General-purpose 1I/0

The simplest type of I/O via the PIC24 uC external pins are
parallel 1I/O (PIO) ports.

A PIC24 uC can have multiple PIO ports named PORTA,
PORTB, PORTC, PORTD, etc. Each 1s 16-bits, and the number

of PIO pins depends on the particular PIC24 uC and package.
The PIC24HJ32GP202/28 pin package has:

PORTA — bits RA4 through RAO
PORTB — bits RB15 through RBO
These are generically referred to as PORTx.

Each pin on these ports can either be an input or output — the
data direction 1s controlled by the corresponding bit in the TRISx
registers (‘1° = mput, ‘0’ = output).

The LATx register holds the last value written to PORTx.

V0.6

PORTB Example

Set the upper 8 bits of PORTB to outputs, lower 8 bits to be inputs:

TRISB = OxO00FF;

Drive RB15, RB13 high;
others low:

PORTB = 0xA000; Test returns true while RB0=0

, . o so loop exited when RB0=1
Wait until input RBO is high: /

while ((PORTB & 0x0001) == 0);

, o , Test returns true while RB3=1
Wait until input RB3 1s low/ s0 loop exited when RB3=0

while ((PORTB & 0x0008) == 1) ;

V0.6 2

PORTB Example (cont.)
Individual PORT bits are named as RB0O, RBI, .. RAO, etc.

so this can be used in C code.

Wait until input RB2 is high:

J—
0);

while (_RB2

Wait until input RB3 i1s low:
while (_RB3

1)

Test returns true while RB2=0
so loop exited when RB2=1.
Can also be written as:

while (! RB2);

Test returns true while RB3=1
so loop exited when RB3=0

Can also be written as:
while (_RB3);

V0.6 3

Vdd Switch Input

PIC24 uC 10K External pullup
RB3 T When switch is pressed
®) RB3 reads as ‘0’, else
— reads as ‘1°.

If pullup not present, then

PIC24 uC don’t do input would float when
this! Lo
RB3 switch 1s not pressed, and

input value may read as
‘0’ or ‘1’ because of
system noise.

G

V0.6 4

PORTx Pin Diagram

External pin shared with
other on-chip modules

TRIS bit controls
tristate control on
output driver ——

Reading LATX reads last
value written; reading
PORTX reads the actual
pin

—>

- Ee " i-p-h-e-l‘-;ll- I-r;p-»LIT-f)ZlEi; T 'E Peripheral Module
Peripheral Module Enable : .~ Output
: v N Multiplexers
Peripheral Output Enable | \ \lL ! wiplex
: " | Output

Peripheral Output Data

Read :
TRIS <|VI |
Data Bus 5) E
WR TRIS |
> CK-_ !
TRIS Latch |
—D Ql—e—
WR LAT + :
wr PORT | T K L P10

Data Latch EMO dule

Read LAT ._< :

Read PORT _<

[/O Pin

' Schmitt

, Trigger Input

L
Digital-only pins are 5 V
input tolerant; analog
shared pins are not.
Figure redrawn by author
from Fig 9-1 found in the
PIC24HJ32GP202/204

datasheet (DST70289A),
Microchip Technology, Inc.

LATX versus PORTx

Writing LATx is the same as writing PORTx, both writes go to
the latch.

Reading LATx reads the latch output (last value written), while
reading PORTx reads the actual pin value.

Configure RB3 as an open-drain

PIC24 uC output, then write a ‘1’ to it.
RB3 " The physical pin is tied to ground, so
it can never go high.

Reading RB3 returns a ‘0’, but
reading LATB3 returns a ‘1’ (the

last value written).

V0.6 6

LATx versus PORTX (cont)

LATBO = 1; (knnpﬂer bset LATB, #0

LATBl = 1; bset LATB, #1

bitset/bitclr instructions are read/modify/write, 1n this case, read
LATB, modify contents, write LATB. This works as expected.

RBO = 1: Compiler bset PORTB, #0

RB1 = 1; bset PORTB, #1

bset/bclr instructions are read/modify/write — in this case, read
PORTB, modify its contents, then write PORTB. Because of
pin loading and fast internal clock speeds, the second bset may
not work correctly! (see datasheet explanation). For this reason,

our examples use LATx when v%roiging to a pin. ;

Aside: Tri-State Buffer (TSB) Review

A tri-state buffer (TSB) has input, output, and output-
enable (OE) pins. Output can either be ‘1°, ‘0’ or ‘Z°
(high impedance).

