

Abstract—The paper describes a neural network
implementation on a low end and inexpensive microcontroller.
It also describes the method of using a simple hardware
multiplier to generate multibyte accurate results. An
activation function that is equivalent to tangent hyperbolic is
also described. An example is shown using an inexpensive
eight bit microcontroller is used for a nonlinear control
surface.

I. INTRODUCTION
Neural networks have become a growing area of research

over the last few decades and have taken hold many
branches of industry. One example in the field of industrial
electronics would be Motor Drives according to [1-3].
Neural networks are also helping with power distribution
problems such as harmonic distortion [4-7]. These papers
show how valuable neural networks are becoming in
industry. One common drawback is that most software
implemented networks require precise calculations that are
very processor intensive. This robust processing equipment
can be expensive and rather large.

This paper describes a method implanting a fully
connected multi-layer network with multi-layer connections
on a very inexpensive and low end microcontroller. Fully
connected networks are much more powerful and easier to
train when using the Neural Network Trainer [8], [9] than
traditional layer by layer networks. Cross layer connections
reduce the number of neurons by increasing the number of
connections and corresponding weights. This in turn
reduces the total number of calculations required for the
network.

The single most important part of a neural network is the
activation function. This paper describes a method of
approximating the tangent hyperbolic (tanh) function with
great precision. In fact, it is done with such precision the
network may be trained offline using the Neural Network
Trainer which incorporates tanh as its activation function.

This paper has the following subsections: Section two
describes the fast and simple sixteen bit multiplication.
Section three describes how the pseudo floating point
multiplication is implemented on the microcontroller.
Section four explains the approximation of tanh and its
implementation on the microcontroller. In the fifth section
an example of a neural network is implemented on the
microcontroller and the results are described. A Matlab
simulation of the microcontroller is described in section six.

II. FAST MULTIPLICATION
The Pic18F45J10 microcontroller has an 8-bit by bit
hardware multiplier. The hardware multiplier cannot handle
floating point values or negative numbers, therefore a
routine was developed to allow fast multiplication of
fractional values using this hardware multiplier. The
multiply routine is given two sixteen bit numbers. The first
eight bits is the integer portion and the last eight bits is the
fractional portion. The result of the multiplication routine is
a thirty-two bit fixed point result see Figure 1.

A B

C D

P2P1 P3 P4

AC BDAD+BC

Fig. 1. Result of 16-bit fixed point multiplication using 8-bit
hardware multiplier.

Equation 1 shows the method of using a single 8-bit

multiplier to implement 16-bit fixed point multiplication.
The hardware multiplier does the multiplication between
bytes in a single instruction while the magnitude is adjusted
by the results location in the product. The 16-bit result of
AC is placed in P1 and P2 see Figure 1. The sum of AD
and BC is then added to P2 and P3 and finally BD is added
to P3 and P4. Once the product is calculated P1 and P2
contain a 16-bit integer while P3 and P4 contain the 16-bit
fractional part. This method does not require any shifts or
division. This simple process allows each neuron to quickly
multiply the weights by the inputs and then use the 32-bit
result as an accumulator for all inputs of the neuron. Once
the net value is calculated only P2 and P3 are required for
the activation function. If the absolute value of the net value
is greater than 4, the neuron is in saturation and the
activation function is skipped resulting in positive one or
negative one respectively.

2

2

256
256256 DBCBDACA (1)

A Neural Network Implementation
on an Inexpensive Eight Bit Microcontroller

Nicholas J. Cotton, and Bogdan M. Wilamowski,
Electrical and Computer Engineering

Auburn University
Auburn, AL 36849 United States

cottonj@auburn.edu, wilam@ieee.org

Günhan Dündar
Electrical and Electronic Engineering

Bogazici University
Istanbul, Turkey

dundar@boun.edu.tr

978-1-4244-2083-4/08/$25.00 ©2008 IEEE

III. PSEUDO FLOATING POINT
During the neural network training process precise

weights are created to generate a series of outputs. Due to
the importance of the weights in the output of the neural
network, a pseudo floating point system is implemented.
The weights of each neuron are scaled in order to use the
maximum number of bits available in each calculation. This
way unnecessary round-off error is avoided. The weights
are scaled as necessary by the user as they are placed into
the weight array. In addition to storing the weights the
location of the decimal point is also stored by the user.
Without this floating point structure when the product of
very small numbers is calculated the error is unnecessarily
large. In some cases the weights are out of operating range
of the microcontroller and an overflow condition can occur.
In this case the surface becomes completely unrecognizable.
Using the pseudo floating point arithmetics insures that all
values remain within the operating range and overflow does
not occur.

