Contents



ENERGY AND POTENTIAL

A cylindrical surface of some definite radius may occasionally be used as a
zero reference when cylindrical symmetry is present and infinity proves incon-
venient. In a coaxial cable the outer conductor is selected as the zero reference for
potential. And, of course, there are numerous special problems, such as those for
which a two-sheeted hyperboloid or an oblate spheroid must be selected as the
zero-potential reference, but these need not concern us immediately.

If the potential at point A4 is V4 and that at B is Vg, then

Vap=V4—Vp (13)

where we necessarily agree that V4, and Vp shall have the same zero reference
point.

V' D44 An electric field is expressed in cartesian coordinates by E =
6xzax+6ya},+4a_7V/m. Find: (@) Vyy if points M and N are specified by
M(2,6,—1) and N(=3,=3,2); (b) Vy if V=0 at Q4, =2, =35); (¢) Vy if V=2 at
P(1,2,—4).

Ans. —139.0V; —120.0V; 19.00V

4.4 THE POTENTIAL FIELD OF A POINT CHARGE

In the previous section we found an expression (12) for the potential difference
between two points located at r = r4 and r = rp in the field of a point charge Q
placed at the origin,

Vin =g (=) = Va= Vi (14)
I'4 rp

It was assumed that the two points lay on the same radial line or had the
same 6 and ¢ coordinate values, allowing us to set up a simple path on this radial
line along which to carry our positive charge. We now should ask whether
different 6 and ¢ coordinate values for the initial and final position will affect
our answer and whether we could choose more complicated paths between the
two points without changing the results. Let us answer both questions at once by
choosing two general points 4 and B (Fig. 4.3) at radial distances of r4 and r,
and any values for the other coordinates.

The differential path length dL has r, 6, and ¢ components, and the electric
field has only a radial component. Taking the dot product then leaves us only

F 4 F 4 Q Q 1 1
Vip=—| E.dr=— dr = ———
= J ! J,,B 4regr? d dreg \rq r13p

'

We obtain the same answer and see, therefore, that the potential difference
between two points in the field of a point charge depends only on the distance of
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Alry, 64, 94)

_—dL=dra +rdfag+rsinfdpa,

é 72 * B(rg. Ug. ¢5)

FIGURE 4.3
A general path between general points B and 4 in the field of a point charge Q at the origin. The potential
difference V45 is independent of the path selected.

each point from the charge and does not depend on the particular path used to
carry our unit charge from one point to the other.

How might we conveniently define a zero reference for potential? The
simplest possibility is to let ' = 0 at infinity. If we let the point at r = rp recede
to infinity the potential at r4 becomes

Y

" Amegry

V4

or, since there is no reason to identify this point with the 4 subscript,

Y

- 47T€0)”

(15)

This expression defines the potential at any point distant r from a point
charge Q at the origin, the potential at infinite radius being taken as the zero
reference. Returning to a physical interpretation, we may say that Q/4megr joules
of work must be done in carrying a 1-C charge from infinity to any point r meters
from the charge Q.

A convenient method to express the potential without selecting a specific
zero reference entails identifying r4 as r once again and letting Q/4megrp be a
constant. Then

0

 4dmegr

+C (16)

and C; may be selected so that I/ = 0 at any desired value of . We could also
select the zero reference indirectly by electing to let V' be Vy at r = ry.

It should be noted that the potential difference between two points is not a
function of Cj.

Equation (15) or (16) represents the potential field of a point charge. The
potential is a scalar field and does not involve any unit vectors.
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Let us now define an equipotential surface as a surface composed of all
those points having the same value of potential. No work is involved in moving
a unit charge around on an equipotential surface, for, by definition, there is no
potential difference between any two points on this surface.

The equipotential surfaces in the potential field of a point charge are
spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that
it is an inverse-distance field, whereas the electric field intensity was found to be
an inverse-square-law relationship. A similar result occurs for the gravitational
force field of a point mass (inverse-square law) and the gravitational potential
field (inverse distance). The gravitational force exerted by the earth on an object
one million miles from it is four times that exerted on the same object two million
miles away. The kinetic energy given to a freely falling object starting from the
end of the universe with zero velocity, however, is only twice as much at one
million miles as it is at two million miles.

t/ D4.5. A 15-nC point charge is at the origin in free space. Calculate V) if point P is
located at P1(—2, 3, —1) and: (@) V" =0 at (6, 5,4); (b) V' =0 at infinity; (¢) ¥V =5V at
(2,0,4)

Ans. 20.7V; 36.0V; 10.89V

4.5 THE POTENTIAL FIELD OF A SYSTEM
OF CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit
positive charge from the zero reference to the point, and we have suspected that
this work, and hence the potential, is independent of the path taken. If it were
not, potential would not be a very useful concept.

Let us now prove our assertion. We shall do so by beginning with the
potential field of the single point charge for which we showed, in the last section,
the independence with regard to the path, noting that the field is linear with
respect to charge so that superposition is applicable. It will then follow that the
potential of a system of charges has a value at any point which is independent of
the path taken in carrying the test charge to that point.

Thus the potential field of a single point charge, which we shall identify as
0, and locate at ry, involves only the distance |r — r{| from Q; to the point at r
where we are establishing the value of the potential. For a zero reference at
infinity, we have

O

V) =-———
(l’) 47T6()|l’—l‘1|

The potential due to two charges, Q; atr; and Q; atr,, is a function only of
[r —r{| and |r — 13|, the distances from Q; and Q5 to the field point, respectively.
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01 0>

Vir) =
® 4rep|r — 1| + 4rreg|r — 17|

Continuing to add charges, we find that the potential due to n point charges is

0 0, On

V(r)= e
r) 4neolr—r1|+4neo|r—r2|+ +4neo|r—rn|
n
Q}’ﬂ
Vir) = — 17
or (r) ; e e— (17)

If each point charge is now represented as a small element of a continuous
volume charge distribution p,Aw, then

_ pu(r1)Av) Pu(12) Avy Pu(Tn) Avy
V(r) = e
dreglr — 11| 4dmeg|r — 1p| 4rreg|r — 1y

As we allow the number of elements to become infinite, we obtain the
integral expression

V(r) = J pur)dv (18)

vol 40T — 1|

We have come quite a distance from the potential field of the single point
charge, and it might be helpful to examine (18) and refresh ourselves as to the
meaning of each term. The potential V' (r) is determined with respect to a zero
reference potential at infinity and is an exact measure of the work done in bring-
ing a unit charge from infinity to the field point at r where we are finding the
potential. The volume charge density p,(r’) and differential volume element dv’
combine to represent a differential amount of charge p,(r’) dv’ located at r’. The
distance |r —r’| is that distance from the source point to the field point. The
integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface
charge, the integration is along the line or over the surface:

~[_peldL’

Vo = J4neolr—r/| (19)
[ _ps()ds’

Vin = L 4reg|r — 1’| (20)

The most general expression for potential is obtained by combining (17),
(18), (19), and (20).

These integral expressions for potential in terms of the charge distribution
should be compared with similar expressions for the electric field intensity, such
as (18) in Sec. 2.3:

o(r)dv'  r—1’
E(r):J pu(t)dv i
vol 4meg|r — /|7 r — 1’
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The potential again is inverse distance, and the electric field intensity,
inverse-square law. The latter, of course, is also a vector field.

To illustrate the use of one of these potential integrals, let us find V" on the z
axis for a uniform line charge p; in the form of a ring, p = a, in the z = 0 plane,
as shown in Fig. 4.4. Working with (19), we have dL" = ad¢’, r = za., v’ = aa,,

r —r'| = Va* + z2, and

- Jzﬂ prade’ pLa
0 dmegva + 22 2megVa? + z2

For a zero reference at infinity, then:

1. The potential due to a single point charge is the work done in carrying a unit
positive charge from infinity to the point at which we desire the potential,
and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of
the individual potential fields arising from each charge.

3. The potential due to a number of point charges or any continuous charge
distribution may therefore be found by carrying a unit charge from infinity
to the point in question along any path we choose.

In other words, the expression for potential (zero reference at infinity),

A
VA:—J E.dL

FIGURE 4.4

The potential field of a ring of uniform
line charge density is easily obtained
from V = [ pp(r')dL’/ (4meo|r —1')).
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or potential difference,

v
Vap=Va4—Vp= —J E-dL
B
is not dependent on the path chosen for the line integral, regardless of the source
of the E field.
This result is often stated concisely by recognizing that no work is done in
carrying the unit charge around any closed path, or

E-dL=0 @2y
J

A small circle is placed on the integral sign to indicate the closed nature of
the path. This symbol also appeared in the formulation of Gauss’s law, where a
closed surface integral was used.

Equation (21) is true for static fields, but we shall see in Chap. 10 that
Faraday demonstrated it was incomplete when time-varying magnetic fields were
present. One of Maxwell’s greatest contributions to electromagnetic theory was
in showing that a time-varying electric field produces a magnetic field, and
therefore we should expect to find later that (21) is not correct when either E
or the magnetic field varies with time.

Restricting our attention to the static case where E does not change with
time, consider the dc circuit shown in Fig. 4.5. Two points, 4 and B, are marked,
and (21) states that no work is involved in carrying a unit charge from 4 through
R, and R; to B and back to 4 through Ry, or that the sum of the potential
differences around any closed path is zero.

Equation (21) is therefore just a more general form of Kirchhoff’s circuital
law for voltages, more general in that we can apply it to any region where an
electric field exists and we are not restricted to a conventional circuit composed
of wires, resistances, and batteries. Equation (21) must be amended before we
can apply it to time-varying fields. We shall take care of this in Chap. 10, and in
Chap. 13 we will then be able to establish the general form of Kirchhoff’s voltage
law for circuits in which currents and voltages vary with time.

@ 05—

|
=
=

R, Ry

' FIGURE 4.5

' | A simple dc-circuit problem which must

S (R = be solved by applying §E - dL = 0 in the

B form of Kirchhoff’s voltage law.
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Any field that satisfies an equation of the form of (21), (i.e., where the
closed line integral of the field is zero) is said to be a conservative field. The
name arises from the fact that no work is done (or that energy is conserved)
around a closed path. The gravitational field is also conservative, for any energy
expended in moving (raising) an object against the field is recovered exactly when
the object is returned (lowered) to its original position. A nonconservative grav-
itational field could solve our energy problems forever.

Given a nonconservative field, it is of course possible that the line integral
may be zero for certain closed paths. For example, consider the force field,
F =sinmpas. Around a circular path of radius p = p;, we have dL = pd¢a,,
and

21 21
i;F -dL = J sinmpiay - prdepa, = J p18in o do
0 0

= 27p; Sin 7Ty

The integral is zero if p; = 1,2, 3, ..., etc., but it is not zero for other values
of p;, or for most other closed paths, and the given field is not conservative. A
conservative field must yield a zero value for the line integral around every
possible closed path.

