USBwiz™
Library Manual

GHI Electronics, LLC

www.ghielectronics.com

Updated — September 6, 2006

http://www.ghielectronics.com/

USBwiz™ USB Devices Made Accessible

Table of Contents

1.The LibDIary. e eeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeee 6
L.1. Getting Started.......eeeeeeeiiiniiiiiiiiiiiiiiiiiiiiieiee 6
1.2. The Library TYPES ..occcoeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 6
1.3. The Library INCLUDESs “Reducing the code Size”........cccceeeviieiiiieiniiniineenne. 6

1.3.1 How To Use Them With The Pic Examples?.......ccccooeeveiiiiiiiiiiiiiiiininnene., 7
1.3.2 _INCLUDE FAT SYSTEM SUPPORTccccoooiiiiiiiniiiiiiiiiiiiiineneee, 7
1.3.3 _INCLUDE _EXTENDED_FAT SYSTEM SUPPORT ... 8
1.3.4 INCLUDE READWRITE WRAPPERS SUPPORTccccovererenneee, 8
1.3.5 INCLUDE TIME WORK SUPPORTcccccouieiiiiiiiiiiiiiiiiiiiiieienee 8
1.3.6 _INCLUDE _STORAGE SECTOR_SUPPORTccccococeiviiiiiiinianennnene. 9
1.3.7 _INCLUDE HID_SUPPORT .iicccoiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieeene 9
1.3.8 INCLUDE PRINTER _SUPPORTcccooeciiiiiiiiiiiiiiiiiiiiiiieieennee, 9
1.3.9 _INCLUDE SERIAL_DEVICES SUPPORTccccooereiiiiiiiiiiinannnenee, 10
1.3.10 _INCLUDE EXTRA COMMANDS SUPPORTcccccceeeveiriniinannenee, 10
1.3.11 INCLUDE OLD_STORAGE FUNCTIONS WRAPPERS SUPPORT_
.. 10
1.4. The Library FUNCHONS. ..ueeieviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiei 11
1.4.1 The Returnl Value.....ccoueeieiiiiiiiiiiiiiiiiiiiiiiiiiiiceeee 11
1.4.2 General FUNCIONS. ..cceeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiieen, 11
1.4.2.1 int16 GHI GetLibraryVersion(void).......oceeveeeeiiieiiiiiniiiniiineeenne, 11
1.4.2.2 int8 GHI GetResult(void)....oooeeeiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieien 11
1.4.2.3 int8 GHI GetVersion(int8* major.int8 * BCDminor
1.4.2.4 int8 GHI SetUSBwizBaudRate(int32 bauderate)..........ccoceeveeneennennne... 12
1.4.3 More functionality.......ccoeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiei 12
1.4.3.1 int8 GHI UpdateFirmware(int8 device)........cccccoeveveiiiiiiiiiiiiinenene. 12
1.4.3.2 int8 GHI ReadDevicelnfo(int8 device, DEVICE INFO* info)............ 12
1.4.3.3 int8 GHI SoftwareReset(void).....coeeveeeriiiviiiiiiiiiniiiiiiiiiiiiiiiiiinnenne. 13
1.4.4 FAT File System FUnCtions........c.oeeeeeeiiiiniiiiiiiiiiiiiiiiiiiiiiiiieeeee, 13
1.4.4.1 int8 GHI MountFATFileSystem(int8 device).......c.ccoeeevevveieineinnennee... 13
1.4.4.2 int8 GHI SwitchDevice(int8 device)......occeeeviieiiniiiiiiiiiiiieieeeee, 13
1.4.4.3 int8 GHI_ChangeDirectory(int8* filename)...........oceeeveeieeiieiineennene... 14

1.4.4.4 1nt8 GHI_MakeDlrecto int8* ﬁlename

1.4.4.6 int8 GHI_ _SendWriteCommand(int8 filehandle, int32 desneddatasme) 14
1.4.4.7 int8 GHI SendReadCommand(int8 filehandle, int32 desireddatasize,

INt8 FIIET) i 15
1.4.4.8 int8 GHI GetReadAndWriteResult(int32 * actualdatasize).................. 15
1.4.4.9 int8 GHI_CloseFile(int8 filehande).......cccceeeeiieiiniiiiiiiiiiiiiiiine 16
1.4.4.10 int8 GHI_ DeleteFile(int8 *filename)........ccceeeeeeeiieeneiiiiiiiieenee, 16

1.4.5 The Extended FAT File System Functions.........ccoeeeeeeeeieiiiininiiiininnne, 16
1.4.5.1 void GHI StartMediaStatistics (VOId)...ocoeeeviiieiiniiiniiiiiiiiniiieiiniinenen 16
1.4.5.2 int8 GHI_GetResultMediaStatistics(int32 * size, int32 * free).............. 17
1.4.5.3 void GHI StartQformat(void)....ccceeeeeiiviiiiiiiiiiiiiiiiiiiiiiiiiiineinen 17
1.4.5.4 int8 GHI InitGetFile(void)...cccceeiiiiiiiiiniiniiniiiiiiiiiiiiiiiiiniine 17

