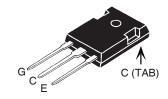
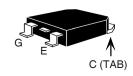
High Voltage, High Gain BIMOSFET™ Monolithic Bipolar MOS Transistor

IXBH12N300 IXBT12N300



 $V_{CES} = 3000V$


 $I_{C110} = 12A$

 $V_{CE(sat)} \le 3.2V$

TO-247 (IXBH)

TO-268 (IXBT)

G = Gate C = CollectorE = Emitter TAB = Collector

Features

- High Blocking Voltage
- International Standard Packages
- Anti-Parallel Diode
- Low Conduction Losses

Advantages

- Low Gate Drive Requirement
- High Power Density

Applications:

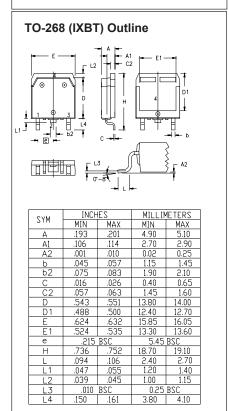
- Switched-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- Laser Generators
- Capacitor Discharge Circuits
- AC Switches

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _c = 25°C to 150°C	3000	V	
V _{CGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	3000	V	
V _{GES}	Continuous	± 20	V	
$V_{_{\mathrm{GEM}}}$	Transient	± 30	V	
I _{C25} I _{C110} I _{CM}	$T_{c} = 25^{\circ}C$ $T_{c} = 110^{\circ}C$ $T_{c} = 25^{\circ}C$, 1ms	30 12 100	A A A	
SSOA (RBSOA)	$V_{GE} = 15V$, $T_{VJ} = 125^{\circ}C$, $R_{G} = 30\Omega$ Clamped Inductive Load	$I_{\text{CM}} = 30$ $V_{\text{CES}} \le 2400$	A V	
P _c	T _c = 25°C	160	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 + 150	°C	
T _L T _{SOLD}	1.6mm (0.062 in.) from Case for 10s Plastic Body for 10 seconds	300 260	°C °C	
M _d	Mounting Torque (TO-247)	1.13/10	Nm/lb.in.	
Weight	TO-247 TO-268	6 4	g g	

Symbol Test Conditions Char			acteristic Values			
$(T_J = 25^\circ)$	C Unless Otherwise Specified)	Min.	Тур.	Max.		
BV _{CES}	$I_{c} = 250 \mu A, V_{ge} = 0 V$	3000			V	
V _{GE(th)}	$I_{\rm C} = 250 \mu A, \ V_{\rm CE} = V_{\rm GE}$	3.0		5.0	V	
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}, V_{GE} = 0V$	T _J = 125°C		25 1	μA mA	
I _{GES}	$V_{CE} = 0V$, $V_{GE} = \pm 20V$			±100	nA	
V _{CE(sat)}	$I_{\rm C} = 12A, V_{\rm GE} = 15V, \text{ Note 1}$		2.8	3.2	V	
		$T_J = 125^{\circ}C$	3.5		V	

Symbol Test Conditions Char		racteristic Values			
$(T_{J} = 25^{\circ}C \text{ l})$	Inless Otherwise Specified)	Min.	Тур.	Max.	
g _{fS}	$I_{\rm C}$ = 12A, $V_{\rm CE}$ = 10V, Note 1	6.5	10.8		S
C _{ies}			1290		pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		56		pF
C _{res}			19		pF
$\overline{Q_g}$			62		nC
Q _{ge}	$I_{\rm C} = 12 {\rm A}, \ V_{\rm GE} = 15 {\rm V}, \ V_{\rm CE} = 1000 {\rm V}$		13		nC
Q _{gc}			8.5		nC
t _{d(on)}	Resistive Switching Times, T _J = 25°	ve Switching Times. T = 25°C	64		ns
t _r	$\begin{cases} I_{c} = 12A, V_{gE} = 15V \\ V_{CF} = 1250V, R_{g} = 10\Omega \end{cases}$		140		ns
t _{d(off)}			180		ns
t _f	CE - 1200 V, 11 _G - 1032		540		ns
t _{d(on)}	Resistive Switching Times, T _J = 125	:°C	65		ns
t,	·		395		ns
t _{d(off)}	$I_{c} = 12A, V_{GE} = 15V$ $V_{CE} = 1250V, R_{G} = 10\Omega$		175		ns
t _f			530		ns
R _{thJC}				0.78	°C/W
R _{thcs}	(TO-247)		0.21		°C/W

TO-247 (IXBH) Outline Q S Terminals: 1 - Gate 2 - Drain Tab - Drain 3 - Source Dim. Millimeter Inches Min. Max Min. Max. .209 4.7 5.3 .185 Α, 2.2 2.54 087 .102 2.2 2.6 .059 .098 b 1.0 1.4 .040 .055 b, 1.65 2.13 .065 .084 2.87 3.12 .113 .123 b, С .031 D 20.80 21.46 .819 .845 Ε 15.75 16.26 .640 .610 0.225 5.20 5.72 0.205 е .780 .800 19.81 20.32 L1 4.50 .177 ØP 3.55 3.65 .144 140 Q 5.89 6.40 0.232 0.252 R 4.32 5.49 .170 .216 S 6.15 BSC 242 BSC


Reverse Diode

Symbol Test Conditions Cl		Chara	naracteristic Values			
$T_{J} = 2$	25°C U	nless Otherwise Specified)	Min.	Тур.	Max.	
$V_{_{\rm F}}$		$I_F = 12A, V_{GE} = 0V$			2.1	V
t _{rr})	$I_F = 6A, V_{GE} = 0V, -di_F/dt = 100A/\mu s$		1.4		μs
I _{RM}	<u></u>	$V_{R} = 100V, V_{GE} = 0V$		21		Α

Note 1: Pulse Test, $t \le 300\mu s$, Duty Cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