A similar technique is also used on the inputs in order to
help smooth the surface. The inputs are also scaled to
maximize the number of bits used for the calculations. The
scaling is done by factors of two only so no actual
multiplication or division is required but simply shifts. In
order to properly take care of the shifts, the inputs can be
shifted at the beginning of the calculation and the weights
are already scaled. The bias, which is normally one, is
replaced with the input scale factor see equation 2.

ScaleInput ScaleWeight
ww3)biasww2input2ww1(input1ActNet (2)

Fig. 2. Fully connected architecture of network used to
calculate Figure 3.

An example of a relatively large network with 3 layers is

shown in Figure 2. With the three-layer network, a large

error occurs without the pseudo floating point calculations.
This network was trained to the surface in Figure 3. To help
show the importance of these scaling factors Figure 4 and
Figure 6 were created. These Figures are an example of a
control surface with the pseudo floating point arithmetics
disabled and the error created. Notice the distortion around
the edges of the surface compared to the ideal surface in
Figure 3. The errors between the two surfaces were plotted
in Figure 5. Now the surface in Figure 6 shows the same
surface, and Figure 7 shows the error when the pseudo
floating point arithmetics is enabled.

5
10

15
20

5
10

15
20

-0.5

0

0.5

Fig. 3. Required surface.

5
10

15
20

5
10

15
20

-0.5

0

0.5

Fig. 4. Neural network surface with pseudo floating point
arithmetics disabled.

5
10

15
20

5
10

15
20

-0.1

-0.05

0

0.05

Fig. 5. Difference between Figures 3 and 4.

INES 2008 • 12th International Conference on Intelligent Engineering Systems • February 25–29, 2008 Miami, Florida

110

5
10

15
20

5
10

15
20

-0.5

0

0.5

Fig. 6. Surface with pseudo floating point arithmetics
enabled.

5
10

15
20

5
10

15
20

-0.1

-0.05

0

0.05

Fig. 7. Difference between Figure 6 and 3.

IV. ACTIVATION FUCTION
One of the most challenging aspects of implementing a

neural network on a microcontroller is creating an activation
function. This system was designed using a pseudo tangent
hyperbolic activation function. This is also very important
because it allows the network to be trained offline using the
Neural Network Trainer [8]. The software will generate the
needed weights for any arbitrarily connected network which
is what the embedded system uses. Creating this activation
function is a challenge because of the limitations of the
microcontroller. Many other similar designs use techniques
such as the Elliot Function but these require the processor to
implement division. Another common approach is a fourth-
order polynomial, but this approach is very computationally
intensive and requires extremely accurate values.
 This problem is solved using a simple and fast routine.
The routine requires that 30 values be stored in program
memory. This is not simply a lookup table for tanh because
a much more precise value is required. The tanh equivalent
of 25 numbers between zero and six are stored. These
numbers, which are the end points of the linear
approximation, are rounded off to 16-bits of accuracy.
Then a point between each pair from the linear
approximation is stored. These points are the peaks of a
second-order polynomial that crosses at the same points as
the linear approximations. Based on the four most
significant bits that are input into the activation function, a

linear approximation of tangent hyperbolic is selected. The
remaining bits of the number are used in the second-order
polynomial. The coefficients for this polynomial were
previously indexed by the integer value in the first step.
Figures 8 and 9 show this procedure in more detail.

A

A

B

B

A

B

x

y

Ay

By

By

Ay

0 x2

x
x
yyyxy AB

A 2
)(1

22
22

2

2

)(

11)(

xxx
x
yxy

x
xyxy

y

x

x

128x

A

B

)()()(21 xyxyxy

Fig. 8. Tanh approximations.

The approximation of tanh is calculated by reading the
values of yA, yB and y from memory and then the first
linear approximation is calculated using yA and yB.

x
xyy

yxy AB
A 2

)(1 (3)

The next step is the second-order function that corrects most
of the error that was introduced by the linearization of the
tangent hyperbolic function.

22
22)(xxx

x
y

xy (4)

or

22
2)(
x

xxxy
xy (5)

In order to utilize 8-bit hardware multiplication, the size

of x was selected as 128. This way the division operation
in both equations can be replaced by the right shift
operation. Calculation of y1 requires one subtraction, one 8-
bit multiplication, one shift right by 7 bits, and one addition.
Calculation of y2 requires one 8-bit subtraction, two 8-bit
multiplications and shift right by 14 bits. Using this
activation function and the multiply routine discussed
earlier, an accurate error plot was generated for the
activation function using the 8- bit arithmetics of the
microcontroller in Figure 10

Nicholas J. Cotton, Bogdan M. Wilamowski, Günhan Dündar • A Neural Network Implementation on an Inexpensive Eight Bit Microcontroller

111

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Fig. 9. Example of linear approximations and parabolas
between 0 and 4. Only 4 divisions were used for
demonstration purposes.

0 1 2 3 4 5 6 7 8 9
-6

-4

-2

0

2

4

6

8
x 10-4

Fig. 10. Error from tanh approximation using 16 divisions
from 0 to 4.

Ideally this activation function would work without any
modification, but when the neurons are operating in the
linear region (when the net values are between -1 and 1) the
activation function is not making full use of the available
bits for calculating the outputs. This generates significant
error. Similarly to the weights and the inputs, a work-
around is used for the activation function. Pseudo floating
point arithmetics is then incorporated. When the numbers
are stored in the lookup table they are scaled by 32 because
the largest number stored is 4. The net value is also scaled
by 32 and if its magnitude is greater than 4, the activation
function is skipped and a 1 or -1 is output. After
multiplying two numbers that have been scaled, the product
is shifted to remove the square of the scale. Once the
activation function is finished the numbers are scaled back
to the same factor that was used to scale the inputs.

V. PIC IMPLEMENTATION
The Neural Network implementation is written in

assembly language for the Microchip Microcontroller (PIC).
The neural network forward calculations are written so that
each neuron is calculated individually in a series of nested
loops. The number of calculations for each loop and values
for each node are all stored in a simple array in memory.
The assembly language code does not require any

modification to change network’s architecture. The only
change that is required is to update two arrays that are
loaded into memory. These arrays contain the architecture
and the weights of the network. Currently, for
demonstration purposes, these arrays are preloaded at the
time the chip is programmed, but in the final version this
would not be necessary. The microcontroller could easily
be modified to contain a simple boot loader that makes use
of the onboard RS232 serial port which would receive the
data for the weights and topography from a remote location.
This would allow for the weights or even the entire network
to be modified while the chip is in the field.
 The input arrays are formatted in a simple way that
allows the microcontroller to read the information as is
needed. The following example, Figure 11, is a simple
three-neuron fully connected network. This network could
be used for a three-dimensional nonlinear control surface
shown in Figure 12.
 In order to load the neural network onto the PIC, the user
needs to follow the following steps. First the user should
generate input patterns, outputs, and decide on an
appropriate architecture. This information is used by the
NNT to train the neural network as described in [9]. As an
example, we will use the network shown if Figure 11 to
generate the surface shown in Figure 12. The weights that
are output from the NNT need to be scaled to allow the PIC
to use the pseudo floating point arithmetics. Second the
user needs to categorize the weight array by neurons. Then
the weights are scaled so they are as close to 128 without
exceeding it. This scaling uses only factors of two. An
example has been given below.

Neuron 1
 -1.0340 -1.5983 1.6029 Scale by 64 Neuron 2
 0.5453 -1.0880 -0.3181 Scale by 64 Neuron 3
 1.4489 -9.390 -1.5794 -9.0460 0.0683 Scale by 8

 These new weights are then input directly into the PIC’s
lookup table in the same order. The next step is to generate
an input array that is similar to a Pspice net list. This array
contains neuron connections and scaling factors for the PIC.
The input arrays are formatted in a simple way that allows
the microcontroller to read the information as it is needed.
The input array for Figure 11 is generated below.

Generic format

[Input Scale; Number of Neurons; Weight Scale Factor,
Number of Connections, Output Node, Connection1,
Connection2,…ConnectionN; Next Neuron; Next
Neuron…]

The Topography array for Figure 11
[32; 3; 64 3 3 2 1; 64 3 4 2 1; 8 5 5 4 3 2 1]
Note: The input scale connection (bias) is assumed.

 The result of the weights and scaling factors given above
is the surface shown if Figure 13. The difference between
the surfaces is shown in Figure 14.

INES 2008 • 12th International Conference on Intelligent Engineering Systems • February 25–29, 2008 Miami, Florida

112

1

2

3

4

5

Input
Scale

Fig. 11. Network used to generate surfaces shown in Figures
12 and 13.

0 0.05 0.1 0.15 0.2 0.250
0.2

0.4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 12. Required surface using Tanh and IEE 754 floating
point calculations

0 0.05 0.1 0.15 0.2 0.250

0.2
0.4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 13. Surface using approximation of tanh and PIC based
mathematics with pseudo floating point.

10
20

30

10

20

30

-1

0

1

2

3

4

5

x 10-3

Fig. 14. Difference between Figures 12 and 13.

VI. MATLAB SIMULATION
To help test the multiplication and activation algorithm, a
Matlab simulator was built. This was absolutely necessary
because the microcontroller introduces round-off errors
while computing its 16-bit fixed point multiplication. In
order to simulate this round-off error, routines were written
that round every calculation to its 8-bit counterpart. The
round-off routine is given in equation 6.

