
Class E Amplifiers

Part 1: Class E Basics

Dan Tayloe, N7VE

5w Class E 40m Prototype

50 ohm Load

Output Network

Why Class E?

Class C final, 2w

40 to 45% efficient, ~ 370 to 410 ma*

Class E final, 2w

88% efficient, ~ 190 ma*

Almost 50% less TX current required... Very battery friendly!

* Does not include PA driver. Class E can require very little driver power!

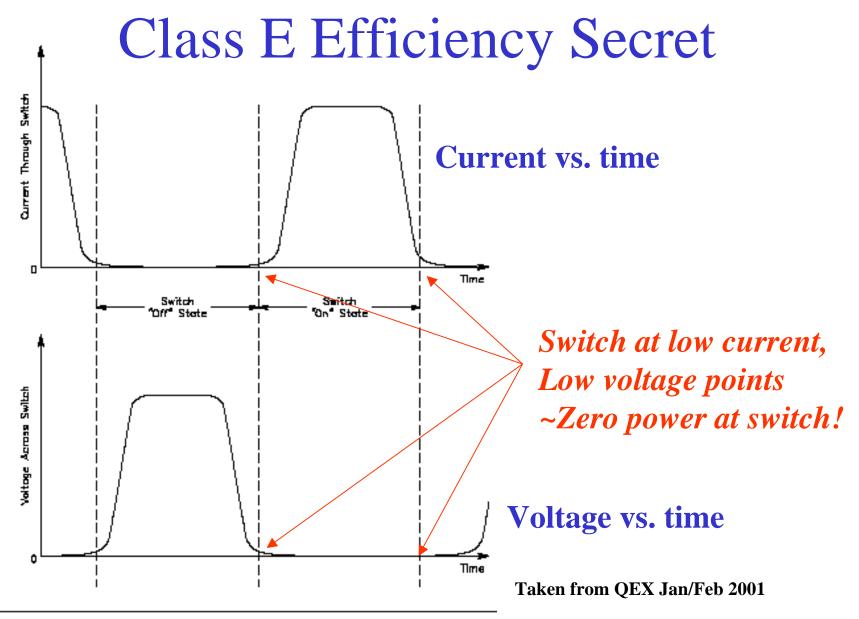
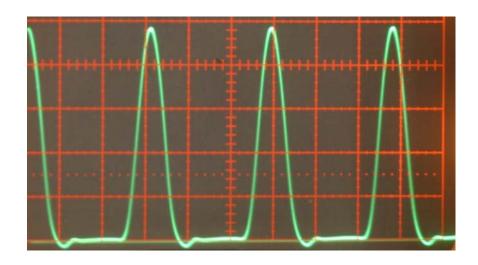
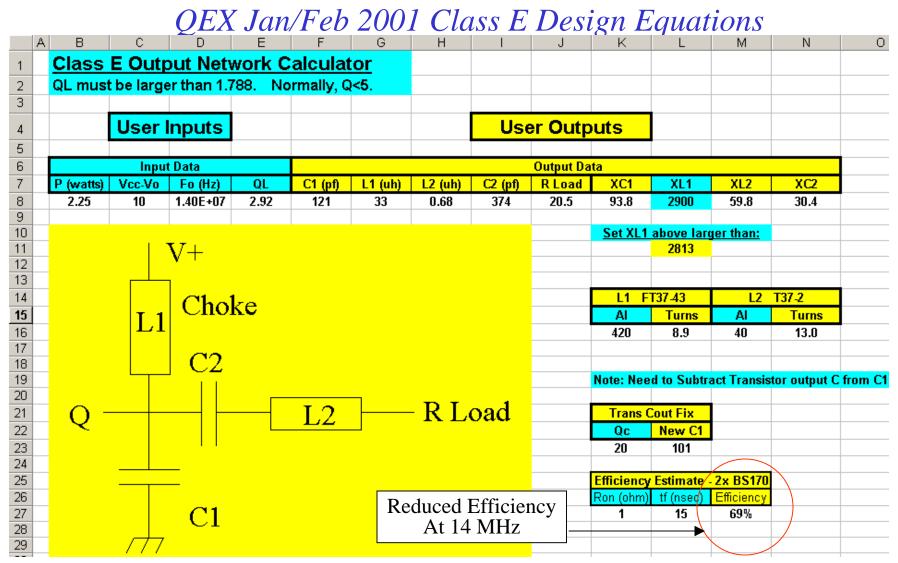