Fig. 1. Output Characteristics @ 25°C

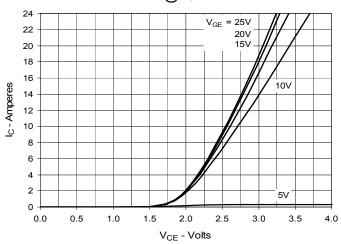


Fig. 2. Extended Output Characteristics @ 25°C

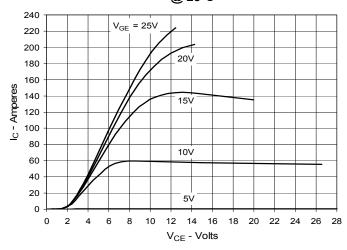


Fig. 3. Output Characteristics @ 125°C

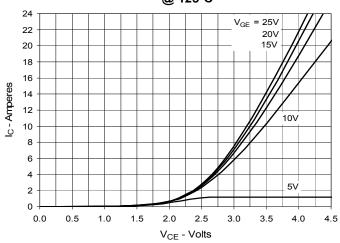


Fig. 4. Dependence of V_{CE(sat)} on Junction Temperature

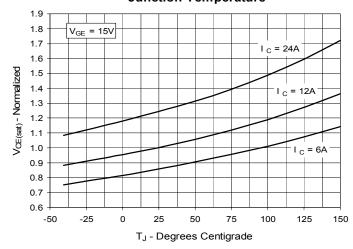


Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage

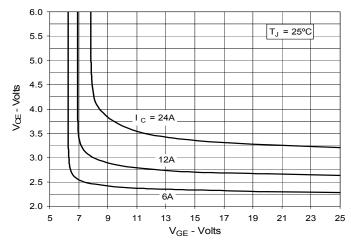
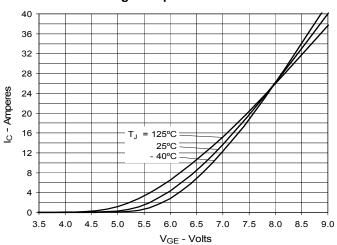
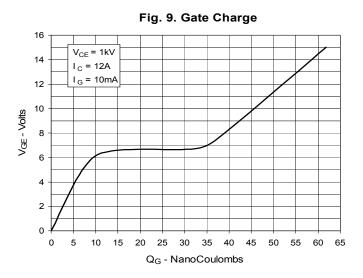
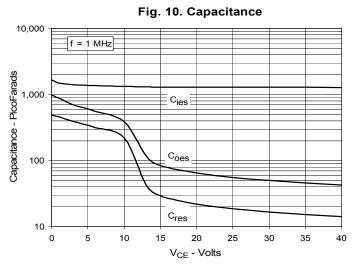
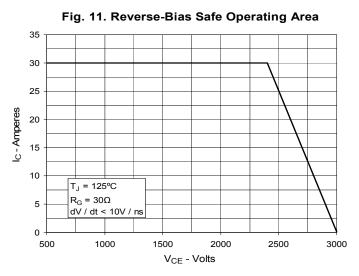


Fig. 6. Input Admittance


Fig. 7. Transconductance 18 $T_{J} = -40^{\circ}C$ 16 14 25°C 12 g_{fs} - Siemens 125°C 10 6 10 0 5 15 20 25 30 35 40 45 I_C - Amperes

Intrinsic Diode 36 32 28 24 IF - Amperes $T_J = 25^{\circ}C$ 20 $T_{\rm J} = 125^{\circ}{\rm C}$ 16 12 8 4 0 0.0 0.5 1.0 2.0 2.5 3.0 V_F - Volts

Fig. 8. Forward Voltage Drop of

IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

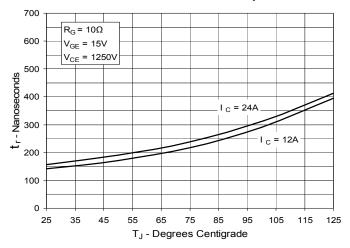


Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

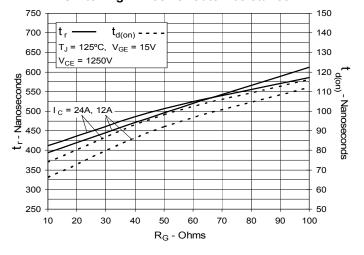


Fig. 17. Resistive Turn-off Switching Times vs. Collector Current

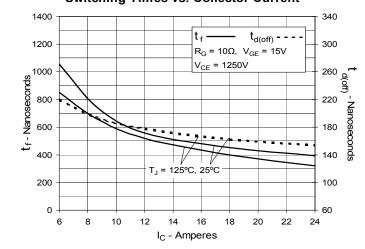


Fig. 14. Resistive Turn-on Rise Time vs. Collector Current

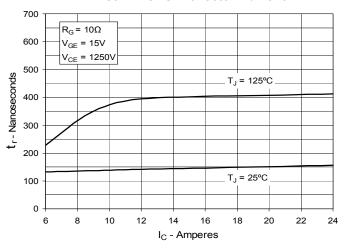


Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

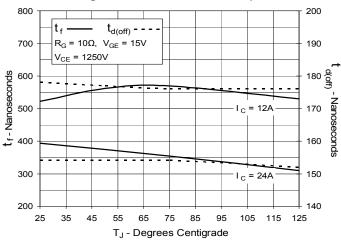
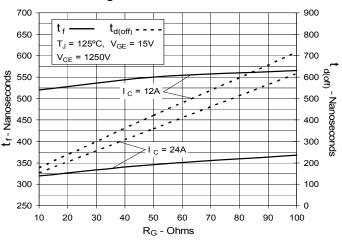



Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