256256xfloory (6)

The multiply routine is organized as described above in the
Multiply section. Handling negatives needs special care
when modeled in Matlab. At the beginning of the Matlab
routine the negative numbers are converted to the two’s
complement, shown in equation 7. Then the multiplication
routine is carried out normally. At the end of the routine,
the numbers are converted back to standard positive and
negative decimals to allow normal addition and subtraction
in the other steps. This conversion from two’s complement
is done with few subtractions. The final result is tested to
see if it underflows because when calculated on the
microcontroller it would rollover to a positive number.
Matlab must simulate this rollover with an extra addition as
seen in equation 8.

6553665536
2560.
2560.

..

ppp
bappdc
dcppba

pdcba

 (7)

xy 256 (8)

Nicholas J. Cotton, Bogdan M. Wilamowski, Günhan Dündar • A Neural Network Implementation on an Inexpensive Eight Bit Microcontroller

113

VII. CONCLUSION
This paper has shown the need for neural networks in many
applications especially those where a computer may not be
practical. For these applications a microcontroller is
typically the solution. A solution has been presented to
implement powerful neural networks on a microcontroller
that is quite inexpensive. This method uses a pseudo
floating point multiplication system and a very accurate
tangent hyperbolic approximation. Currently the limitation
on the architecture embedded in this microcontroller is
limited only by the number of weights needed. The neural
network is currently limited to 256 weights. However for
most embedded applications this 256 weight should not
limit the system.

ACKNOWLEDGMENTS
This work was supported by NSF international grant US-
Turkey Cooperative research: Silicon implementation of
computational intelligence for mechatronics. NSF OISE
0352771

REFERENCES
[1] Bose, B. K., "Neural Network Applications in Power

Electronics and Motor Drives—An Introduction and
Perspective," Industrial Electronics, IEEE Transactions on ,
vol.54, no.1, pp.14-33, Feb. 2007

[2] Zhuang, H.; Low, K.; Yau, W., "A Pulsed Neural Network
With On-Chip Learning and Its Practical Applications,"
Industrial Electronics, IEEE Transactions on , vol.54, no.1,
pp.34-42, Feb. 2007

[3] Martins, J. F.; Santos, P. J.; Pires, A. J.; Luiz Eduardo Borges
da Silva; Mendes R. V., "Entropy-Based Choice of a Neural
Network Drive Model," Industrial Electronics, IEEE
Transactions on , vol.54, no.1, pp.110-116, Feb. 2007

[4] Lin H. C., "Intelligent Neural Network-Based Fast Power
System Harmonic Detection," Industrial Electronics, IEEE
Transactions on , vol.54, no.1, pp.43-52, Feb. 2007

[5] Singh, B.; Verma, V.; Solanki, J., "Neural Network-Based
Selective Compensation of Current Quality Problems in
Distribution System," Industrial Electronics, IEEE
Transactions on , vol.54, no.1, pp.53-60, Feb. 2007.

[6] Qiao, W.; Harley, R. G., "Indirect Adaptive External Neuro-
Control for a Series Capacitive Reactance Compensator Based
on a Voltage Source PWM Converter in Damping Power
Oscillations," Industrial Electronics, IEEE Transactions on ,
vol.54, no.1, pp.77-85, Feb. 2007.

[7] Chakraborty, S.; Weiss, M. D.; Simoes, M. G., "Distributed
Intelligent Energy Management System for a Single-Phase
High-Frequency AC Microgrid," Industrial Electronics, IEEE
Transactions on , vol.54, no.1, pp.97-109, Feb. 2007

[8] Wilamowski, B. M.; Cotton, N.; Hewlett, J.; Kaynak, O.,
"Neural Network Trainer with Second Order Learning
Algorithms," Intelligent Engineering Systems, 11th
International Conference on , vol., no., pp.127-132, June 29
2007-July 1 2007.

[9] Wilamowski, B. M.; Cotton, N. J.; Kaynak, O.; Dundar, G.,
"Method of computing gradient vector and Jacobean matrix in
arbitrarily connected neural networks," Industrial Electronics,
2007. ISIE 2007. IEEE International Symposium on , vol.,
no., pp.3298-3303, 4-7 June 2007.

[10] Binfet, J.; Wilamowski, B.M., "Microprocessor
implementation of fuzzy systems and neural networks ,"
Neural Networks, 2001. Proceedings. IJCNN '01.
International Joint Conference on , vol.1, no., pp.234-239
vol.1, 2001

[11] Wilamowski, B.M.; Iplikci, S.; Kaynak, O.; Efe, M.O., "An
algorithm for fast convergence in training neural networks,"
Neural Networks, 2001. Proceedings. IJCNN '01.
International Joint Conference on , vol.3, no., pp.1778-1782
vol.3, 2001

INES 2008 • 12th International Conference on Intelligent Engineering Systems • February 25–29, 2008 Miami, Florida

114

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