Fig 1—Conceptual "target" waveforms of transistor voltage and current.

Class E Drain Voltage Waveform


Scale 10v/division ~ 48v at peaks for 5 w, ~40v for 2w For comparison, Class C devices run only 24v peaks

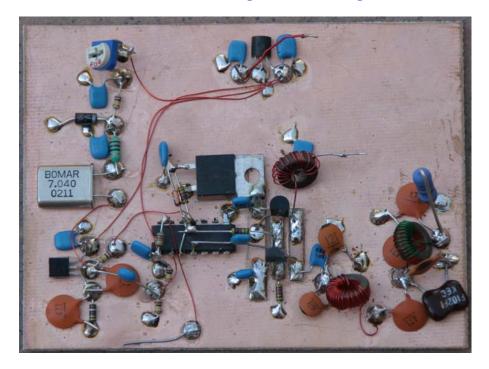
Class E Design Spread Sheet, 7 MHz

QEX Jan/Feb 2001 Class E Design Equations Ν 0 Class E Output Network Calculator QL must be larger than 1.788. Normally, Q<5. 2 3 **User Inputs User Outputs** 5 Input Data 6 Output Data Vcc-Vo P (watts) Fo (Hz) QL C1 (pf) L2 (uh) C2 (pf) R Load XC1 XL1 XL₂ XC2 10 7.00E+06 2.92 243 66 748 20.5 93.8 2900 8 2.25 1.36 59.8 30.4 9 10 Set XL1 above larger than: 2813 11 12 13 L2 T37-2 14 L1 FT37-43 Choke 15 Turns ΑI Turns 16 420 12.5 40 18.4 17 18 Note: Need to Subtract Transistor output C from C1 19 20 R Load 21 Trans Cout Fix 0c New C1 23 223 24 25 Efficiency Estimate - 2x BS170 26 Ron (ohm) tf (nsec) Efficiency High Efficiency 27 15 87% At 7 MHz 28 29

Use Q and exact Power to get C1, L2, C2 to standard values

Class E Design Spread Sheet, 14 MHz

Lower efficiency at 14 MHz – 69% Predicted


Class E Design Spread Sheet

Excel spread sheet equations...

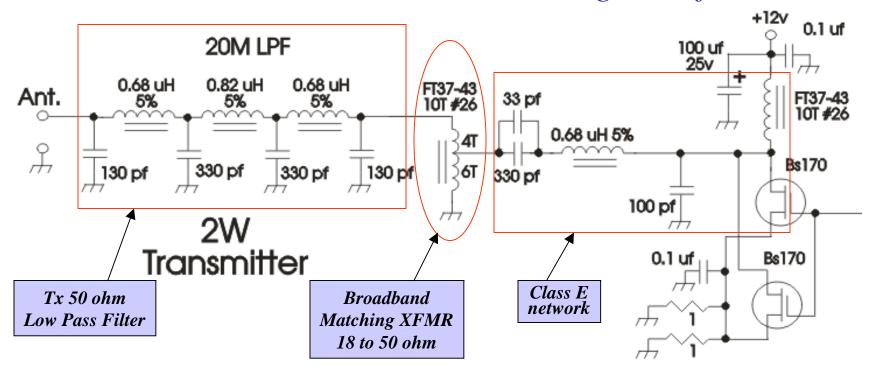
```
C1 (pf) = (1e12/(J8*34.2219*D8))*(0.99866 + 0.91424/(E8))
-1.03175/(E8*E8)) + 0.6/(2*2*3.14*3.14*D8*D8*G8/1000000)
C2 (pf) = (1e12/(J8*2*3.14*D8))*(1/(E8-0.104823))
*(1.00121 + 1.01468/(E8 - 1.7879))
-0.2/(2*2*3.14*3.14*D8*D8*G8/1000000)
L1 (uH) = 1000000*L8/(2*3.14*D8)
L2 (uH) = 1000000*J8*E8/(2*3.14*D8)
Rload = (C8*C8/B8)*0.576801*(1.001245 - 0.451759/E8 - 0.402444/(E8*E8))
XL1 >= 30*K8
Efficiency = J8/(J8+1.365*K27) -0.01
- (1+ 0.82/E8)* (1+ 0.82/E8)*4*PI()*PI()*D8*D8*L27*L27*1e-18/12
```