‘/ D4.6. If we take the zero reference for potential at infinity, find the potential at (0, 0, 2)
caused by this charge configuration in free space: (¢) 12nC/m on the line p = 2.5m,
z = 0; (b) point charge of 18nC at (1,2, —1); (¢) 12nC/m on the line y = 2.5, z = 0.

Ans. 529V; 43.2V; 674V

4.6 POTENTIAL GRADIENT

We now have two methods of determining potential, one directly from the
electric field intensity by means of a line integral, and another from the basic
charge distribution itself by a volume integral. Neither method is very helpful in
determining the fields in most practical problems, however, for as we shall see
later, neither the electric field intensity nor the charge distribution is very often
known. Preliminary information is much more apt to consist of a description of
two equipotential surfaces, such as the statement that we have two parallel
conductors of circular cross section at potentials of 100 and —100V. Perhaps
we wish to find the capacitance between the conductors, or the charge and
current distribution on the conductors from which losses may be calculated.

These quantities may be easily obtained from the potential field, and our
immediate goal will be a simple method of finding the electric field intensity from
the potential.

We already have the general line-integral relationship between these quan-
tities,
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V:—JE-dL (22)

but this is much easier to use in the reverse direction: given E, find V.

However, (22) may be applied to a very short element of length AL along
which E is essentially constant, leading to an incremental potential difference
AV,

AV=—E.AL (23)

Let us see first if we can determine any new information about the relation
of V' to E from this equation. Consider a general region of space, as shown in
Fig. 4.6, in which E and V both change as we move from point to point.
Equation (23) tells us to choose an incremental vector element of length
AL = AL a; and multiply its magnitude by the component of E in the direction
of a; (one interpretation of the dot product) to obtain the small potential
difference between the final and initial points of VL.

If we designate the angle between AL and E as 6, then

AV=—EALcos0

We now wish to pass to the limit and consider the derivative dV'/dL. To do
this, we need to show that J may be interpreted as a function V(x, y, z). So far, V'
is merely the result of the line integral (22). If we assume a specified starting point
or zero reference and then let our end point be (x, y, z), we know that the result
of the integration is a unique function of the end point (x, y, z) because E is a
conservative field. Therefore V' is a single-valued function V(x, y, z). We may
then pass to the limit and obtain
dv
= Ecos6
In which direction should AL be placed to obtain a maximum value of AV?
Remember that E is a definite value at the point at which we are working and is
independent of the direction of AL. The magnitude AL is also constant, and our

FIGURE 4.6
W A vector incremental element of length AL is
shown making an angle of 6 with an E field,

indicated by its streamlines. The sources of
the field are not shown.
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variable is a;, the unit vector showing the direction of AL. It is obvious that the
maximum positive increment of potential, A V., will occur when cos 6 is —1, or
AL points in the direction opposite to E. For this condition,

dVv

| —E

dL max

This little exercise shows us two characteristics of the relationship between

E and V' at any point:

1. The magnitude of the electric field intensity is given by the maximum value
of the rate of change of potential with distance.

2. This maximum value is obtained when the direction of the distance incre-
ment is opposite to E or, in other words, the direction of E is opposite to the
direction in which the potential is increasing the most rapidly.

Let us now illustrate these relationships in terms of potential. Fig. 4.7 is
intended to show the information we have been given about some potential field.
It does this by showing the equipotential surfaces (shown as lines in the two-
dimensional sketch). We desire information about the electric field intensity at
point P. Starting at P, we lay off a small incremental distance AL in various
directions, hunting for that direction in which the potential is changing (increas-
ing) the most rapidly. From the sketch, this direction appears to be left and
slightly upward. From our second characteristic above, the electric field intensity
is therefore oppositely directed, or to the right and slightly downward at P.
Its magnitude is given by dividing the small increase in potential by the small
element of length.

It seems likely that the direction in which the potential is increasing the
most rapidly is perpendicular to the equipotentials (in the direction of increasing
potential), and this is correct, for if AL is directed along an equipotential,
AV =0 by our definition of an equipotential surface. But then

+40 +30
+50

+60

+10
+70
+ 80
V=+90 ) FIGURE 4.7
A potential field is shown by its equi-
Pe potential surfaces. At any point the E

field is normal to the equipotential
surface passing through that point
and is directed toward the more
negative surfaces.
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AV =—-E-AL=0

and since neither E nor AL is zero, E must be perpendicular to this AL or
perpendicular to the equipotentials.

Since the potential field information is more likely to be determined first, let
us describe the direction of AL which leads to a maximum increase in potential
mathematically in terms of the potential field rather than the electric field inten-
sity. We do this by letting ay be a unit vector normal to the equipotential surface
and directed toward the higher potentials. The electric field intensity is then
expressed in terms of the potential,

dv

E=-""
dL

ay (24)

max

which shows that the magnitude of E is given by the maximum space rate of
change of V' and the direction of E is normal to the equipotential surface (in the
direction of decreasing potential).

Since dV /dL|, occurs when AL is in the direction of ay, we may remind
ourselves of this fact by letting

v _av
dL max_ dN
dv
and E = —ﬁa;\/ (25)

Equation (24) or (25) serves to provide a physical interpretation of the
process of finding the electric field intensity from the potential. Both are descrip-
tive of a general procedure, and we do not intend to use them directly to obtain
quantitative information. This procedure leading from V" to E is not unique to
this pair of quantities, however, but has appeared as the relationship between a
scalar and a vector field in hydraulics, thermodynamics, and magnetics, and
indeed in almost every field to which vector analysis has been applied.