Copyright 2006 GHI Electronics, LLC. 2 of 54

USBwiz™ USB Devices Made Accessible

1.4.5.5 int8 GHI_GetNextFile(int8 * file name, int8 * file ext, int8 *attributes,

INE32 * S1Z€).eceeieiiiiiiiiiiiiiiiiiiie e 17
1.4.5.6 int8 GHI RemoveDirectory(int8* filename)........c.oeeeeveeiriiiviieiinennen. 17
1.4.5.7 int8 GHI SendReadWriteFileCommand(int8 readhandle, int8

writehandle, iNt32 SI1Z€).....ccceueiieieiiiiiiiiieiiee e, 18
1.4.5.8 int8 GHI SendShadowWriteTwoFiles(int8 firstfilehandle, int8

secondfilehandle, int32 desireddatasize)........c.ccceeeveiiiiiniiiiiiiniiiiiiiiiin, 18
1.4.5.9 int8 GHI GetShadowWriteTwoFileResults(int8 *fresultl, int8

*fresult?, int32 *writtendatal, int32 *writtendata2)........ccceeeeeeeiieeiiiiieiiieeieneennes 18

1.4.5.10 int8 GHI SendShadowWriteThreeFiles(int8 firstfilehandle, int8
secondfilehandle, int8 thirdfilehandle, int32 desireddatasize

1.4.5.11 int8 GHI GetShadowWriteThreeFileResults(int8 *fresultl, int8
*fresult?, int8 *fresult3. int32 *writtendatal, int32 *writtendata2, int32

Fwrittendatald)...ooooeeiiiiiiiiiii 19
1.4.5.12 int8 GHI SeekFile(int8 filehandle, int32 newposition

1.4.5.13 int8 GHI GetPointerPosition(int8 filehandle, int32 *sector, int16*
POSItIONINSECEOT). eeeerreietieeetie ettt eiee ettt se e e e e eeee e 20

1.4.5.14 int8 GHI SplitFile(int8 sourcehandle, int8 desthandlel, int8
desthandle?, int32 splitposition, int32 * actualdestsizel, int32 * actualdestsize2)

... 21
1.4.5.15 int8 GHI_FlushFile(int8 filehandle)........ccocceeeieiiiieiiiiiiiieenene 21
1.4.5.16 int8 GHI GetFileInfo(int8 *filename, int32 *size, int8 *attributes,

INt32 *TIMeDAe)..cueeieiiiiiiiiiiiiiiiiiiiiiie 21

1.4.5.17 1nt8 GHI RenameFlle int8 *filename.int8 *newname

1.4. 6 erte/ R s ", 22
1.4.6.1 int8 GHI_ReadFile(int8 handle, int8 *buffer, int32 size, int8 filler, int32
*actualdatasizZe). . .oceeeeeiiiiiiiiiiiiii 22
1.4.6.2 int8 GHI_WriteFile(int8 handle, int8 *buffer, int32 size,
int32*actualdatasize).....ooeeeeiieiiiniiiiiiiiiii e 23
1.4.7 Real Time Clock WOrk fUnCtionS......eeueeeeueeiinieiiieiiiieeiiiiiiiiieiiieeiieiin 23
1.4.7.1 int8 GHI InitializeTime(int8 backup)......ccceeeeieieiiiiiiiiiiiiiiiiiinee
1.4.7.2 int8 GHI_SetTime(int32 time).....cceeeeeeeniieiiiiiiiiiiieiieieeiieeeee, 24
1.4.7.3 int8 GHI_GetTime(int32 * time).....ccceeeeeeieenniiiiiiiiiiiiieiiiienne, 24
1.4.7.4 int8 GHI GetFormattedTime(int8 *buffer)..............oocoooeeviiviieinin. 24
1.4.7.5 int32 GetFATTimeStructure(int32 year, int32 month, int32 day, int32
hours, int32 minutes, iNt32 SECONAS)...couueererreiiiiiiieiiiiiiiiie e, 24
1.4.8 Sector Storage fUNCHONS. ..ecueereiieiiiiiiiiiiiiiiiiiiieeeeee 25
1.4.8.1 int8 GHI RegisterSD(VOId).oooeeeieuiiieiiiiiiiniiiiiiiiiiiiiiiiniiiiiiinenn 25
1.4.8.2 int8 GHI RegisterUSBMassStorage(int8 device).......ceceeeeeuieneeneenee... 25
1.4.8.3 int8 GHI _ReadSector(int32 SECtOrMUM)....ccveeereieeeeiiieieieeiiieiieieenene, 26
1.4.8.4 int8 GHI WriteSector(int32 S€CtOrnUM)....ceeeveeseeieiieieiiiiieiieeneenee, 26
1.4.8.5 int8 GHI_SwitchDevice(int8 device).......coeeeeeeiieeiiiiiiiiiiiiiiieienee 26
1.4.9 Using USB HID Devices (Mouse. keyboard, joystick...)..c..cccceeveveineneen.... 26
1.4.9.1 int8 GHI_RegisterHID(nt8 device)......coeeeeeieriiiieeniiiiiiiiiiieiieennee 27