Class E Amplifiers

Part 2: No Tune, Goof Proof Class E Amps

Dan Tayloe, N7VE

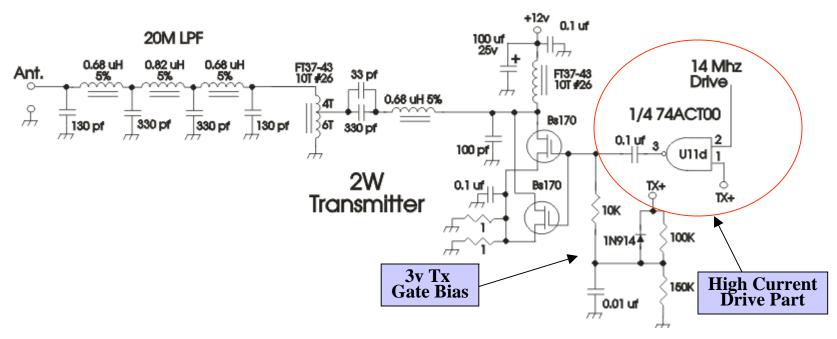
Problems with Class E QRP Amps


- "Tuning" required to get good efficiency
 - Poor "out of the box" power and efficency
 - Typical to "tweak" output network coils for best power/efficiency
- Class E finals fail when presented with low impedance loads
 - Low impedance loads cause PA to draw too much current and burn up
- Inexpensive QRP Class E final rated to only 60v (2N7000)
 - Typical PA drain voltage operates in the 40 to 50v range w/ 12v supply
 - Improper antenna mismatch can raise drain voltage, blow the PA
 - 15v supply used with a 12v design could cause problems
- Class E Amps can be unstable into poorly matched loads
 - Tends to "take off"
 - Can lead to device failure

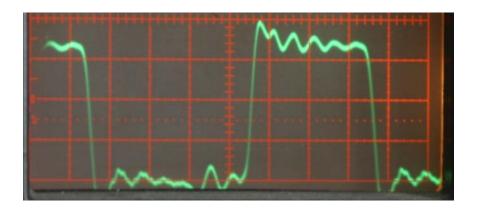
Class E Tuning Problem

- Class E matching network typically presents a reactive load
 - I.e., the Class E PA output impedance is *not* purely resistive
 - Reactive characteristic key to Class E efficiency
- QRP Class E networks need loads in the 10 ohm to 50 ohm (5w to 1w) range
 - Matching network normally needed to transform to 50 ohm load
 - 1 watt 12v final is a design "sweet spot" no matching needed
- L/C matching networks are typically used to transform driver impedance to 50 ohm load impedance.
 - This approach does not work well with a reactive drive source!
 - Leads to frequency specific matching network
 - Variations in driver network and matching network elements force the need for "tuning" of the matching networks

No Tune Class E


Solution: Use a broadband matching transformer!

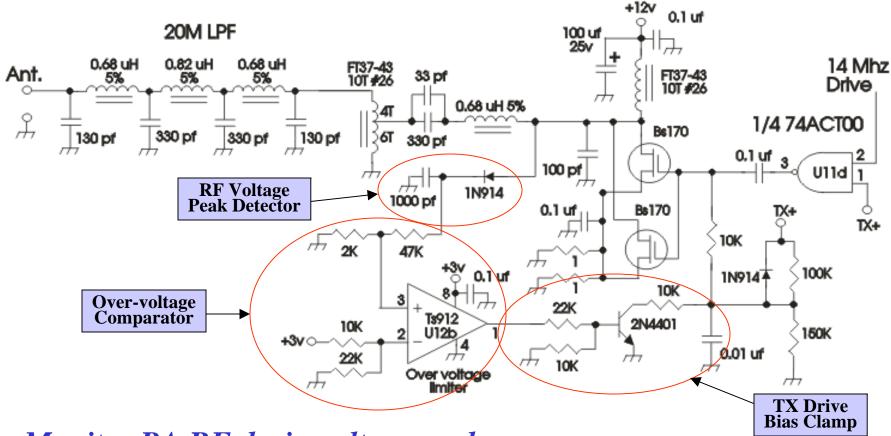
- Broadband Transformer matches 20 ohm PA output to 50 ohm LPF
- Transformer converts Class E reactive impedance without being frequency selective
- However, efficiency is lower (~60%) as measured on 20 & 30m


Class E Load Instability

Solution: Use a lower impedance gate driver!

- AC family has 24 ma of drive vs 8 ma for HC family
- Higher current drive = lower drive source impedance
- 3x lower source impedance reduces tendency to "flight" with mismatched load
- PA gate biased on TX to 3v to help MOSFET turn on harder

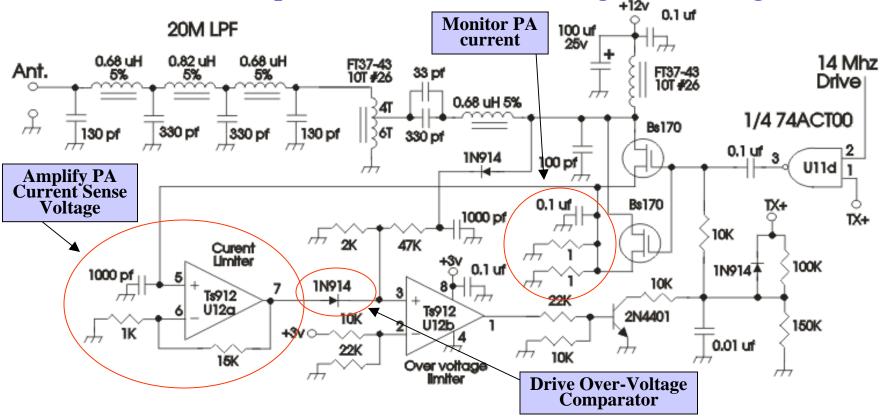
Class E Driver – 74ACT00



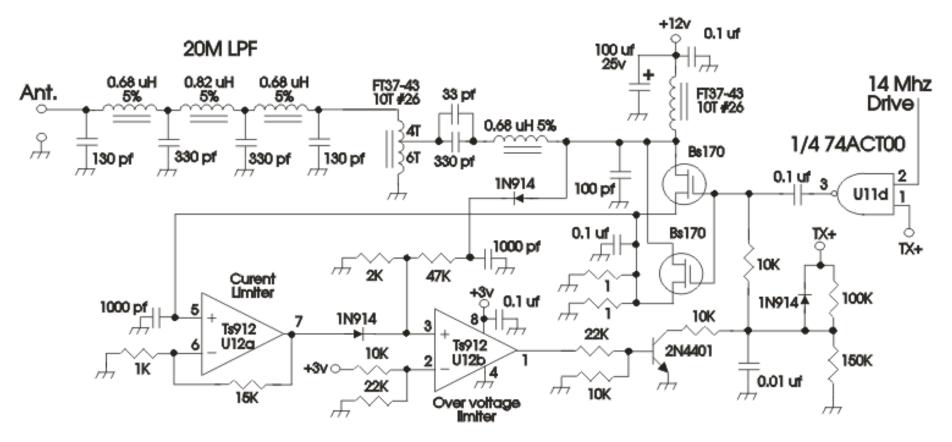
Scale: Vertical 2v/div, Horizontal 20 nsec/div 6 to 8v at peaks
Very fast rise+fall times: ~10 nsec total

74ACT00 has 24 ma of drive vs. only 8 ma for the more common 74HCT00 parts

Class E Voltage Limitations


Reduce output when drain voltage gets too high!

- Monitor PA RF drain voltage peaks
- If voltage gets higher than 55v, comparator triggers bias clamp
- Reducing TX gate bias voltage reduces output power to safe limits

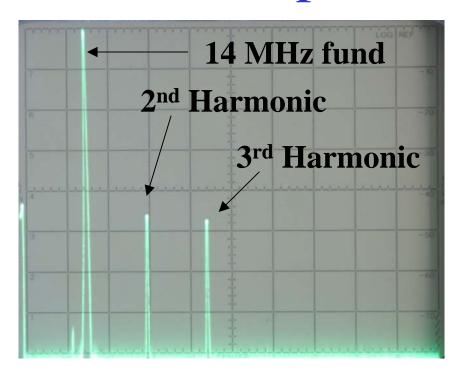

Class E Low Load Limitations

Reduce output when PA current gets too high!

- Use resistor voltage drop to sense PA current (~0.175v @ 0.35A)
- Amplify sense resistor voltage by 15x (~2.6v max)
- Use amplified voltage (less 0.6v) to trigger over-voltage circuit
- Trigger reduces PA gate bias & TX output power, limits PA current

No Tune, Goof Proof, Class E Tx

- High impedance over-voltage protection
- Low impedance over-current protection
- "No Tune" Class E output


Current Class E Limitations

- Efficiency of common QRP PA devices (2N7000, BS170) drops off at *14 MHz and above*
 - ~80 to 90% efficiency at 10 MHz and below
 - ~70% efficiency at 14 MHz
 - ~60 % efficiency using "no tune" approach shown here
 - R/C freq response: Smaller Driver R = Higher Freq response
 - Higher PA drive power can be used to get higher freq PA response
 - Higher PA drive power hurts overall transmitter power saving
- Higher frequency devices available, but more expensive
 - Example: STMicroelectronics PD57006s 900 MHz 5w FET, ~\$12

Current Class E Limitations, cont

- Class E operates at a *fixed power* set by Class E output network
- Variable power best done by changing supply voltage
- May be able to reduce power from preset maximum by lowering TX gate drive bias, but at reduced TX efficiency.

Transmitter Spectrum

Scale 10 db/division – legal limit 30 db down

2nd Harmonic ~45 db down

3rd Harmonic ~47 db down

All other more than 70 db down

Class E Amplifiers

Part 3: Good & Bad QRP Class E Devices
Or
"Bigger is not Better"

Dan Tayloe, N7VE

Why the IRF510 Makes a Good 5w *Class C* PA

- IRF510 on/off time 70 nsec, good to 14 MHz
- 40 to 45% efficiency typical using broadband, low pass TX output filters
- 5w output requires 11.1w input power
 - 6.1w of heat produced!
 - 33w IRF510 can take the heat if proper heat sink is used