The operation on V' by which —E is obtained is known as the gradient, and
the gradient of a scalar field 7 is defined as

. dT
Gradient of 7= grad T = N AN (26)

where ay is a unit vector normal to the equipotential surfaces, and that normal is
chosen which points in the direction of increasing values of 7.

Using this new term, we now may write the relationship between V' and E
as

E=—gradV 27
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Since we have shown that J is a unique function of x, y, and z, we may take
its total differential

oV 14 124
dV = —dx+—dy+—dz
ox ay 0z
But we also have
dV =—-E-dL=—FE.dx—E,dy — E. dz

Since both expressions are true for any dx, dy, and dz, then

14

E,=——

' ax

14

E, =——

dy

o W

0z

These results may be combined vectorially to yield
14 av 14
E=—-|—a,+—a, +—a. 2
<8xa,+aya)+aza> (28)

and comparison of (27) and (28) provides us with an expression which may be
used to evaluate the gradient in cartesian coordinates,

14 aV aV
grad V=—a,+—a, + P (29)

8x“5

The gradient of a scalar is a vector, and old quizzes show that the unit
vectors which are often incorrectly added to the divergence expression appear to
be those which were incorrectly removed from the gradient. Once the physical
interpretation of the gradient, expressed by (26), is grasped as showing the
maximum space rate of change of a scalar quantity and the direction in which
this maximum occurs, the vector nature of the gradient should be self-evident.

The vector operator
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from which we see that

VT = grad T

This allows us to use a very compact expression to relate E and V,

E=-VJV

(30)

The gradient may be expressed in terms of partial derivatives in other
coordinate systems through application of its definition (26). These expressions
are derived in Appendix A and repeated below for convenience when dealing
with problems having cylindrical or spherical symmetry. They also appear inside

the back cover.

aV 14 aV

VVzaax-l-@ay"‘g : (cartesian)
aV 1oV 14 C
\va’4 :a_pa” +;£ a ¢+¥az (cylindrical)
oV 1oV 1 Vv
VV:_ r Y A Al h . '1
or a+ r o0 A +rsm@ op A (spherical)

31

(32)

(33)

Note that the denominator of each term has the form of one of the components
of dL in that coordinate system, except that partial differentials replace ordinary

differentials; for example, rsin 6 d¢ becomes r sin 6 d¢.

Let us now hasten to illustrate the gradient concept with an example.

IIII»Example 4.3

Given the potential field, V = 2x?y — 5z, and a point P(—4, 3, 6), we wish to find several
numerical values at point P: the potential V', the electric field intensity E, the direction
of E, the electric flux density D, and the volume charge density p,.

Solution. The potential at P(—4, 5, 6) is
Vp=2(—4>3)—56) =66 V

Next, we may use the gradient operation to obtain the electric field intensity,

E=-VV = —4xya, —2x%a, +5a. V/m

41 ) |
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The value of E at point P is
Ep =48a, —32a, + 5a. V/m

and

|Ep| = \/482 +(=32+52=579 V/m
The direction of E at P is given by the unit vector

app = (48a, — 32a, + 5a.)/57.9
— 0.829a, — 0.553a, + 0.086a,

If we assume these fields exist in free space, then
D = E = —35.4xya, — 17.71x%a, + 44.3a. pC/m’

Finally, we may use the divergence relationship to find the volume charge density that is
the source of the given potential field,

oy =V:D=-354y pC/m’
At P, p, = —106.2 pC/m>.
t/ D4.7. A portion of a two-dimensional (E. = 0) potential field is shown in Fig. 4.8. The

grid lines are 1 mm apart in the actual field. Determine approximate values for E in
cartesian coordinates at: (a) a; (b) b; (¢) c.

Ans. —1075a, V/m; —600a, — 700a, V/m; —500a, — 650a, V/m

FIGURE 4.8
See Prob. D4.7.
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1
= —:)l pcos¢V, and

point P at p=3m, ¢ = 60°, z=2m, find values at P for: (a) V; (b) E; (¢) E; (d)
dV /dN; (e) ay; (f) p, in free space.

v/ D438. Given the potential field in cylindrical coordinates, V =

Ans. 30.0V; —10.00a, + 8.66a4 + 24.0a. V/m; 27.4V/m; —0.365a, — 0.316a, — 0.876a_;
27.4V/m; =234 pC/m>.

4.7 THE DIPOLE

The dipole fields which we shall develop in this section are quite important
because they form the basis for the behavior of dielectric materials in electric
fields, as discussed in part of the following chapter, as well as justifying the use of
images, as described in Sec. 5.5 of the next chapter. Moreover, this development
will serve to illustrate the importance of the potential concept presented in this
chapter.

An electric dipole, or simply a dipole, is the name given to two point charges
of equal magnitude and opposite sign, separated by a distance which is small
compared to the distance to the point P at which we want to know the electric
and potential fields. The dipole is shown in Fig. 4.9a. The distant point P is
described by the spherical coordinates r, 6, and ¢ — 90°, in view of the azimuthal
symmetry. The positive and negative point charges have separation d and carte-
sian coordinates (0, 0,3d) and (0, 0, — 1 d), respectively.

So much for the geometry. What would we do next? Should we find the
total electric field intensity by adding the known fields of each point charge?
Would it be easier to find the total potential field first? In either case, having
found one, we shall find the other from it before calling the problem solved.