Copyright 2006 GHI Electronics, LLC. 3 of 54

USBwiz™ USB Devices Made Accessible

1.4.9.2 int8 GHI_PrepareHIDReport(int8 device, int8 requested size, int8 *

ACtUAl TEPOTESIZE)..veeerineriiiiiiiiiiiiiiiiiiiiiee e, 27
1.4.10 USINg USB Printers....cceeeeeieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeieeeee, 27
1.4.10.1 int8 GHI RegisterPrinter(int8 device)......oceeeeeerieieienieiieiiieieaneene, 28
1.4.10.2 int8 GHI ResetPrinter(int8 device)......coeeueeeeeieeniiiiieiieiiieienne. 28
1.4.10.3 int8 GHI GetPrinterStatus(int8 device, int8 * status)...........cceeeeeeee.... 28
1.4.10.4 int8 GHI_PrinterPrint(int8 device, int8 S17€).......cccceevereeiriieienenennnnes. 28
1.4.11 Using Serial DeVICES....cueueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieieieeciens 28
1.4.11.1 int8 GHI RegisterSerialDevice(int8 device, int8 type, int32 baudrate)
... 29
1.4.11.2 int8 GHI_Serial Write(int8 device, int8 SiZe).......cccceeeeeereeeneieneinennneee. 29
1.4.11.3 int8 GHI SerialRead(int8 device, int8 *sent data size)..................... 29
1.4.12 Old FUNCHONS. .eeuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeee, 29
1.4.12.1 int8 GHI BL_LoadFirmware(int8 drive)........ccceceeieeeeieiieiiiiinnnnens 30
1.4.12.2 int® GHI GetResults(vOoid)..o.oooveeueieriiiiiiiiiiiiniiiiiiiiiiiiiiiiniiiinin, 30
1.4.12.3 int8 GHI SetARMBaudRate(int32 bauderate).........cccceeeeeiennrnnenee... 30

1.4.12.4 int8 GHI AttachStorageMedia(int8 device, int8 deviceorder, int8

1.4.12.7 int8 GHI MountFileSystem(int8 filesystemorder, int8 device, int8

AeVICEOTART). vt 31
1.4.12.8 int8 GHI SwitchFileSystem(int8 filesystemorder):........c.ccoceveeee...... 31
1.4.12.9 int8 GHI EnumurateUSBDevicetoRootHub(int8 usbport, int8

usbdevicehandle).....oooeeeeeiieiiiiiiiiiiiiiiiiiiiiiii 31
1.4.12.10 int8 GHI ReleaseUSBDeviceHandle(int8 usbdevicehandle)............ 31

1.4.12.11 int8 GHI RegisterMassStorageDevice(int8 usbdevicehandle, int8

1.4.12.13 int8 SwitchToFATMedia(int8 Driveletter)......ooovviiiiiiiiiiiiiiiiiiiieeenne. 32
1.4.12.14 int8 GHI GetResultsQformat(void).....oceeeeeeriiiniiiiiiiiiiiiininnennen 32
2 D IVET FUNCHIONS ¢ttt ettt ettt et ettt ettt e ettt e e et ettt eeteeeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeeees 33

3.1.Simple file Write/read PrOCESS. .uuuiiiiiiiiiueeiiiiiiiiiiiiiiiiiieiiieiiiiiieieeeeeeeieiieeeen 36
3.2.Read/Write WIAPPEIS t.ooueeiiiiieiiiiiiiiiiiiiiiiiieiiieee e e eeeeeeeeieeeeeeieee e, 37
33.Enumerating FileS......oooeeuuviieiiiieieeeeeeeeeeeeeeeeanns 38
3.4.Read and write SIMUItANEOUSIY....eeiiiiueeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieieeeeeeeeeeeaenn 39

Copyright 2006 GHI Electronics, LLC. 4 of 54

USBwiz™ USB Devices Made Accessible

3.5.Write to multiple files simultaneously *“ Shadow Writing”........ccceceeeevveeeeinnnnnnn... 40
3.6.Real Time CIOCK . .cuvuiiiiiiiiiiiiiiiiiiiiiii e 41
3.6.1 Using the FAT Time Structure dir€CtlV....ouveeeiiiiiiiiiivniiiiiiiiiiiiiiiiieeeiiiiiiinnnnn, 41

3.6.2 Another way to use the FAT Time Structure.........cooevvveiiiiieiiiiiiiiiiiineeennn.. 43
3.7.HIDs (Mouse, kevboard, ...).......ccooeeuvvviiiiiiiiiiiiiiiniiiiiiiiiiiiiiiieiiiiiiiiiiiiieeeeeeieenns 43
BB PIINECTS. oo euuviiiiiiieiei ettt 44
3.9.5€r1al DEVICES. iiiouuuueeiiiiiiiiiiiiiiiiiiiiiiiiieieiieeeeie et 48
ADPPENAIX Aottt 50
FAT Time StruCtUre...oceiiiieeeeiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiiieeeeeeeieeiiieeeeeeeeeiiieeeeeeeeeieieeens 50
FAT Attribute StruCtUI€.....oceieueiiiiiiiiiiiiiiiiiiiiiiiii e 50
Appendix B: ErrOr COd@S. uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieiieeeeeieieeeeeeeeiiieee 52

Copyright 2006 GHI Electronics, LLC. 5 of 54

USBwiz™ USB Devices Made Accessible

11. Getting Started

When you download USBwiz_lib.zip file you will get a complete MPLAB project
for MCC18 compiler. To get the library going to your system, you need to rewrite
or modify GHI inter.c. Use the file PIC example.c as a starting point for you
application. The final ‘C’ file is USBwiz _lib.c. You shouldn’t need to make any
changes on this file.

1.2. The Library TYPEs

First thing you need to know is that we define our own variable types. These types
are in “types.h” This file also includes the type of project options. Take a look at
it.

int8 0 to 255 1
int16 | 0 to 65535 2
int32 | 0to4,294,967,295 |4

1.3. The Library INCLUDEs “Reducing the code
size”

USBwiz has a lot of functionality, and so is the library. Depending on the product
requirements, you might not use all this functionality. Furthermore, if the product
memory is relatively small to include all of the library and the user code, you
might want to exclude the library functions that are not used.

For example, if the product communicates with HID and Serial Devices, you can
conveniently exclude the storage driver from the library to reduce the code size.
This is easily done using the INCLUDE defines at the top of “USBwiz_lib.h”

list of the available support
#define _INCLUDE_EXTRA_COMMANDS_SUPPORT _
#define _INCLUDE_FAT SYSTEM SUPPORT
#ifdef INCLUDE FAT SYSTEM SUPPORT
#define _INCLUDE_EXTENDED FAT SYSTEM SUPPORT

#define _INCLUDE _READWRITE WRAPPERS SUPPORT _
#endif

Copyright 2006 GHI Electronics, LLC. 6 of 54

USBwiz™ USB Devices Made Accessible

#define INCLUDE_TIME_WORK_SUPPORT _
#define _INCLUDE_STORAGE_SECTOR_SUPPORT _

#define INCLUDE HID SUPPORT _

#define INCLUDE PRINTER SUPPORT

#define INCLUDE_SERIAL DEVICES SUPPORT _

// Do not use unless necessary

// #define

_INCLUDE OLD STORAGE FUNCTIONS WRAPPERS SUPPORT

In the previous example, you can easily exclude the FAT support by commenting
the following line: // #define INCLUDE FAT SYSTEM SUPPORT

1.3.1 How To Use Them With The Pic Examples?

When the library is downloaded you get a complete MPLAB project for MCC18
compiler. To reduce the code size on the pic, you can also use the INCLUDEs
defines; When commenting a INCLUDE, you exclude the library functions as
well as the corresponding example.

Note: There is some dependency in the examples. If you exclude the FAT system,
the printer example won't compile. Because the printer example reads a file from
a storage media.

So if you want to use the examples and exclude the FAT SUPPORT, you have to
exclude the PRINTER SUPPORT to let the code compile.

NOTE: The file system tests require that you include any extended INCLUDE
SUPPORT for FAT system and TIME WORK SUPPORT as well.

1.3.2 INCLUDE_FAT_SYSTEM_SUPPORT _

If defined the following functions are available:

int§ GHI_MountFATFileSystem(int8 device);

int8 GHI_SwitchDevice(int8 device);

int§ GHI_ChangeDirectory(int8* filename);

int8 GHI_MakeDirectory(int8* filename);

int8 GHI_OpenFile(int8 filehandle, int8 *filename, int8 openmode);

int8 GHI SendReadCommand(int8 filehandle, int32 desireddatasize, int8 filler);
int§ GHI_SendWriteCommand(int8 filehandle, int32 desireddatasize);

int8 GHI_GetReadAndWriteResult(int32 * actualdatasize);

int§ GHI_CloseFile(int8 filehande);

int8 GHI_DeleteFile(int8 *filename);

Copyright 2006 GHI Electronics, LLC. 7 of 54

USBwiz™ USB Devices Made Accessible

1.3.3 _INCLUDE_EXTENDED FAT_SYSTEM_SUPPORT_

If defined the following functions are available:

void GHI_StartMediaStatistics (void);

int8 GHI_GetResultMediaStatistics(int32 * size, int32 * free);

void GHI_StartQformat(void);

int8 GHI_InitGetFile(void);

int8 GHI_GetNextFile(int8 * file name, int8 * file ext, int8 * attributes, int32 *

size);

int§ GHI_RemoveDirectory(int8* filename);

int8 GHI_SendReadWriteFileCommand(int8 readhandle, int8 writehandle, int32

size);

int8 GHI_SendShadowWriteTwoFiles(int8 firstfilehandle, int8 secondfilehandle,

int32 desireddatasize);

int8 GHI_GetShadowWriteTwoFileResults(int8 *fresultl, int8 *fresult2, int32
*writtendatal, int32 *writtendata2);

int8 GHI_SendShadowWriteThreeFiles(int8 firstfilehandle, int8 secondfilehandle,

int8 thirdfilehandle, int32 desireddatasize);

int8 GHI_GetShadowWriteThreeFileResults(int8 *fresultl, int8 *fresult2, int8
*fresult3, int32 *writtendatal, int32 *writtendata2, int32 *writtendata3);

int8 GHI_SeekFile(int8 filehandle, int32 newposition);

int8 GHI_GetPointerPosition(int8 filehandle, int32 *sector, int16

*positioninsector);

int8 GHI_SplitFile(int8 sourcehandle, int8 desthandlel, int8 desthandle2, int32
splitposition, int32 * actualdestsizel, int32 * actualdestsize2);

int8 GHI_FlushFile(int8 filehandle);

int8 GHI_GetFileInfo(int8 *filename, int32 *size, int8 *attributes, int32

*TimeDate);

int8 GHI_RenameFile(int8 *filename,int8 *newname);

int8 GHI_SetFileSize(int8 filehandle,int32 newsize);

1.3.4 INCLUDE_READWRITE_ WRAPPERS_SUPPORT _

If defined the following functions are available:

int8 GHI_ReadFile(int8 handle, int8 *buffer, int32 size, int8 filler, int32
*actualdatasize);
int8 GHI_WriteFile(int8 handle, int8 *buffer, int32 size, int32 *actualdatasize);

1.3.5 INCLUDE_TIME_WORK_SUPPORT _

If defined the following functions and structures are available:

Copyright 2006 GHI Electronics, LLC. 8 of 54

USBwiz™ USB Devices Made Accessible

int8 GHI_InitializeTime(int8 backup);
int8 GHI_SetTime(int32 time);
int8 GHI_GetTime(int32 * time);
int8 GHI_GetFormattedTime(int8 *buffer);
typedef struct
{
int32 seconds2:5; // seconds divided by 2
int32 minutes:6;
int32 hours:5;
int32 day:5;
int32 month:4;
int32 years_since 1980:7;
}FAT Time Structure;
int32 GHI GetFATTimeStructure(int32 year, int32 month, int32 day, int32 hours,
int32 minutes, int32 seconds);

1.3.6 _INCLUDE_STORAGE_SECTOR_SUPPORT_

If defined the following functions are available:

int§ GHI_RegisterSD(void);

int8 GHI RegisterUSBMassStorage(int8 device);
int8 GHI_ReadSector(int32 sectornum);

int8 GHI_WriteSector(int32 sectornum);

int8 GHI_SwitchDevice(int8 device);

1.3.7 _INCLUDE_HID_SUPPORT _

If defined the following functions are available:

int8 GHI_RegisterHID(int8 device);
int§ GHI_PrepareHIDReport(int8 device, int8 requested_size, int8 *
actual reportsize);

1.3.8 _INCLUDE_PRINTER_SUPPORT _

If defined the following functions are available:

int8 GHI_RegisterPrinter(int8 device);

int8 GHI_ResetPrinter(int8 device);

int8 GHI GetPrinterStatus(int8 device, int8 * status);
int8 GHI_PrinterPrint(int8 device, int8 size);

Copyright 2006 GHI Electronics, LLC. 9 of 54

USBwiz™ USB Devices Made Accessible

1.3.9 INCLUDE_SERIAL_DEVICES_SUPPORT _

If defined the following functions are available:

int8 GHI_RegisterSerialDevice(int8 device, int8 type, int32 baudrate);
int8 GHI_SerialWrite(int8 device, int8 size);
int8 GHI_SerialRead(int8 device, int8 *sent data_size);

1.3.10 _INCLUDE_EXTRA_COMMANDS_SUPPORT _

If defined the following functions and structures are available:
int8 GHI_UpdateFirmware(int8 device);
typedef struct

intl6 vendor id;

intl6 product id;

int8§ number of interfaces;

int8 interfacel class;

int8 interfacel subclass;

int8 interfacel protocol;
}DEVICE_INFO;

int8 GHI_ReadDevicelnfo(int8 device, DEVICE INFO* info);
int8 GHI_SoftwareReset(void);

1.3.11 _INCLUDE_OLD_STORAGE_FUNCTIONS_WRAPPER
S_SUPPORT_

If defined the following functions are available:

int8§ GHI BL LoadFirmware(int8 drive);

int8 GHI GetResults(void);

int8 GHI_SetARMBaudRate(int32 bauderate);

int8 GHI AttachStorageMedia(int8 device, int8 deviceorder, int8 LUN);

int8 GHI_ReadSectorFromCurrentFileSystem(int32 sectornum);

int8 GHI WriteSectorFromCurrnetFileDydtem(int32 sectornum);

int8 GHI_MountFileSystem(int8 filesystemorder, int8 device, int8 deviceorder);
int8 GHI SwitchFileSystem(int8 filesystemorder);

