
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 September 1993

74HC/HCT139

FEATURES

- Demultiplexing capability
- Two independent 2-to-4 decoders
- Multifunction capability
- Active LOW mutually exclusive outputs
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT139 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT139 are high-speed, dual 2-to-4 line decoder/multiplexers. This device has two independent decoders, each accepting two binary weighted inputs $(nA_0 \text{ and } nA_1)$ and providing four mutually exclusive active LOW outputs $(n\overline{Y}_0 \text{ to } n\overline{Y}3)$. Each decoder has an active LOW enable input $(n\overline{E})$.

When $n\overline{E}$ is HIGH, every output is forced HIGH. The enable can be used as the data input for a 1-to-4 demultiplexer application.

The "139" is identical to the HEF4556 of the HE4000B family.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \ ^{\circ}C$; $t_r = t_f = 6 \ ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIDUL	FARAMETER	CONDITIONS	НС	нст		
t _{PHL} / t _{PLH}	propagation delay	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	nA_n to $n\overline{Y}_n$		11	13	ns	
	$n\overline{E}_3$ to $n\overline{Y}_n$		10	13	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per multiplexer	notes 1 and 2	42	44	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

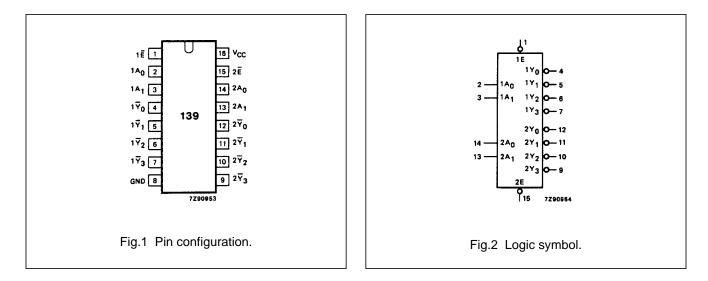
 $\sum (C_L \times V_{CC}^2 \times f_0)$ = sum of outputs

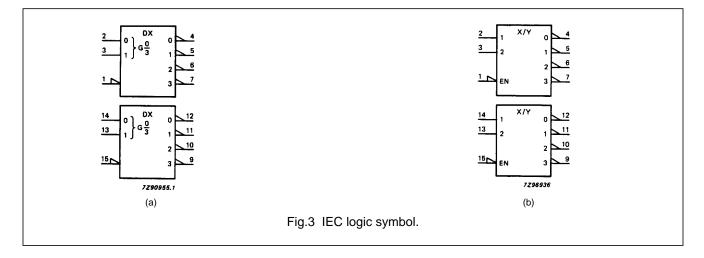
 C_1 = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

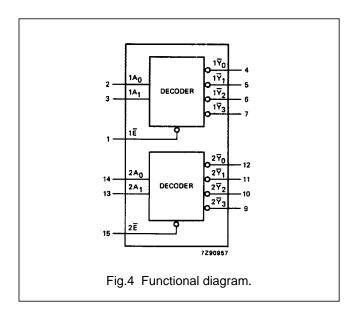
APPLICATIONS


- Memory decoding or data-routing
- Code conversion


ORDERING INFORMATION

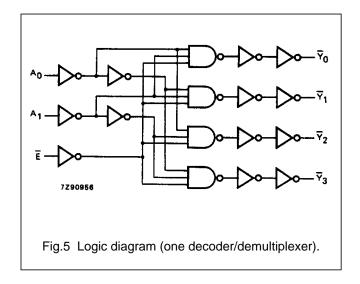
See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION	
1, 15	$1\overline{E}, 2\overline{E}$	enable inputs (active LOW)	
2, 3	1A ₀ , 1A ₁	address inputs	
4, 5, 6, 7	$1\overline{Y}_0$ to $1\overline{Y}_3$	outputs (active LOW)	
8	GND	ground (0 V)	
12, 11, 10, 9	$2\overline{Y}_0$ to $2\overline{Y}_3$	outputs (active LOW)	
14, 13	2A ₀ , 2A ₁	address inputs	
16	V _{CC}	positive supply voltage	

74HC/HCT139

74HC/HCT139



FUNCTION TABLE

	INPUTS	5	OUTPUTS							
nĒ	nA ₀	nA ₁	n₹₀	n _{₹1}	n₹2	n¥₃				
Н	Х	Х	Н	Н	Н	Н				
L	L	L	L	н	н	н				
L	Н	L	н	L	Н	н				
L	L	Н	н	н	L	н				
L	н	н	н	н	Н	L				

Notes

H = HIGH voltage level
L = LOW voltage level
X = don't care

74HC/HCT139

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									
STNIBOL		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA_n to \overline{Y}_n		39 14 11	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay $n\overline{E}$ to $n\overline{Y}_n$		33 12 10	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

74HC/HCT139

DC CHARACTERISTICS FOR HCT

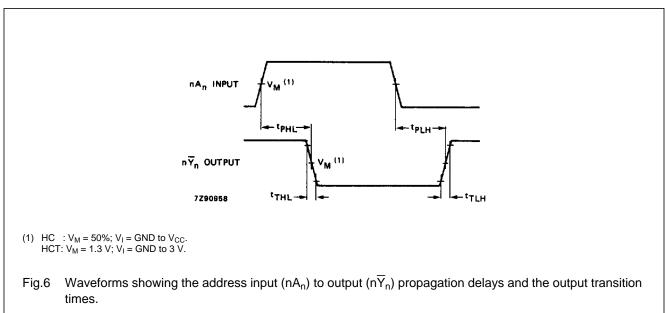
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

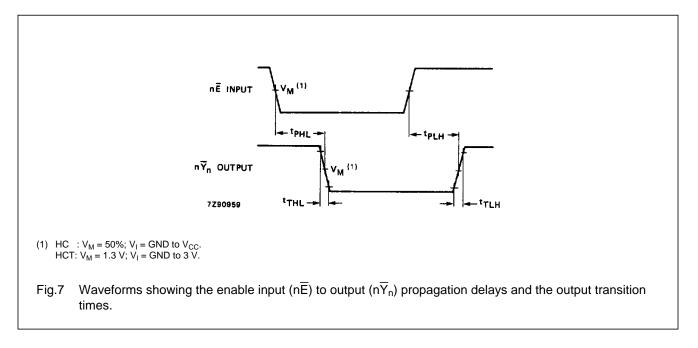
Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD	COEFFICIENT
1A _n	0.70	
2A _n nĒ	0.70	
nĒ	1.35	


AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_f = t_f = 6 ns$; $C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									WAVEFORMO
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA_n to \overline{Y}_n		16	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay $n\overline{E}$ to $n\overline{Y}_n$		16	34		43		51	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7

74HC/HCT139

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".