If we choose to find E first, we shall have two components to keep track of
in spherical coordinates (symmetry shows Ej is zero), and then the only way to
find V' from E is by use of the line integral. This last step includes establishing a
suitable zero reference for potential, since the line integral gives us only the
potential difference between the two points at the ends of the integral path.

0 (1 1)_ 0 R —R

" 47e

R R

o 47‘[60 R1R2

Note that the plane z = 0, midway between the two point charges, is the locus of
points for which R; = R», and is therefore at zero potential, as are all points at
infinity.

For a distant point, R} = R», and the R| R, product in the denominator may
be replaced by r?. The approximation may not be made in the numerator, how-
ever, without obtaining the trivial answer that the potential field approaches zero
as we go very far away from the dipole. Coming back a little closer to the dipole,
we see from Fig. 4.96 that R, — R; may be approximated very easily if R} and R,
are assumed to be parallel,

Ry — Ry =dcosb
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To distant
point P

FIGURE 4.9

(a) The geometry of the problem of an elec-

tric dipole. The dipole moment p = Qd is in

the a. direction. (b) For a distant point
/ P, R, is essentially parallel to R, and we

X find that R, — Ry = d cosf.

The final result is then

Qd cos b
V==——> 34
4regr? (34)
Again we note that the plane z = 0 (6 = 90°) is at zero potential.
Using the gradient relationship in spherical coordinates,
14 1oV | 14
E=-VI'=—|—a, +-— —
(Br 9 T ine o a"’)
we obtain
Qdcosf Qdsin 6
E=—-|- ;= 35
( 4mepr3 A 4mepr3 0 (35)
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or

d .
E= 0 (2cosfa, +sinfay) (36)
4meqrd

These are the desired distant fields of the dipole, obtained with a very small
amount of work. Any student who has several hours to spend may try to work
the problem in the reverse direction—the authors consider the process too long
and detailed to include, even for effect.

To obtain a plot of the potential field, we may choose a dipole such that
0d/(4mep) = 1, and then cos® = V2. The colored lines in Fig. 4.10 indicate
equipotentials for which V' =0,40.2,+0.4,4+0.6, + 0.8, and +1, as indicated.
The dipole axis is vertical, with the positive charge on the top. The streamlines
for the electric field are obtained by applying the methods of Sec. 2.6 in spherical
coordinates,

Ey rdo sin O

E, ~ dr 2cosé

or ﬂ:200‘[06119

from which we obtain
r= C,sin’6

The black streamlines shown in Fig. 4.10 are for C; =1, 1.5,2, and 2.5.

The potential field of the dipole, Eq. (34), may be simplified by making use
of the dipole moment. Let us first identify the vector length directed from —Q to
+Q as d and then define the dipole moment as Qd and assign it the symbol p.
Thus

p=20d (37

The units of p are C - m.

Since d-a, = d cos#, we then have
p-a,
- 4mregr? (38)
This result may be generalized as

1 r—r’
= 2 P l
dmeolr — /|77 [r—1|

(39)

where r locates the field point P, and r’ determines the dipole center. Equation
(39) is independent of any coordinate system.
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FIGURE 4.10
The electrostatic field of a point dipole with its moment in the a. direction. Six equipotential surfaces are
labeled with relative values of V.

The dipole moment p will appear again when we discuss dielectric materi-
als. Since it is equal to the product of the charge and the separation, neither the
dipole moment nor the potential will change as Q increases and d decreases,
provided the product remains constant. The limiting case of a point dipole is
achieved when we let d approach zero and Q approach infinity such that the
product p is finite.

Turning our attention to the resultant fields, it is interesting to note that the
potential field is now proportional to the inverse square of the distance, and the
electric field intensity is proportional to the inverse cube of the distance from the
dipole. Each field falls off faster than the corresponding field for the point
charge, but this is no more than we should expect because the opposite charges
appear to be closer together at greater distances and to act more like a single
point charge of 0 C.
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Symmetrical arrangements of larger numbers of point charges produce
fields proportional to the inverse of higher and higher powers of r. These charge
distributions are called multipoles, and they are used in infinite series to approx-
imate more unwieldy charge configurations.

V D4.9. An celectric dipole located at the origin in free space has a moment
p=3a,—2a,+a.nC-m. (¢) Find V' at P4(2,3,4). (b) Find V at r=2.5, 6 =30°,
¢ = 40°.

Ans. 0.230V; 1.973 V

v D410. A dipole of moment p = 6a. nC - m is located at the origin in free space. (a) Find
Vat Pr=4,0=20° ¢ =0°. (b) Find E at P.

Ans. 3.17V; 1.584a, 4+ 0.288a, V/m

4.8 ENERGY DENSITY IN THE
ELECTROSTATIC FIELD

We have introduced the potential concept by considering the work done, or
energy expended, in moving a point charge around in an electric field, and
now we must tie up the loose ends of that discussion by tracing the energy
flow one step further.

Bringing a positive charge from infinity into the field of another positive
charge requires work, the work being done by the external source moving the
charge. Let us imagine that the external source carries the charge up to a point
near the fixed charge and then holds it there. Energy must be conserved, and the
energy expended in bringing this charge into position now represents potential
energy, for if the external source released its hold on the charge, it would accel-
erate away from the fixed charge, acquiring kinetic energy of its own and the
capability of doing work.

In order to find the potential energy present in a system of charges, we must
find the work done by an external source in positioning the charges.