Copyright 2006 GHI Electronics, LLC. 10 of 54

USBwiz™ USB Devices Made Accessible

int8 GHI_EnumurateUSBDevicetoRootHub(int8 usbport, int8 usbdevicehandle);

int8 GHI_ReleaseUSBDeviceHandle(int8 usbdevicehandle);

int8 GHI_RegisterMassStorageDevice(int8 usbdevicehandle, int8
massstoragedevicehandle, int8 *lastLUN);

int8 InitializeFATMedia(int8 DriveLetter);

int8 SwitchToFATMedia(int8 DriveLetter);

int8 GHI_GetResultsQformat(void);

1.4. The Library Functions

1.4.1 The Return Value

Most of the functions returns an . This is a USBwiz Error Code, unless
otherwise indicated. Error codes are listed in ErrorCode.h.
Any other return values will be explained in the functions documentation below.

1.4.2 General Functions

1.4.2.1 GHI_GetLibraryVersion(void)

Gets the library version number.

: 2 bytes number in BCD format.
ex: if the return value is 0x205 the version number is 2.05

1.4.2.2 GHI_GetResult(void)

Gets any error codes sent by USBwiz. It must be called after using some
functions. Refer to the functions documentation below.

1.4.2.3 GHI_GetVersion(major, BCDminor)

Obtaining the latest version is very useful and very important. Always keep
USBwiz updated with latest firmware.

major: A pointer to return the major release number
BCDminor: This is a BCD number that represent the minor release.

Copyright 2006 GHI Electronics, LLC. 11 of 54

USBwiz™ USB Devices Made Accessible

For example: 0x12 = version x.12
0x32 = version x.32
0xDS= invalid value and will never happen!

1.4.2.4 GHI_SetUSBwizBaudRate(bauderate)

To set the baudrate:

1. Change USBwiz baudrate using this function.

2. If successful the user should change the interface baudrate.
3. Then GHI GetResult() must be called to get any errors.

baudrate: The new baudrate

1.4.3 More functionality

These functions adds more functionality for the user.

Make sure INCLUDE_EXTRA COMMANDS SUPPORT is defined at the
top of USBwiz_lib.h to be able to use these functions.

1.4.3.1 GHI_UpdateFirmware(int8 device)

This function updates the firmware from the specified media.

device: This can be SD_DEVICE, USB DEVICE PORT 0 or
USB_DEVICE PORT 1.

1.4.3.2 GHI_ReadDevicelnfo(int8 device,
info)

This function reads a USB device information.
Note: Only the first interface is stored in the info structure.

device: This can be SD_DEVICE, USB_DEVICE PORT 0 or
USB_DEVICE PORT 1.

info: This is a pointer of a structure to hold the information of a USB device.
It is defined as follows:

typedef struct
{

Copyright 2006 GHI Electronics, LLC. 12 of 54

USBwiz™ USB Devices Made Accessible

intl6 vendor id;

intl6 product id;

int8 number of interfaces;

int8 interfacel class; // only get the first interface
int8 interfacel subclass;

int8 interfacel protocol;

} ;

1.4.3.3 GHI_SoftwareReset(void)

Resets USBwiz firmware.

1.4.4 FAT File System Functions

Before you can handle files on a specified media, The FAT file system must be
mounted first. This can be accomplished using GHI MountFATFileSystem().
Then you can immediately use the other functions.

When you use another media and mount the file system on it, you will be working
with that media by default. You can switch between the different medias using
GHI_SwitchDevice().

Make sure INCLUDE FAT SYSTEM_ SUPPORT is defined at the top of
USBwiz_lib.h to be able to use the following functions.

1.4.41 GHI_MountFATFileSystem(ints device)

Before manipulating files on the media, this function must be called

device: This can be SD_DEVICE, USB DEVICE PORT 0 or
USB_DEVICE PORT 1.

1.4.4.2 GHI_SwitchDevice(int8 device)

Tells USBwiz to switch between different medias when connected to different
ports.

This function should be called every time you are switching to another media for
getting information or any file handles. You only need to call it once if using the
same media.

Note: After using GHI MountFATFileSystem(int8 device);, you are by default
using that device and don't need to switch to it!

Copyright 2006 GHI Electronics, LLC. 13 of 54

USBwiz™ USB Devices Made Accessible

device: This can be SD_DEVICE, USB_DEVICE PORT 0 or
USB_DEVICE PORT 1.

1.4.4.3 GHI_ChangeDirectory(filename)

Changes the current access to a pre-existed directory (folder) on the connected
media.

filename: A null terminated string with the directory name.

14.4.4 GHI_MakeDirectory(filename)

Creates a new directory (folder) on the connected media. The name must be
unique over the current directory span.

filename: A null terminated string with the directory name.

1.4.4.5 GHI_OpenfFile(ints filehandle, filename,
openmode)

filehandle: USBwiz supports 4 file handles. This value can be any of the

following:

 FILE HANDLE 0

 FILE HANDLE 1

 FILE HANDLE 2

 FILE HANDLE 3.

filename: The name has to comply with 8.3 standard (ex:FILE1234.TXT)

openmode: Three modes for opening files:

* FILE READ MODE to open an existing file for read.

