Bipolar Power Transistors ## **PNP Silicon** ### **Features** Collector – Emitter Sustaining Voltage – $$V_{CEO(sus)} = 40 \text{ Vdc (Min)} @ I_C = 10 \text{ mAdc}$$ • High DC Current Gain - $$h_{FE}$$ = 200 (Min) @ I_C = 1.0 Adc = 100 (Min) @ I_C = 3.0 Adc • Low Collector -Emitter Saturation Voltage - $$V_{CE(sat)} = 0.200 \text{ Vdc (Max)} @ I_C = 1.0 \text{ Adc}$$ = 0.500 Vdc (Max) @ I_C = 3.0 Adc - SOT-223 Surface Mount Packaging - Epoxy Meets UL 94, V-0 @ 0.125 in - ESD Ratings: - Human Body Model, 3B; > 8000 V - Machine Model, C; > 400 V - AEC-Q101 Qualified and PPAP Capable - NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant* ## ON Semiconductor® http://onsemi.com # PNP TRANSISTOR 3.0 AMPERES 40 VOLTS, 2.0 WATTS SOT-223 CASE 318E STYLE 1 # MARKING DIAGRAM A = Assembly Location ' Year W = Work Week 4030P = Specific Device Code ■ Pb-Free Package ### **PIN ASSIGNMENT** Top View Pinout ### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **MAXIMUM RATINGS** ($T_C = 25^{\circ}C$ unless otherwise noted) | Rating | Symbol | Value | Unit | |---|-----------------------------------|-------------|------| | Collector-Emitter Voltage | V _{CEO} | 40 | Vdc | | Collector-Base Voltage | V _{CB} | 40 | Vdc | | Emitter-Base Voltage | V _{EB} | 6.0 | Vdc | | Base Current - Continuous | I _B | 1.0 | Adc | | Collector Current Continuous Peak | I _C | 3.0
5.0 | Adc | | Total Power Dissipation Total P_D @ T_A = 25°C mounted on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material Total P_D @ T_A = 25°C mounted on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material | P _D | 2.0
0.80 | W | | Operating and Storage Junction Temperature Range | T _J , T _{stg} | -55 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|--|-----------|------| | Thermal Resistance, Junction-to-Case Junction-to-Ambient on 1" sq. (645 sq. mm) Collector pad on FR-4 bd material Junction-to-Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 bd material | $egin{array}{c} R_{ hetaJA} \ R_{ hetaJA} \end{array}$ | 64
155 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds | TL | 260 | °C | ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|----------------------|-----------------------| | NJT4030PT1G | SOT-223
(Pb-Free) | 1,000 / Tape & Reel | | NJV4030PT1G | SOT-223
(Pb-Free) | 1,000 / Tape & Reel | | NJT4030PT3G | SOT-223
(Pb-Free) | 4,000 / Tape & Reel | | NJV4030PT3G | SOT-223
(Pb-Free) | 4,000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted) | , -2 | , | | | | | |---|-----------------------|-------------------|-------------|-------------------------|------| | Characteristic | Symbol | Min | Тур | Max | Unit | | OFF CHARACTERISTICS | | | | | | | Collector-Emitter Sustaining Voltage (I _C = 10 mAdc, I _B = 0 Adc) | V _{CEO(sus)} | 40 | - | - | Vdc | | Emitter-Base Voltage
(I _E = 50 μAdc, I _C = 0 Adc) | V _{EBO} | 6.0 | - | - | Vdc | | Collector Cutoff Current (V _{CB} = 40 Vdc) | I _{CBO} | - | - | 100 | nAdc | | Emitter Cutoff Current (V _{BE} = 6.0 Vdc) | I _{EBO} | - | - | 100 | nAdc | | ON CHARACTERISTICS (Note 1) | | | | • | | | Collector–Emitter Saturation Voltage ($I_C = 0.5 \text{ Adc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = 1.0 \text{ Adc}$, $I_B = 10 \text{ mAdc}$) ($I_C = 3.0 \text{ Adc}$, $I_B = 0.3 \text{ Adc}$) | V _{CE(sat)} | -
-
- | -
-
- | 0.150
0.200
0.500 | Vdc | | Base–Emitter Saturation Voltage ($I_C = 1.0 \text{ Adc}$, $I_B = 0.1 \text{ Adc}$) | V _{BE(sat)} | - | - | 1.0 | Vdc | | Base–Emitter On Voltage
(I _C = 1.0 Adc, V _{CE} = 2.0 Vdc) | V _{BE(on)} | - | - | 1.0 | Vdc | | DC Current Gain $(I_C = 0.5 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 3.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ | h _{FE} | 220
200
100 | -
-
- | -
400
- | - | | DYNAMIC CHARACTERISTICS | | | | | | | Output Capacitance
(V _{CB} = 10 Vdc, f = 1.0 MHz) | C _{ob} | - | 40 | - | pF | | Input Capacitance
(V _{EB} = 5.0 Vdc, f = 1.0 MHz) | C _{ib} | - | 130 | - | pF | | Current–Gain – Bandwidth Product (Note 2)
(I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz) | f _T | _ | 160 | _ | MHz | ^{1.} Pulse Test: Pulse Width ≤[300 μs, Duty Cycle ≤ 2%. Figure 1. Power Derating ^{2.} $f_T = |h_{FE}| \cdot f_{test}$ ### TYPICAL CHARACTERISTICS Figure 2. DC Current Gain Figure 3. DC Current Gain Figure 5. Collector-Emitter Saturation Voltage Figure 6. Collector Saturation Region Figure 7. V_{BE(on)} Voltage ### **TYPICAL CHARACTERISTICS** Figure 8. Base-Emitter Saturation Voltage Figure 9. Base-Emitter Saturation Voltage Figure 10. Input Capacitance Figure 11. Output Capacitance Figure 12. Current-Gain Bandwidth Product Figure 13. Safe Operating Area #### PACKAGE DIMENSIONS ### SOT-223 (TO-261) CASE 318E-04 ISSUE N - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - CONTROLLING DIMENSION: INCH. | | MILLIMETERS | | | INCHES | | | | |-----|-------------|------|------|--------|-------|-------|--| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | Α | 1.50 | 1.63 | 1.75 | 0.060 | 0.064 | 0.068 | | | A1 | 0.02 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | | b | 0.60 | 0.75 | 0.89 | 0.024 | 0.030 | 0.035 | | | b1 | 2.90 | 3.06 | 3.20 | 0.115 | 0.121 | 0.126 | | | С | 0.24 | 0.29 | 0.35 | 0.009 | 0.012 | 0.014 | | | D | 6.30 | 6.50 | 6.70 | 0.249 | 0.256 | 0.263 | | | E | 3.30 | 3.50 | 3.70 | 0.130 | 0.138 | 0.145 | | | е | 2.20 | 2.30 | 2.40 | 0.087 | 0.091 | 0.094 | | | e1 | 0.85 | 0.94 | 1.05 | 0.033 | 0.037 | 0.041 | | | L | 0.20 | | | 0.008 | | | | | L1 | 1.50 | 1.75 | 2.00 | 0.060 | 0.069 | 0.078 | | | HE | 6.70 | 7.00 | 7.30 | 0.264 | 0.276 | 0.287 | | | θ | 0° | _ | 10° | 0° | _ | 10° | | STYLE 1: PIN 1. BASE - 2. COLLECTOR 3. EMITTER - 4 COLLECTOR #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and war engineer trademarks of semiconductor components industries, Ite (SciLLC) solitate services are injective to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative