
7672A–AVR–09/06

8-bit
Microcontrollers

Application Note
AVR275: Sensor-based Control of Three Phase
Brushless DC Motors Using AT90USB family

Features
• Less than 3µs response time on Hall sensor output change
• Theoretical maximum of 3478K RPM (Electrical RPM)
• Support for closed loop regulation, over current, stall and overload detection.
• USB, UART, TWI and SPI available for communication

1. Introduction
The use of Brushless DC (BLDC) motors is continuously increasing. The reason is
obvious: BLDC motors have a good weight/size to power ration, have excellent accel-
eration performance, requires little or no maintenance and generates less acoustic
and electrical noise than universal (brushed) DC motors.

In a Universal DC motor, brushes control the commutation by physically connecting
the coils at the correct moment. In BLDC motors the commutation is controlled by
electronics. The electronics can either have position sensor inputs that provide infor-
mation about when to commutate or use the Back Electromotive Force generated in
the coils. Position sensors are most often used in applications where the starting
torque varies greatly or where a high initial torque is required. Position sensors are
also often used in applications where the motor is used for positioning. Sensorless
BLDC control is often used when the initial torque does not vary much and where
position control is not in focus, e.g. in fans.

This application note described the control of a BLDC motor with Hall effect position
sensors (referred to simply as Hall sensors). The implementation includes both direc-
tion and open loop speed control.

Figure 1-1. AT90USB controlling a BLDC motor with Hall sensors

2. Theory of Operation
Control of a BLDC motor with position sensors can be implemented on sufficiently powerful
microcontroller featuring basic hardware peripherals such as Analog to Digital Converter (ADC)
and a timer with PWM output. The Atmel AT90USB covers the requirements for BLDC motor
control well – with resources left for other tasks still. Other relevant tasks could include for exam-
ple, communication using USB, SPI, UART or TWI protocols.

A three phase BLDC consists of a Stator which has a number of coils. The fundamental three
phase BLDC motor has three coils (see Figure 2-1). Usually the three coils are referred to as U,
V and W. In many motors the fundamental number of coils are replicated to have smaller rota-
tion steps and smaller torque ripple.

The rotor in a BLDC motor consists of an even number of permanent magnets. The number of
magnetic poles in the rotor also affects the step size and torque ripple of the motor. More poles
gives smaller steps and less torque ripple. Figure 2-1 shows different configurations of motors
with more than one fundamental set of coils and multiple poles.

Figure 2-1. BLDC motors of different types. Motor (a) has two fundamental sets of coils and four poles, (b) has three
sets of coils and eight poles and (c) has four sets of coils and eight poles.

The fact that the coils are stationary while the magnet is rotating makes the rotor of the BLDC
motor lighter than the rotor of a conventional universal DC motor where the coils are placed on
the rotor.

AT90USB
2
7672A–AVR–09/06

AVR275

AVR275
2.1 Operation of Fundamental BLDC Motor
To simplify the explanation of how to operate a three-phase BLDC motor a fundamental BLDC
with only three coils and two magnetic poles is considered.

To make the motor rotate the coils are energized (or “activated”) in a predefined sequence, mak-
ing the motor turn in one direction, say clockwise. Running the sequence in reverse order the
motor run in the opposite direction. One should understand that the sequence defines the direc-
tion of the current flow in the coils and thereby the magnetic field generated by the individual
coils. The direction of the current determines the orientation of the magnetic field generated by
the coil. The magnetic field attracts and rejects the permanent magnets of the rotor. By changing
the current flow in the coils and thereby the polarity of the magnetic fields at the right moment –
and in the right sequence – the motor rotates. Alternation of the current flow through the coils to
make the rotor turn is referred to as commutation.

A three-phase BLDC motor has six states of commutation. When all six states in the commuta-
tion sequence have been performed the sequence is repeated to continue the rotation. The
sequence represents a full electrical rotation. For motors with multiple poles the electrical rota-
tion does not correspond to a mechanical rotation. A four pole BLDC motor use two electrical
rotation cycles to have one mechanical rotation.

The most elementary commutation driving method used for BLDC motors is an on-off scheme: A
coil is either conducting (in one or the other direction) or not conducting. Connecting the coils to
the power and neutral bus induces the current flow (accomplished using a driver stage). This is
referred to as square wave commutation or block commutation. An alternative method is to use
a sinusoidal type waveform. This application note covers the block commutation method.

The strength of the magnetic field determines the torque and speed of the motor. By varying the
current flow thought the coils the speed and torque of the motor can be varied. The most com-
mon way to control the current flow is to control the (average) current flow through the coil. This
can be accomplished by switching the supply voltage to the coils on and off so that the relation
between on and off time defines the average voltage over the coil and thereby the average
current.
3
7672A–AVR–09/06

Figure 2-2. Current flow through the coils/ magnetic field generated by the coils U, V and W in
the six commutation states for a BLDC motor. Hall sensor outputs are also shown

For BLDC motors the commutation control is handled by electronics. The simplest way to control
the commutation is to commutate according the outputs from a set of position sensors inside the
motor. Usually Hall sensors are used. The Hall sensors change their outputs when the commu-
tation should be changed (see Figure 2-2).

Secondary functions for the electronics in a BLDC motor control application is to ensure that the
speed is as desired either by open or closed loop control. In either case it is however also rec-
ommended to have stall detection (blocked motor) and overload detection.

2.2 Implementation - Hall sensor based control of BLDC motor
The implementation is controlling a BLDC motor in open loop. The motor speed is measured, the
motor current can be monitored (not implemented) to be able to respond to stall and overload
situations. Three PWM channels are connected to the low side of the driving Half-bridges to con-
trol the speed of the motor. The typical driver stage for a BLDC motor can be seen in Figure 2-3.

Figure 2-3. Typical driver-bridge for a three-phase BLDC motor

The driver stage is implemented slightly different in practice to accommodate for the lacking pos-
sibility to control the high side FETs directly from logic output levels from the AVR. Figure 3-4

U

V

W

1 2 3 4 5 6 1

H1

H2

H3
4
7672A–AVR–09/06

AVR275

AVR275

shows the actual implementation of the driver for each coil. Other implementations can be used
if desired.

Figure 2-4. Driver circuit for the U, V and W motor coils (only U driver shown)

Three PWM channels, OC1A, OC1B and OC1C, control the low side of the driver bridge (e.g. UL
on Figure 2-4. This gives the possibility to control the current flow using hardware based PWMs
with a minimum of timer resources in use. This controls the speed of the motor: by varying the
duty cycle of the PWM output the current flow and thereby the speed (and torque) of the motor is
controlled.

It is also possible to have PWM based control of the high side of the bridge as well, that would
require the AT90USB timer 3 in addition to timer 1. In the implementation distributed with this
application note the high side drivers are controlled by general purpose IO.

If active breaking is used it can be desired to use PWM channels for both high and low side of
the drivers to distribute the power dissipation more evenly over the effect transistors. However,
in most applications this is not required.

A single ADC channel can be use used to measure the current flow (not implemented). The ADC
has a resolution of 10 bits and can use the internal 2.56V reference; this gives an accuracy of
approximately 2.4mV, which is sufficient for over-current detection as the voltage over a 0.22
ohm shunt resistor is 220mV when 1A flows through it. If required the ADC can be triggered by
the PWM to measure current when not switching or run continuously with a given sampling fre-
quency. A second ADC channel can be used to measure a potentiometer voltage for setting the
motor speed (useful if a digital communication interface is not used to control the speed of the
motor).

The Hall sensor outputs are connected to the three pins on PORTE which all features interrupt
on level change (External interrupt). In case of the Hall sensors outputs change their logic levels,
an interrupt is executed and the commutation state corresponding to the new Hall sensor output
is determined

An overview of the resources used are listed in Resources used for motor control
5
7672A–AVR–09/06

Table 1. Resources used for motor control

It is worth mentioning that the hardware resources for USB, UART, SPI and TWI communication
are still available if required. Note that, it is not recommended to use interrupts for communica-
tion, unless the potential effect on the commutation response time is considered first.

2.3 USB interface
The HID (Human Devide Interface) class is used to control the motor speed and direction, it is
possible to start and stop the motor. There is also specific frames to retrieve the measured
speed of the motor through USB. Table 2.2 details usb frames content to interface with the
firmware.

Table 2. Frame used for Usb communication

2.4 Firmware description

All code is implemented in C language using the IAR EWAVR 4.20A. compiler (free up to 4kB of
binary output). This firmware is based on the HID implementation describe in AVR328 (USB
Generic HID Implementation)

The main functions are listed below. Only the most important function used for motor control are
listed. The External Interrupt routine, handling the commutation change upon a change in the
Hall sensor output, is described by flowchart.

void Init_MC_timer1_pwm(void)

Initialize the Timer 1 to run in fast PWM mode.