 FILE WRITE MODE to open new file for read and if the file exists it will
delete it first

* FILE APPEND MODE to open a file that existed and append new data to it.

1.4.4.6 GHI_SendWriteCommand(ints filehandle,
desireddatasize)

Writing data to files happen in multiple stages.
1.0pen a file for write or append
2.Send write request GHI_SendWriteCommand()

Copyright 2006 GHI Electronics, LLC. 14 of 54

USBwiz™ USB Devices Made Accessible

3.If previous command passed, send your data. You can’t stop USBwiz at this
point and you have to send all your data. This is why we recommend smaller data
blocks.

4.When finished, USBwiz will return the results. Use
GHI_GetReadAndWriteResult() to query the write results.

filehandle: USBwiz supports 4 file handles. This value can be any of the
following:

« FILE HANDLE 0

 FILE HANDLE 1

* FILE HANDLE 2

« FILE HANDLE 3

desireddatasize: How many bytes are needed.

1.4.4.7 GHI_SendReadCommand(ints filehandle,
desireddatasize, filler)

Similar to writing data, reading data from files happen in multiple stages.
1.0Open a file for read

2. Send read request (GHI_SendReadCommand)

3. If previous command passed, USBwiz will return the data from the file. It will
send “desireddatasize” bytes

4. When finished, USBwiz will return the results. Use
GHI_GetReadAndWriteResult() to query the write results.

If USBwiz failed to read the data from the file it will send back the bytes as
“filler”. For example, if USBwiz said it can read 10 bytes but it was able to read
only 8, it will send 8 bytes actual data from a file and 2 filler bytes.

filehandle: USBwiz supports 4 file handles. This value can be any of the
following:

 FILE HANDLE 0

 FILE HANDLE 1

 FILE HANDLE 2

 FILE HANDLE 3

desireddatasize: How many bytes are needed.

filler: The filler can be any value of your choice.

1.4.4.8 GHI_GetReadAndWriteResult(actualdatasize)

After sending a write or read request and finish processing the data, USBwiz will
try its best to process all the data. In some case, the file write or read could fail, if
the media is full for example. This function tells you how many bytes the read or
write command was able to process.

Copyright 2006 GHI Electronics, LLC. 15 of 54

USBwiz™ USB Devices Made Accessible

After writing, some data maybe buffered inside USBwiz and you have to flush the
file before 100% of the data exist in the card.

actualdatasize: A pointer to int32 that returns how many bytes were actually

written/read. In most cases the returned value is the same as “datasize”
requested for write or read.

1.4.4.9 GHI_CloseFile(ints filehande)

Flushes all buffered data to the media and closes the handle.

filehandle: USBwiz supports 4 file handles. This value can be any of the
following:

 FILE HANDLE 0

« FILE HANDLE 1

« FILE HANDLE 2

« FILE HANDLE 3

1.4.4.10 GHI_DeleteFile(filename)

Delete a file from the media. The file must exist and it shouldn’t be opened by
any handle. USBwiz doesn’t check if the file is opened by a handle.

filename: A null terminated string with the file name.

1.4.5 The Extended FAT File System Functions

These functions can be used with regular FAT functions. They just add more
functionality.

Make sure INCLUDE EXTENDED FAT SYSTEM_ SUPPORT is defined at
the top of USBwiz_lib.h to be able to use the following functions.

1.4.5.1 GHI_StartMediaStatistics (void)

Depending on the media size, this function could take couple seconds to finish.
This function will obtain how many sectors the media has and how many free
ones. Must call GHI GetResultMediaStatistics() to obtain these values after
calling the first function.

Copyright 2006 GHI Electronics, LLC. 16 of 54

USBwiz™ USB Devices Made Accessible

1.4.5.2 GHI_GetResultMediaStatistics(size,
free)

After sending GHI_StartMediaStatistics, use this function to obtain the size of the
media and the free space size.

size: A pointer to return the media size in sectors.
free: A pointer to return the free space in sectors.

1.4.5.3 GHI_StartQformat(void)

Tells USBwiz to format the media. Formatting could take a few seconds to finish.
When done GHI_GetResult() must be called which returns any errors.

1.4.5.4 GHI_InitGetFile(void)

This function must be called once before using GetNextFile() to go to the first
entry in the current directory.

1.4.5.5 GHI_GetNextFile(file_name, file_ext,
attributes, size)

In some applications, it would be useful to obtain a list of available files. Use
GHI _InitGetFile() once and then keep pooling GHI GetNextFile() until you have
read all directories. You can access files in between GHI GetNextFile() calls.
file_name: A non-null terminated string size 8.

file ext: A non- null terminated string size 3 with file extension.

attributes: File Attributes are one byte Standard Attribute Structure in FAT
system.

size : The file size in bytes.

Note: ERROR_END OF DIR LIST value is returned if all of files are read.

1.4.5.6 GHI_RemoveDirectory(filename)

The directory should be empty before deleting it.

filename: Null terminated string with the file name.