A Y = —Dﬂ/o— Y
OE j OE =0, then switch closed
OE = 1, then switch open

V0.6 8

Bi-directional, Half-duplex Communication

driver driver
PIC24 uC engbled :} disabled PIC24 uC
TRIS D Q \ QD TRIS
> 0 1 <
data bus data bus
D Q QD
> ’ l <
QD D Q
rd_port < > rd_port
driver driver
PIC24 pC disabled <: enabled PIC24 pC
TRIS D Qg \ QD TRIS
> 0 <
data bus 1 data bus
D Q QD
> ’ r <
QD D Q
rd_port < > rd_port

V0.6 9

Schmitt Trigger Input Buffer

Each PIO input has a Schmitt trigger input buffer; this
transforms slowly rising/falling input transitions into sharp
rising/falling transitions internally.

VILmax=0.2* VDD =0.66 V

| VIHmin=0.8 * VDD =2.64 V

Vin 4@— Vout

Schmitt Trigger VOH- - -
(Vdd=3.3V)

Vout

Vin

V0.6 10

PORTXx Shared Pin Functions

External pins are shared with other on-chip modules. Just
setting TRISx = 1 may be not be enough to configure a
PORTYXx pin as an input, depending on what other modules share

the pin: RB15 shared with AN9, which is

~~ 28] AVDD / an analog mput to the on-chip
271 AVSS Analog-to-Digital Converter
26 [] AN9/RP15/CN11/RBI15

5 251 AN10/RP14/CN12RB14 (ADC). Must disable analog
— CorTmrmrtTm functionality!
PCFGO = 1: < Disables analog function
_TRISB15 = 1; < Configure as input
PCFGO = 1: < Disables analog function
_TRISB15 = 0; < Configure as output

V0.6 11

Analog/Digital Pin versus Digital-only Pin

Pins with shared analog/digital functions have a maximum input
voltage of Vdd + 0.3 V,s03.6 V

Pins with no analog functions (“digital-only” pins) are 5 V
tolerant, their maximum input voltage 1s 5.6 V.

This 1s handy for receiving digital inputs from 5V parts.

Most PIO pins can only source or sink a maximum 4 mA. You
may damage the output pin if you tie a load that tries to
sink/source more than this current.

V0.6 12

Internal Weak Pullups

External pins with a CNy pin function have a weak internal
pullup that can be enabled or disabled.

Change notification input; to

~— 28[] AVDD / enable pullup:
;g % iEE?RPISFCNHIRBIS CNHPUE = 1
o . .
S 25 (] AN10/RP14/CN12/RB14 To disable pullup:
e CN11PUE = 0;
e il | (b) No external
: ' CNyPUE = | VDD : pull-up (¢) Must always have
' (a) Change 0 : " VDD needed for some form of pull-up,
, Notlhuatmn‘|>0/7d P (weak) ! ! \pushbutton or input floats when
' pull-up Weak PUll-up | 1/O Pin | |:> ! ; |:> switch is not pressed.
: Enabled ; ! : \|\ i

V0.6 13

Open Drain Outputs

Each PIO pin can be configured as an open drain output, which
means the pullup transistor 1s disabled.
(a) Normal CMOS driver

(b) Open-Drain (c) Open-Drain Application

. ' PMOS disabled or ! 5V
V_‘:lil (logic 1) ' removed, cannot : R — External
4 + drive output high E PIC 24]{ e Pullup
A [/OPin N\ VoPin vDD=33V
— I : _I > .
—] X A Lo device
—] A — ! [/O Pin that requires
L E L : = 5 V input
Gnd (logic 0) | :

~ODCxy =1 enables open drain, ODCxy = 0 disables open drain

ODCB15 = 1: «—— Enables open drain on RB15

V0.6 14

Port Configuration Macros

For convenience, we supply macros/inline functions that hide pin
configuration details:

CONFIG _RB15 AS DIG OUTPUT() ;

CONFIG _RB15 AS DIG INPUT();

These macros are supplied for each port pin. Because these
functions change depending on the particular PIC24 uC, the
include/devices directory has a include file for each PIC24 uC,
and the correct file is included by the include/pic24 ports.h file.