We may start by visualizing an empty universe. Bringing a charge Q; from
infinity to any position requires no work, for there is no field present.”> The
positioning of Q, at a point in the field of Q) requires an amount of work
given by the product of the charge O, and the potential at that point due to
Q1. We represent this potential as V> ;, where the first subscript indicates the
location and the second subscript the source. That is, V5 is the potential at the
location of O, due to Q;. Then

Work to position Q> = Q> V5

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the point
charge in the first place! How much energy is required to bring two half-charges into coincidence to make a
unit charge?
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Similarly, we may express the work required to position each additional
charge in the field of all those already present:

Work to position Qs = Q3V3.1 + 03V3,
Work to position Qs = QaVa 1+ QaVar + QaVas

and so forth. The total work is obtained by adding each contribution:

Total positioning work = potential energy of field
=Weg=02Va1+03V31+03V3a+ QaVa,y

+Q4Var+ Q4Vas+ ... (40)
Noting the form of a representative term in the above equation,
0 03
V = =
Q3 31 Q3 47'[60R13 Ql 47'[60R31

where Rj; and Rj; each represent the scalar distance between Q; and Q3, we see
that it might equally well have been written as Q V3. If each term of the total
energy expression is replaced by its equal, we have

Wg=01Vip+O1Vizg+0:Vo3+01Via+O2Vou+03V3a+... (41)

Adding the two energy expressions (40) and (41) gives us a chance to simplify the
result a little:

2We=01(Vipa+Vig+Via+..)
+ QZ(VZ,I +Voz+Voa+ .. )
+O:(V31+Vao+Via+..)
+ ...
Each sum of potentials in parentheses is the combined potential due to all the

charges except for the charge at the point where this combined potential is being
found. In other words,

Viao+Vig+Via+...=M

the potential at the location of Q; due to the presence of O, Qs, .... We there-
fore have

m=N

WE=%(Q1V1+Q2V2+Q3V3+):%ZQMVM (42)
m=1

In order to obtain an expression for the energy stored in a region of con-
tinuous charge distribution, each charge is replaced by p,dv, and the summation
becomes an integral,

Wi = %JVOI PV dv (43)
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Equations (42) and (43) allow us to find the total potential energy present in
a system of point charges or distributed volume charge density. Similar expres-
sions may be easily written in terms of line or surface charge density. Usually we
prefer to use (43) and let it represent all the various types of charge which may
have to be considered. This may always be done by considering point charges,
line charge density, or surface charge density as continuous distributions of
volume charge density over very small regions. We shall illustrate such a pro-
cedure with an example shortly.

Before we undertake any interpretation of this result, we should consider a
few lines of more difficult vector analysis and obtain an expression equivalent to
(43) but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first
equation, replace p, by its equal V- D and make use of a vector identity which is
true for any scalar function V' and any vector function D,

V-(VD)= V(V-D)+D-(VV) (44)

This may be proved readily by expansion in cartesian coordinates. We then have,
successively,

Wi :%J poVdv :%J (V-D)V dv
vol vol

_ %JVOI[V (VD)= D-(VV')]dv

Using the divergence theorem from the last chapter, the first volume inte-
gral of the last equation is changed into a closed surface integral, where the
closed surface surrounds the volume considered. This volume, first appearing
in (43), must contain every charge, and there can then be no charges outside of
the volume. We may therefore consider the volume as infinite in extent if we wish.
We have

Wg = %1; (VD) - dS —5J D - (VV)dv
S vol

The surface integral is equal to zero, for over this closed surface surround-
ing the universe we see that V' is approaching zero at least as rapidly as 1/r (the
charges look like a point charge from there), D is approaching zero at least as
rapidly as 1/r2, while the differential element of surface, looking more and more
like a portion of a sphere, is increasing only as 2. The integrand therefore
approaches zero at least as rapidly as 1/r. In the limit the integrand and the
integral are zero. Substituting E = —VJ/ in the remaining volume integral, we
have our answer,

W :%J D.Edv:%JVOI 6()E2 dv (45)
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Let us now use this last expression to calculate the energy stored in the
electrostatic field of a section of a coaxial cable or capacitor of length L. We
found in Sec. 3.3 of the previous chapter that

aps
D,=—=
P
Hence,
a
E= ﬁap
€00

where pg is the surface charge density on the inner conductor, whose radius is a.
Thus,

L 2w b 2.2 2.2
L b
WEZLJ J JEo‘angi)cl,Oahpa’Z:L LS 1n2

2
0Jo Ja €P €0 a

This same result may be obtained from (43). We choose the outer conduc-
tor as our zero-potential reference, and the potential of the inner cylinder is then

a a
b
Va:_J E, dp:_J %dpzﬁln—
b b €0P € d

The surface charge density ps at p = a can be interpreted as a volume charge
density p, = ps/t, extending from p=a—1t to p=a+1%t, where 1 < a. The
integrand in (43) is therefore zero everywhere between the cylinders (where the
volume charge density is zero), as well as at the outer cylinder (where the poten-
tial is zero). The integration is therefore performed only within the thin cylind-
rical shell at p = q,

L 27 pa+t/2
WE:%J vadV:%J J J @a@lngpdpdqbdz
vol

0Jo Ja—ip T €0
from which
2.2
a-psIn(b/a
Wy = Ps (/)7TL
€0
once again.

This expression takes on a more familiar form if we recognize the total
charge on the inner conductor as Q = 2nal ps. Combining this with the potential
difference between the cylinders, V,, we see that

We=10V,

which should be familiar as the energy stored in a capacitor.