1.Gate 2. Drain 3. Source

Why the 2N7000 makes a good QRP Class E final

SOT54 (TO-92 variant)

and the IRF510 does not

TO-220

1.Gate 2. Drain 3. Source

SOT-23

Good FET -2N7000, 0.3 to 0.6w

Dynamic characteristics									
9rs	forward transconductance	V _{DS} = 10 V; I _D = 200 mA; Figure 11	100	300	-	mS			
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V; } V_{DS} = 10 \text{ V;}$ f = 1 MHz; Figure 12	-	25	40	pF			
Coss	output capacitance		-	18	30	pF			
Crss	reverse transfer capacitance		-	7.5	10	pF			
t _{on}	turn-on time	V_{DD} = 50 V; R_D = 250 Ω ;	_	3	10	ns			
t _{off}	turn-off time	$V_{GS} = 10 \text{ V} \cdot R_G = 50 \Omega;$ $R_{GS} = 50 \Omega$	_	12	15	ns			

Low input C: 25 pf typical – Low input drive drive!

Fast Turn on/off time: 3+12 nsec = 15 nsec

For class E, need On/Off to be 30% of ½ RF cycle (QEX 1/01)

- Gives maximum limit of 10 MHz for full efficiency
- Can be used at 14 MHz at reduced efficiency
 - Measured 80-90% at 7 & 10 MHz, 70% at 14 MHz

Difficult FET – IRF510, 33w

C _{iss}	Input Capacitance	ı	190	240		\/ =0\/\/ =2E\/f=1MH=	
Coss	Output Capacitance	ı	55	65	pF	V _{GS} =0V,V _{DS} =25V,f=1MHz See Fig 5	
C _{rss}	Reverse Transfer Capacitance	ı	21	25		See Fig 5	
t _{d(on)}	Turn-On Delay Time	ı	10	30		V =50VI =5.6A	
t _r	Rise Time	ı	14	40		V _{DD} =50V,I _D =5.6A,	
t _{d(off)}	Turn-Off Delay Time	ı	28	70	ns	$R_G=24\Omega$	
t _f	Fall Time	ı	18	50		See Fig 13 (4)(5)	

Higher input C: 190 pf typical – Higher input drive needed!

• Specs use 24 ohm source here vs. 50 ohm source for 2N7000 Slower Turn on/off time: 10+14+28+18 nsec = 70 nsec

For class E, need On/Off to be 30% of ½ RF cycle

- Gives maximum limit of 2 MHz for full efficiency
- Can speed up by using a lower impedance drive source.
 - Slam it on, slam it off! more drive power needed.

Double driver power hit: High input C & Slow switching time

Class E Driver Requirements IRF510 vs. 2N7000

- IRF510, 190 pf input gate C; 2N7000, 25 pf
 - Drive power factor of 7.6x
- IRF510, 25 ohm source; 2n7000, 50 ohm source
 - Drive power factor of 2x
- IRF510, 70 nsec turn on/off; 2n7000, 15 nsec
 - Need 4.67x lower drive impedance to get same speed
 - IRF510 requires 5 ohm driver impedance for 15 nsec on/off

Total drive difference: IRF510 needs 71x more drive power than a single 2N7000

■ ~ 0.6w drive for class E IRF511 vs. 17mW for a pair of 2N7000s

IRF510: Good 100w Class E amp, poor 5w amp!

- Class E saves ~ 50% on TX DC input power to PA
 - Low drive power (17 mW vs. 0.6w) saves additional power
- Class C requires large TO220 PA transistors
- Class E needs only tiny T092/SOT23 300mw/600mw packages
- \$0.14 for a new pair of Class E QRP finals!
- Low wasted TX pwr (*Heat*)
 - For 5w output, 0.5 to 1w heat (class E) vs. 5 to 6w heat!
 - Conserves battery life (smaller battery?)
 - Reduces VFO drift

Class E Summary

- Class E can give up to 88% efficiency
 - But require tuning to get proper power output
- Protection circuitry available for Class E finals
 - Protects against antenna open/short/mismatch problems
- "No Tune" Class E works, but ~60% efficiently
- Bigger is not better for Class E finals
 - High power MOSFETs (such as the IRF511) require high drive power (71x!), reducing overall rig efficiency.