V0.6 15

Other Port Configuration Macros

Other macros are provided for pull-up and open drain configuration:

ENABLE RB15 PULLUP() ;
DISABLE RB15 PULLUP() ;
ENABLE RB13 OPENDRAIN() ; Output + Open
DISABLE RB13 OPENDRAIN() ;

CONFIG RB8 AS DIG OD OUTPUT(), -

drain config in
one macro

General forms are ENABLE Rxy PULLUP(),
DISABLE Rxy PULLUP(), ENABLE Rxy OPENDRAIN(),
DISABLE Rxy OPENDRAIN(),

CONFIG Rxy AS DIG OD OUTPUT()

A port may not have a pull-up if 1t does not share the pin with a
change notification input, in this case, the macro does not exist and
you will get an error message when you try to compile the code.

V0.6 16

ledflash.c Revisited

#include "pic24 all.h" Defined in device-specific header file in include\devices
directory in the book source distribution.
/** Macro CONFIG RB15 AS DIG OD OUTPUT ()

A simple program that .
ple prog contains the statements TRISB15=0, ODCB15 = 1
flashes an LED. - -

= /

#define CONFIG LED1() : CONFIG RB15 AS DIG OD_OUTPUT(),

| e o e e e e o e e e e e e e e e e e et Mt ht et et e e e |

#define LED1 LATB15

- — LEDI macro makes changing of LEDI pin
int main (void) { assignment easier, also improves code clarity.
configClock () ; //clock configuration

[kkkkkkkkk PIO config **kkkkkkkx*/
CONFIG LED1() ; //config PIO for LED1
LED1 = 0; DELAY MS (ms)macro is defined in

<« common\pic24 delay.c in the book source distribution,

while (1 i
(1) { ms iS a uint32 value.

DELAY MS (250); //delay
LED1 = 'LED1; // Toggle LED
} // end while (1)

V0.6 17

/// LED1, SW1l Configuration
#idefine CONFIG LED1() CONFIG RB14 AS DIG OUTPUT()

#define LED1 LATB14 //ledl state
inline void CONFIG SW1() {
CONFIG RB13 AS DIG INPUT(); //use RB13 for switch input
ENABLE RB13 PULLUP() ; //enable the pull-up
}
#define SW1 RB13 //switch state .
#define SW1 PRESSED() SWl==0 //switch test LED/Switch 10O:
#define SW1 RELEASED() SWl==1 /[/switch test
Count number of
Vdd main () { main () {
weak ...other config... ...other config... preSS/releaseS
pullup CONFIG SW1() ; CONFIG SW1() ;
Input DELAY US(1); DELAY US(1l); //pull-up delay
Switch CONFIG LED1 () ; CONFIG LED1() ;

LED1 = 0;

RBI13
1)|7 while (1) {

LED1 = 0;
while (1) {
// wait for press, loop(l)

if (SW1_PRESSED()) {
PIC24 “C i //switch pressed while (SW1l RELEASED()) ;
— //toggle LED1 DELAY MS(15); //debounce

LED1 = 'LED1 // wait for release, loop(2)
} while (SW1 PRESSED()) ;

RB14 —

} DELAY MS(15); // debounce
AN LED1 = !'LED1l; //toggle LED
}
470 Q2 a. Incorrect, LEDI1 is b. Correct, loop(1) executed while

switch is not pressed. Once pressed,

code becomes trapped in loop(2)

until the switch is released, at which

point LEDI1 is toggled. 18

toggled as long as
— the switch is pushed, which
Count number of could be a long time!
switch presses.

I/O Configuration

/// LED1, 5W1l Configuration
#define CONFIG LED1() CONFIG RBl14 AS DIG OUTFPUT ()

#define LED1 LATB14 f/ledl state

inline wvoid CONFIG SW1 () {
CONFIG RB13 AS DIG INPUT(): f/fuse BB13 for switch input
ENABLE RB13 FULLUF() ; f/fenable the pullup

I

#define SW1 _BRB13 /f/switch state

#$define SW1 PRESSED() SWl==0 [/switch test

#define SW1 RELEASED() SWl==1 [/switch test

Use macros to isolate pin assignments for physical devices so that it 1s
easy to change code if (WHEN!) the pin assignments change!