The question of where the energy is stored in an electric field has not yet
been answered. Potential energy can never be pinned down precisely in terms of
physical location. Someone lifts a pencil, and the pencil acquires potential
energy. Is the energy stored in the molecules of the pencil, in the gravitational
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field between the pencil and the earth, or in some obscure place? Is the energy in
a capacitor stored in the charges themselves, in the field, or where? No one can
offer any proof for his or her own private opinion, and the matter of deciding
may be left to the philosophers.

Electromagnetic field theory makes it easy to believe that the energy of an
electric field or a charge distribution is stored in the field itself, for if we take (45),
an exact and rigorously correct expression,

WE:%J D-E dv
vol

and write it on a differential basis,

dWg =1iD-Edv
dWg

or —1iD.E 46
dv 2 (46)

we obtain a quantity %D - E, which has the dimensions of an energy density, or
joules per cubic meter. We know that if we integrate this energy density over the
entire field-containing volume, the result is truly the total energy present, but we
have no more justification for saying that the energy stored in each differential
volume element dv is D - E dv than we have for looking at (43) and saying that the
stored energy is % puVdv. The interpretation afforded by (46), however, is a con-
venient one, and we shall use it until proved wrong.

¢/ D4.11. Find the energy stored in free space for the region 2mm < r < 3mm,

2 3 0
0<6<90° 0 < ¢ < 90° given the potential field V' =: (a) g V; (b) 00cos V.

72

Ans. 1.391pJ; 36.7)

SUGGESTED REFERENCES

1. Attwood, S. S.: “Electric and Magnetic Fields,” 3d ed., John Wiley & Sons,
Inc., New York, 1949. There are a large number of well-drawn field maps of
various charge distributions, including the dipole field. Vector analysis is not

used.
2. Skilling, H. H.: (see Suggested References for Chap. 3). Gradient is described
on pp. 19-21.

3. Thomas, G. B., Jr., and R. L. Finney: (see Suggested References for
Chap. 1). The directional derivative and the gradient are presented on pp.
823-830.
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PROBLEMS

4.1

4.2

4.3

4.4

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

The value of E at P(p=2, ¢=40°, z=3) is given as E =
100a, — 200a4 + 300a.. V/m. Determine the incremental work required
to move a 20-pC charge a distance of 6 pm in the direction of: (@) a,; (b)
ag; (c) a:; (d) E; (e) G =2a, — 3a, + 4a..

Let E =400a, —300a, + 500a. V/m in the neighborhood of point
P(6,2, —3). Find the incremental work done in moving a 4-C charge a
distance of 1mm in the direction specified by: (a) a.+a, +a.; (b)
—2a, + 3a, — a..

If E = 120a, V/m, find the incremental amount of work done in moving
a 50-pC charge a distance of 2mm from: (a) P(1, 2, 3) toward Q(2, 1, 4);
(h) O(2,1,4) toward P(1,2, 3).

Find the amount of energy required to move a 6-C charge from the
origin to P(3, 1, —1) in the field E = 2xa, — 3)ya, +4a. V/m along the
straight-line path x = =3z, y = x 4+ 2z.

Compute the value of Lf G:dL for G =2ya, with A(l,—1,2) and
P(2,1,2) using the path: (a) straight-line segments A(1,—1,2) to
B(1,1,2) to P(2,1,2); (b) straight-line segments A(l,—1,2) to
C2,-1,2) to P(2,1,2).

Let G = 4xa, + 2za, 4 2ya.. Given an initial point P(2, 1, 1) and a final
point Q(4, 3, 1), find [ G- dL using the path: (a) straight line: y = x — 1,
z = 1; (b) parabola: 6y = x> +2,z = 1.

Repeat Prob. 6 for G = 3x)?a, + 2za,.

A point charge Q; is located at the origin in free space. Find the work
done in carrying a charge Q; from: (a) B(rg, 05, ¢p) to C(r4, 0, ¢pp) With
6 and ¢ held constant; (b) C(r4, g, ¢p) to D(r4, 64, ¢pp) with r and ¢ held
constant; (¢) D(r4, 04, ¢p) to A(r4, 64, ¢4) with r and 6 held constant.
A uniform surface charge density of 20 nC/m? is present on the spherical
surface r = 0.6cm in free space. (a) Find the absolute potential at
P(r=1cm, 6=25°, ¢ =50°. (b) Find V,p, given points A(2cm,
0 =30° ¢ = 60°) and B(3cm, 45°, 90°).

Given a surface charge density of 8nC/m? on the plane x =2, a line
charge density of 30nC/m on the line x =1, y =2, and a 1-puC point
charge at P(—1, —1,2), find V45 for points 4(3,4,0) and B(4,0, 1).

Let a uniform surface charge density of 5nC/m? be present at the z =0
plane, a uniform line charge density of 8 nC/m be located at x = 0, z = 4,
and a point charge of 2 uC be present at P(2, 0, 0). If ' = 0 at M(0, 0, 5),
find V" at N(1, 2, 3).

Three point charges, 0.4 uC each, are located at (0, 0, —1), (0, 0, 0), and
(0,0, 1), in free space. (a) Find an expression for the absolute potential as
a function of z along the line x =0, y = 1. (b) Sketch V(z).

Three identical point charges of 4 pC each are located at the corners of
an equilateral triangle 0.5mm on a side in free space. How much work
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4.14

4.15

4.16

4.18

4.19

4.20

must be done to move one charge to a point equidistant from the other
two and on the line joining them?