OCRx is cleared on compare match.

void Init_MC_pin_change_interrupt (void)

Sets up the pins used to sense the Hall sensor signals to generate interrupt if the pin level
changes (both rising and falling edge).

Resource Usage
PORTB[5,6,7] – Timer Counter 1: OC1[A,B,C] Control of low side drivers [UL,VL,WL]
PORTB[2,3,4] Control of high side drivers [UH,VH,WH]
PORTE[5,6,7] Hall sensor input [A,B,C]

Type 1st Data 2ndData 3rd Data 3rd Data 3rd Data Action
OUT 01 don’t care don’t care don’t care don’t care Run the motor
OUT 02 don’t care don’t care don’t care don’t care Stop the motor
OUT 03 0xHH 0xLL don’t care don’t care Set motor speed (speed=OxHHLL)
OUT 04 0xXX don’t care don’t care don’t care Set motor direction (XX=O=CCW or XX=1=CW)

IN 05 0xHH 0xLL
Direction

0xDD
Run/Stop

Status

Get back status
Measured speed=OxHHLL
Direction (DD=O=CCW or DD=1=CW)
Run/Stop (Status = 0xFF = Run , Status = 0x00 = Stop)
6
7672A–AVR–09/06

AVR275

AVR275
void Set_Direction(unsigned char direction)

Set the commutation table pointer up to point at either the clockwise or counter clockwise direc-
tion table. Note that it is not recommended to change direction without first reducing the speed of
the motor, preferably stopping it fully.

void Set_Speed(unsigned int speed)

Update the output compare registers of the timer 1 which control the duty cycle of the PWM out-
put and thereby the speed of the motor. The method used ensures that all PWM channels are
updated at the same time (and keep the same duty cycle).

void Init_Speed_Timer0(void)

Initialize the Timer 0 to overflow at Clkio/1024, Timer 0 (8bits) overflow every 32ms with 8Mhz
Crystal. This time base is used to measure the motor speed.

__interrupt void TIMER0_0VF_ISR(void)

Timer 0 interrupt occurs every 32ms with 8Mhz crystal, Measured_speed variable is updated
there.

void Run_motor(void)

Enable the OCRx output to run the motor

void Stop_motor(void)

Disable the OCRx output to stop the motor, floats the outputs from the AVR connected to the
driver stage. This will disable the drivers to ensure that not current flows into the motor coils.

void Hall_ISR(void)

Update the PWM outputs controlling the low side of the driver and the IO controlling the high
side of the driver. To ensure an optimal speed interrupt the variables used in the interrupt are
placed and in reserved registers (locked for this purpose only). Further, the information required
to do the commutation is placed in tables that can be accessed very efficiently using the Hall
sensor input signals as offset. The interrupt is described by the flowchart in figure Figure 2-5.
7
7672A–AVR–09/06

Figure 2-5. Flowchart of the external interrupt handling the commutation

Read Hall signals

External interrupt

Change PWM output
configuration according to

commutation table.
(uses pointer with hall signal

as offset)

Change high side control
signals according to
commutation table.

(Uses pointer with hall signal
as offset)

Update Count variable used
to monitor the motor speed

Exit

Note that the pointer used to
control the commutation can
point to either a Clock-Wise

or a Counter Clock-Wise
commutation table. The table
holds information about high
side driving and configuration

of timer 1
8
7672A–AVR–09/06

AVR275

AVR275
2.5 PC Software implementation
A PC software (running under Windows 2K and XP) is available allowing to control the motor
speed and direction, it allow to see measured speed too.(see figure below)

2.6 Performance of current implementation
• 10 bit resolution on the speed control.
• Code size is app 3500 bytes.
• Response time to Hall sensor signal changes is below 5us.

External interrupt routine (Hall input) takes app 23 CPU cycles. At 8MHz this gives 17,25us (50 cycles * 6
commutations) by electrical rotation. It gives 3478K electrical rotation per minute, If using a motor with 4
pair of poles it gives a theoretical maximum of 869K mechanical RPM. (if over-current control and com-
munication is not considered).
9
7672A–AVR–09/06

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, and Everywhere You Are® are the trademarks or regis-
tered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications
intended to support or sustain life.

Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Data-
com

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature
 Printed on recycled paper.

7672A–AVR–09/06

	Features
	1. Introduction
	2. Theory of Operation
	2.1 Operation of Fundamental BLDC Motor
	2.2 Implementation - Hall sensor based control of BLDC motor
	2.3 USB interface
	2.4 Firmware description
	2.5 PC Software implementation
	2.6 Performance of current implementation