V0.6 19

Counting # of Press/Releases

Vdd
weak main () {
pullup . .other config..

Input CONFIG SW1():
Switch CONFIG LED1 () ;

RE13 LED1 = 0;
L}_ while (1) {
if [EHI_ERESEED[]] {
PIC24 HC i [/ [ewitch pressed

p— f/toggle LED1
LED]1 = 'LED1

RB14 }

470 €
a. Incorrect, LED1 1s

= toggled as long as

Count number of the switch 1s pushed, which
switch presses. could be a long time!

V0.6

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

main () {

. .0ther config..

CONFIG SW1() :

CONFIG LED1() ;

LED1 = 0;

while (1) {
ff wait for press, loop(l)
while (SW1 RELEASED()):
DELAY MS(15): //debounce
f/ wait for release, loop(2)
while (SW1 PRESSED()):
DELAY MS(15): // debounce
LED1 = 'LED1; //toggle LED

I

b. Correct, loop(1) executed while
switch 1s not pressed. Once pressed,
code becomes trapped in loop(2)
until the switch 1s released, at which
point LED1 1s toggled.

20

State Machine 1I/0

WAIT FOR PRESS

I_ pressed
PIC24uC| 9l sw @Fﬂﬂ_ﬂﬂ@

RB14

RV LEDI pressed

470 © i

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

released

Toggle LEDI1

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

C Code Solution

(¢) The state variable used for ~ (d) configBasic() combines

main () { '« tracking the current state. previously used separate
STATE e mystate; configuration functions into
configBasic (HELLO MSG) ;¢ one function call, defined in
CONFIG_SW1() ; //configure switch common\pic24 util.c
CONFIG_LED1() ; //config the LED _ T
DELAY US(1); //pull-up delay -— (&) Give pull-ups time to work

e mystate = STATE_WAIT FOR_PRESS; «— (f)Initialize e mystate to the first state.
while (1) {

printNewState (e_mystate) ; //debug message when state changes
switch (e mystate) { . . .
case STATE WAIT FOR PRESS: (g) Change state only if switch is pressed.
if (SW1_PRESSED()) e_mystate = STATE WAIT FOR RELEASE;
break;
case STATE WAIT FOR RELEASE:

if (SWL RELEASED()) (h) Toggle LED and change state when

LED1 = !'1LED1; //toggle LE switch is released.

e mystate = STATE_WAIT FOR PRESS;
} . .
break : (1) Put debounce delay at bottom of

default: loop, means that we only look at the
e mystate = STATE WAIT FOR PRESS; switch about every DEBOUNCE DLY
DELAY MS (DEBOUNCE_DLY) ; / /Debounce
doHeartbeat();*1Hhﬁiifnsure that we are alive

} // end while (1) (j) Call doHeartbeat () to keep heartbeat LED pulsing.
}

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

C Code Solution (cont).

. (a) enum type is used to make readable state names.
typedef enum i ; The sTaTE RESET is used to determine when

STATE RESET = ST .. . :
STATE WAIT FOR PRESS main () 1nitializes its state variable to its first
_ . i, r

STATE WAIT FOR RELEASE state.
} STATE;

STATE e lastState = STATE RESET;
//print debug message for state when it changes
void printNewState (STATE e currentState) {

if (e lastState != e currentState) {

switch (e currentState) { ‘ .

case STATE WAIT FOR PRESS: (b) printNewstate () is used to

outString ("STATE WAIT FOR PRESS\n") ; print a message to the
console whenever the state

break;

case STATE WAIT FOR RELEASE: chan ges (when e lastState
outString ("STATE_WAIT FOR RELEASE\n") ; is not equal to e currentState).
break; -

default:

outString ("Unexpected state\n") ;

e lastState = e currentState; //remember last state
Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Y

LEDI off

l SWI f
Press and release

\

LEDI on
{SWlf

Press and release

Vdd
weak
pull-up

[nput
Switch

=
_’T_hm

RBI13

PIC24 uC

RB14
\}lL-EDl

470 Q

i

LEDI1 blink

Vdd

weak
pull-up

released

4

pressed

LEDI On

RB12

l

Slide switch

pressed

4

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

SW1 pressed & released.

Implement as 2 states,
WAIT FOR PRESSI,
WAIT FOR RELEASEI

SW1 pressed & released.