Two 6-nC point charges are located at (1,0,0) and (—1,0,0) in free
space. (@) Find V' at P(0,0, z). (b) Find Vyax. (¢) Calculate |dV /dz| on
the z axis. (d) Find |dV /dz| -

Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and
at x = —1, y = 2, in free space. If the potential at the origin is 100 V, find
V at P(4,1, 3).

Uniform surface charge distributions of 6, 4, and 2nC/m? are present at
r=2,4, and 6cm, respectively, in free space. (¢) Assume V =0 at in-
finity, and find V(r). (b) Calculate V atr =1, 3, 5, and 7 cm. (¢) Sketch V'
versus r for 1 <r < 10cm.

Uniform surface charge densities of 6 and 2nC/m? are present at p = 2
and 6cm, respectively, in free space. Assume V' =0 at p =4cm, and
calculate V' at p = (a) Scm; (b) 7cm.

The nonuniform linear charge density, p; = 8/(z*> + 1)nC/m, lies along
the z axis. Find the potential at P(p = 1,0, 0) in free space if V' =0 at
p = 00.

The annular surface, 1cm < p < 3cm, z =0, carries the nonuniform
surface charge density ps = 5onC/m?. Find V at P(0,0,2cm) if V' =0
at infinity.

Fig. 4.11 shows three separate charge distributions in the z = 0 plane in
free space. (@) Find the total charge for each distribution. (b) Find the
potential at P(0, 0, 6) caused by each of the three charge distributions
acting alone. (¢) Find Vp.

(0,5,0)

Pra=anC/m-—» 200 z =0 plane
-

(0,3,0)
p=3
- prp=15nC/m

200 FIGURE 4.11
See Prob. 20.
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4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.32

4.33

ENERGY AND POTENTIAL

Let V = 2xy%z* 4+ 3In(x? 4+ 2y 4+ 3z%) V in free space. Evaluate each of
the following quantities at P(3, 2, —1): (a) V; (b) |V]; (¢) E; (d) |E[; (e) ay;
(/) D.

It is known that the potential is given as V' = 80/%° V. Assuming free-
space conditions, find: (@) E; (b) the volume charge density at r = 0.5m;
(c) the total charge lying within the surface r = 0.6.

It is known that the potential is given as V' = 800%° V. Assuming free-
space conditions, find: («) E; (b) the volume charge density at p = 0.5m;
(c) the total charge lying within the closed surface p =0.6,0 <z < 1.
Given the potential field ¥ =80r>cos@ and a point P(2.5,60 = 30°,
¢ = 60°) in free space, find at P: (a) V; (b) E; (¢) D; (d) py; (e) dV/dN;,
(f) an

Within the cylinder p=2,0 < z < 1, the potential is given by V =
100 + 50p + 150psin¢ V. (a) Find V,E,D, and p, at P(1,60°0.5) in
free space. (b) How much charge lies within the cylinder?

A dipole having Qd/(4mey) = 100V - m? is located at the origin in free
space and aligned so that its moment is in the a, direction. (a) Sketch
[V(r=1,0,¢ =0)| versus 6 on polar graph paper (homemade if you
wish). (b) Sketch |E(r =1, 0, ¢ = 0)| versus 6 on polar paper.

Two point charges, 1 nC at (0,0,0.1) and —1nC at (0,0, —0.1), are in
free space. (@) Calculate V' at P(0.3,0,0.4), (b) Calculate |E| at P. (¢)
Now treat the two charges as a dipole at the origin and find V at P.

A dipole located at the origin in free space has a moment p =
2x107%a.C-m. At what points on the line y=z,x=0 is: (a)
|Eg| = 1mV/m? (b) |E,| = 1mV/m?

A dipole having a moment p = 3a, — 5a, + 10a.nC - m is located at
0(1, 2, —4) in free space. Find V' at P(2, 3, 4).

A dipole, having a moment of p = 2a, nC - m, is located at the origin in
free space. Give the magnitude of E and its direction ag in cartesian
components at r = 100m, ¢ = 90°, and 6 =: (a) 0°; (b) 30°; (c¢) 90°.

A potential field in free space is expressed as V' = 20/(xyz) V. (a) Find
the total energy stored within the cube 1 < x, y,z < 2. (b) What value
would be obtained by assuming a uniform energy density equal to the
value at the center of the cube?

In the region of free space where 2 <r < 3,0.47 <6 < 0.6m7,

0 <¢ <m/2, let E=—a,. (a) Find a positive value for k so that the
r

total energy stored is exactly 1J. (b) Show that the surface 6 = 0.6 is
an equipotential surface. (¢) Find Vyp given points A(2,60 = n/2,
¢ = m/3) and B3, /2, /4).

A copper sphere of radius 4cm carries a uniformly distributed total
charge of 5puC on its surface in free space. (¢) Use Gauss’s law to find
D external to the sphere. (b) Calculate the total energy stored in the
electrostatic field. (¢) Use Wy = 0?/(2C) to calculate the capacitance
of the isolated sphere.
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4.34

4.35

Given the potential field in free space, V' = 80¢as V (cyl. coord.), find:
(a) the energy stored in the region 2 <p<4cm, 0< ¢ < 0.27,
0 <z < 1m; (b) the potential difference V45 for ABcm, ¢ =0,z =0)
and B(3cm, 0.27, 1 m); (¢) the maximum value of the energy density in
the specified region.

Four 0.8-nC point charges are located in free space at the corners of a
square 4cm on a side. (@) Find the total potential energy stored. () A
fifth 0.8-pC charge is installed at the center of the square. Again find the
total stored energy.
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