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Useful Circuit Theorems

Impedance of a Two-Terminal RC Network

Consider any two-terminal RC network. If the impedance at dc is not infinite, the impedance can be written

Z = Rdc
1 + τzs

1 + τps

where Rdc is the dc resistance of the circuit, τo is its open-circuit time constant, and τz is its short-circuit
time constant.

Figure 1: Example two-terminal circuits.

For example applications of the theorem, consider the circuits shown in Fig. 1. In order from (a) to (d),
the impedances are given by

Z = R
1

1 +RCs

Z = (R1 +R2)
1 +R1kR2Cs
1 +R2Cs

Z = (R1 +R2)
1 + (R1kR3 +R2)Cs

1 + (R2 +R3)Cs

Z = [R1 +R2k (R3 +R4)]
1 + (R1kR2 +R3) kR4Cs
1 + (R2 +R3) kR4Cs

Although the theorem is strictly valid for circuits containing only one capacitor, it can be applied to
circuits containing more than one capacitor if the adjacent poles and zeroes in the transfer function are well
removed, preferable by a decade or more. Consider the circuit shown in Fig. 2. Let us assume that C2 and
C3 are open circuits in the frequency range in which C1 is active, C1 is a short circuit and C3 is an open
circuit in the frequency range in which C2 is active, and C1 and C2 are short circuits in the frequency range
in which C3 becomes active.
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Figure 2: Example circuit containing more than one capaictor.

With the above information, the impedance in the range where C2 and C3 are open circuits is given by

Z1 = (R1 +R2 +R3 +R4)
1 +R2k (R1 +R3 +R4)C1s

1 +R2C1s

= (R1 +R2 +R3 +R4)
1 + s/ω2
1 + s/ω1

where
ω1 =

1

R2C1
ω2 =

1

1 +R2k (R1 +R3 +R4)C1
At low frequencies, Z1 starts at the value R1 + R2 + R3 + R4 and shelves at high frequencies at the value
R1 +R3 +R4. The impedance in the range where C1 is a short circuit and C3 is an open circuit is given by

Z2 = (R1 +R3 +R4)
1 +R3k (R1 +R4)C2s

1 +R3C2s

= (R1 +R3 +R4)
1 + s/ω4
1 + s/ω3

where
ω3 =

1

R3C2
ω4 =

1

R3k (R1 +R4)C2
At low frequencies, Z2 starts at the value R1+R3+R4 and shelves at high frequencies at the value R1+R4.
The impedance in the range where C1 and C2 are short circuits is given by

Z3 = (R1 +R4)
1 +R4kR1C3s
1 +R4C3s

= (R1 +R4)
1 + s/ω6
1 + s/ω5

where
ω5 =

1

R4C3
ω6 =

1

R4kR1C3
At low frequencies, Z3 starts at the value R1 +R4 and shelves at high frequencies at the value R1.
The three impedances can be “pieced” together to obtain the overall impedance to obtain

Z = (R1 +R2 +R3 +R4)
(1 + s/ω2) (1 + s/ω4) (1 + s/ω6)

(1 + s/ω1) (1 + s/ω3) (1 + s/ω5)

This expression is strictly if
ω1 ¿ ω2 ¿ ω3 ¿ ω4 ¿ ω5 ¿ ω6

The straight-line approximation to the Bode magnitude plot for the impedance is shown in Fig. 3.
The impedance theorem can be used to write by inspection the transfer function of an inverting op-amp

circuit where the input and feedback impedances contain no more than one capacitor each. Consider the
circuit shown in Figure 4. The voltage gain can be written by inspection to obtain

V2
V1

= − R3
1 +R3C2s

÷
·
(R1 +R2)

1 +R1kR2C1s
1 +R2C2s

¸
= − R3

R1 +R2

1 +R2C2s

(1 +R1kR2C1s) (1 +R3C2s)
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Figure 3: Bode magnitude plot for the impedance Z.

Figure 4: Inverting op-amp example.
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Impedance of an RC Voltage-Divider Network

Case 1 — Capacitor in Shunt Arm

Consider the voltage-divider network shown in Fig. 5(a). Let the impedance Z2 contain one capacitor and
satisfies the condition for the two-terminal impedance theorem. By voltage division, the gain of the network
is given by

V2
V1
=

Z2
R1 + Z2

=
Z2
Z3

where Z3 = R1 + Z2. The impedance Z2 can be written

Z2 = R2
1 + τ2ss

1 + τ2os

where τ2o is the open-circuit time constant for Z2 and τ2s is its short-circuit time constant. The impedance
Z3 can be written

Z3 = (R1 +R2)
1 + τ3ss

1 + τ3os

where τ3o is the open-circuit time constant for Z3 and τ3s is its short-circuit time constant.

Figure 5: Voltage divider networks containing only one capacitor.

But the open-circuit time constants for Z2 and Z3 are the same. Let this be denoted by τo = τ2o = τ3o.
thus the two impedances can be written

Z2 = R2
1 + τ2ss

1 + τos

and
Z3 = (R1 +R2)

1 + τ3ss

1 + τos

It follows that the gain of the voltage divider is given by

V2
V1
=

R2
R1 +R2

1 + τ2ss

1 + τ3ss

Notice that the term 1 + τos is canceled. Note also that the gain constant is the circuit gain at dc, the pole
time constant τ3s is the time constant calculated with Vi = 0, and the zero time constant τ2s is the time
constant with Vo = 0.

Case 2 — Capacitor in Series Arm

Now consider the case shown in Fig. 5(b) where Z1 contains one capacitor and satisfies the condition for the
two-terminal impedance theorem. By voltage division, the gain of the network is given by

V2
V1
=

R2
Z1 +R2

=
R2
Z3

where Z3 = Z1 +R2. The impedance Z3 can be written

Z3 = (R1 +R2)
1 + τ3ss

1 + τ3os
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where τ3o is the open-circuit time constant for Z3 and τ3s is its short-circuit time constant.
It follows that the gain of the voltage divider is given by

V2
V1
=

R2
R1 +R2

1 + τ3os

1 + τ3ss

But the open-circuit time constant for Z3 is equal to the open-circuit time constant for Z1, i.e. τ3o = τ1o.
Thus the gain of the circuit can be written

V2
V1
=

R2
R1 +R2

1 + τ1os

1 + τ3ss

Note that the gain constant is the circuit gain at dc, the pole time constant τ3s is the time constant calculated
with Vi = 0, and the zero time constant τ1s is the time constant with the Vi node floating, i.e. open circuited.

Combined Theorem

We seek to combine the two theorems into one which gives the correct answer for both cases. In the second
case, the time constant τ1o is the same as the time constant calculated with Vo = 0. Thus it follows that
the two theorems can be combined to obtain the general solution

V2
V1
= kdc

1 + τ2s

1 + τ1s

where kdc is the dc gain, τ1 is the time constant with V1 = 0, and τ2 is the time constant with V2 = 0.
As an example, consider the circuit shown in Fig. 6(a). By inspection, the voltage gain can be written

V2
V1
=

R2 +R3
R1 +R2 +R3

1 + (R2kR3 +R4)Cs

1 + [(R1 +R2) kR3 +R4]Cs

The Bode magnitude plot is that of a low-pass shelving function.

Figure 6: Example circuits for the voltage-divider theorem.

The voltage gain of the circuit in Fig. 6(b) is given by

V2
V1
=

R4
R1 +R2 +R4

1 + (R2 +R3)Cs

1 + [(R1 +R4) kR2 +R3]Cs

The Bode magnitude plot is that of a high-pass shelving function.
The voltage-divider theorem can be used to write the voltage gain expression for a non-inverting op-amp

circuit. Consider the circuit shown in Fig. 7. The voltage divider network in Fig. 6(a) is shown connected
between the output of the op amp and its inverting input. Because the op amp has negative feedback, there
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is a virtual short between its + and − inputs. Thus the voltage output of the voltage divider is V2 = Vi and
its voltage input is V1 = Vo. It follows that the voltage gain of the circuit is given by

Vo
Vi
=

V1
V2
=

µ
V2
V1

¶−1
=

R1 +R2 +R4
R4

1 + [(R1 +R4) kR2 +R3]Cs

1 + (R2 +R3)Cs

Figure 7: Non-inverting op-amp example.
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