Implement as 2 states,
WAIT FOR PRESS2,
WAIT FOR RELEASE2

A More Complex
Problem

WAIT FOR_RELEASE3

released

Solution, Part 1

typedef enum ({
STATE RESET = 0, STATE WAIT FOR PRESS1, STATE WAIT FOR RELEASEL,
STATE WAIT FOR PRESS2, STATE WAIT FOR . RELEASEZ STATE BLINK,
STATE_WAII_FOR_RELEASEB

} STATE;

int main (void) ({
STATE e mystate;
configBasic (HELLO MSG) ;

CONFIG SW1() ; //configure switch

CONFIG SW2() ; //configure switch

CONFIG LEDI1() ; //config the LED

DELAY US(1); //give pull-ups time to work

e mystate = STATE WAIT FOR PRESSI;

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

while (1) {
printNewState (e mystate) ;
switch (e_mystate) {
case STATE WAIT FOR PRESSI:

//debug message when state changes

Y

LEDI off

Y

LED1 = 0; //turn off the LED
if (SW1 PRESSED()) e mystate = STATE WAIT FOR RELEASEL;
break;

— ysw f

P‘r;.ess and releasze

case STATE WAIT FOR RELEASE1:
if (SW1_RELEASED()) e mystate = STATE WAIT FOR PRESS2;
break;

case STATE WAIT FOR PRESS2: ~
LED1 = 1; //turn on the LED

'

LEDI1 on

if (SW1 PRESSED())e mystate = STATE WAIT FOR RELEASEZ;
break;

Y
— 1 sw1 §

case STATE WAIT FOR RELEASE2:
if (SW1_RELEASED()) {
//decide where to go

Press and release

0 Y
< SW27

if (SW2) e mystate = STATE BLINK; (a) Test SW?2 to 1
else e mystate = STATE WAIT FOR PRESSI1; d .
— — — = etermine next state. — .
} —| LEDI blink
break; +
case STATE BLINK: =
LED1 = ILEDL; //blink while not pressed (D)Needdelay so that

DELAY MS(100); //blink delay «——— LED blinkis visible.
if (SW1 PRESSED()) e mystate = STATE WAIT FOR RELEASE3;
break;

released

case STATE WAIT FOR RELEASE3:

LED1 = 1; //Freeze LED1 at 1
if (SW1_RELEASED()) e mystate = STATE WAIT FOR PRESS1;
break;

default:

e mystate = STATE WAIT FOR PRESS1;

Iy

Console Output for LED/SW Problem

Reset cause: Power-on.
Device ID = OxO00000F1D (PICZ24HJ32GP202), revision 0x00003001 (AZ2)
FastRC Osc with PLL

ledswl.c, built on May 17 2008 at 10:04:40
STATE_WAIT_FOR_PRESS1 Initial state, LED off
STATE WAIT FOR RELEASE1
STATE WAIT FOR PRESS2
STATE WAIT FOR RELEASE2
STATE BLINK

STATE WAIT FOR RELEASES
STATE WAIT FOR PRESS1
STATE WAIT FOR RELEASE1
STATE WAIT FOR PRESS2
STATE WAIT FOR RELEASE2
STATE BLINK

STATE WAIT FOR RELEASE3
STATE WAIT FOR PRESS1
STATE WAIT FOR RELEASE1
STATE WAIT FOR PRESS2
STATE WAIT FOR RELEASE? press

STATE_WI—LIT-FDR-PRESSJ_ ['eleﬂse, SW2 = 0._. S0 bﬂCk 1o WAIT_FOR_FRESSI
STATE WAIT FOR RELEASE1 efc...

STATE WAIT FOR PRESS2

STATE WAIT FOR RELEASE2

STATE WAIT FOR PRESS]1
= — — —

press
release, LED on

press
release, SW2 = 1, so enter BLINK
press, Blink terminated, LED on

release, LED off
press
release, LED on
press

release, SW2 =1, so enter BLINK
press, Blink terminated, LED on
release, LED off

press

release, LED on

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

What do you have to know?

GPIO port usage of PORTA, PORTB
How to use the weak pullups of PORTB
Definition of Schmitt Trigger

How a Tri-state buffer works

How an open-drain output works and what 1t 1s
useful for.

How to write C code for finite state machine
description of LED/Switch 10.

V0.6 28