Copyright 2006 GHI Electronics, LLC. 17 of 54

USBwiz™ USB Devices Made Accessible

1.4.5.7 GHI_SendReadWriteFileCommand(int8 readhandle,
writehandle, size)

A very effective way to read a file and write it to another file, even if the files are
on different medias. If successful, USBwiz will return the results. Use
GHI_GetReadAndWriteResult() to query the write results.

readhandle: A handle of the file that is open in read mode. This value can be any
of the following:

 FILE HANDLE 0

« FILE HANDLE 1

« FILE HANDLE 2

« FILE HANDLE 3

writehandle: A handle of the file that is open in write/append mode. This value
can be any of the following:

 FILE HANDLE 0

« FILE HANDLE 1

« FILE HANDLE 2

« FILE HANDLE 3

size: The size of write/read data in bytes

1.4.5.8 GHI_SendShadowWriteTwoFiles(ints firstfilehandle,
secondfilehandle, desireddatasize)

Very effective way to write the same data to two files simultaneously. Even if the
files are on different medias. If successful, the user should send all the data .
Then GHI GetShadowWriteTwoFileResults() must be called to query for the
write results.

firstfilehandle: First file handle that is open for write. This value can be any
valid file handle.

secondfilehandle: Second file handle that is open for write. This value can be
any valid file handle.

desireddatasize: Size of data to write to the files.

1.4.5.9 GHI_GetShadowWriteTwoFileResults(fresult1,
fresult2, writtendata1, writtendata2)

After sending a write request and finish processing the data, USBwiz will try its
best to process all the data. In some case, the file write could fail, if the media is
full for example. This function tells you how many bytes the write command was
able to process.

Copyright 2006 GHI Electronics, LLC. 18 of 54

USBwiz™ USB Devices Made Accessible

After writing, some data maybe buffered inside USBwiz and you have to flush the
file before 100% of the data exist in the card.

fresultl: A pointer to hold error code for writing the first file.

fresult2: A pointer to hold error code for writing the second file.

writtendatal: A pointer to int32 that returns how many bytes were actually written

to the first file. In most cases the returned value is the same as “datasize”
requested for the write process.

writtendata2: A pointer to int32 that returns how many bytes were actually

written to the second file. In most cases the returned value is the same as

“datasize” requested for the write process.

1.4.5.10 GHI_SendShadowWriteThreeFiles(
firstfilehandle, secondfilehandle, thirdfilehandle,
desireddatasize)

Very effective way to write the same data to three files simultaneously. Even if
the files are on different medias. If successful, the user should send all the data .
Then GHI GetShadowWriteThreeFileResults() must be called to query for the
write results.

firstfilehandle: First file handle that is open for write. This value can be any
valid file handle.

secondfilehandle: Second file handle that is open for write. This value can be
any valid file handle.

thirdfilehandle: Third file handle that is open for write. This value can be any
valid file handle.

desireddatasize: Size of data to write to the files.

1.4.5.11 GHI_GetShadowWriteThreeFileResults(
fresult1, fresult2, fresult3, writtendata1,
writtendataz, writtendata3)

After sending a write request and finish processing the data, USBwiz will try its
best to process all the data. In some case, the file write could fail, if the media is
full for example. This function tells you how many bytes the write command was
able to process.

After writing, some data maybe buffered inside USBwiz and you have to flush the
file before 100% of the data exist in the card.

fresultl: A pointer to hold error code for writing the first file.

fresult2: A pointer to hold error code for writing the second file.
fresult3: A pointer to hold error code for writing the third file.

Copyright 2006 GHI Electronics, LLC. 19 of 54

USBwiz™ USB Devices Made Accessible

writtendatal: A pointer to int32 that returns how many bytes were actually written

to the first file. In most cases the returned value is the same as
“datasize” requested for the write process.
writtendata2: A pointer to int32 that returns how many bytes were actually
written to the second file. In most cases the returned value is the same
as “datasize” requested for the write process.
writtendata3: A pointer to int32 that returns how many bytes were actually
written to the third file. In most cases the returned value is the same
as “datasize” requested for the write process.

1.4.5.12 GHI_SeekFile(ints filehandle, newposition)

Sets the file pointer to new position. The file must be opened in read mode.

filehandle: A handle of the file that is open in read mode. This value can be any of
the following:

 FILE HANDLE 0

 FILE HANDLE 1

« FILE HANDLE 2

 FILE HANDLE 3

newposition: new position.

1.4.5.13 GHI_GetPointerPosition(ints filehandle,
sector, positioninsector)

This function gets the current position in a file as a sector number and position
inside the sector.

filehandle: A handle of the file that is open in read mode. This value can be any of
the following:

® FILE HANDLE 0
® FILE HANDLE 1
® FILE HANDLE 2

® FILE HANDLE 3

sector: A pointer that holds the current sector number.
positioninsector: a pointer that holds the current position inside the sector.

Copyright 2006 GHI Electronics, LLC. 20 of 54

USBwiz™ USB Devices Made Accessible

1.4.5.14 _SplitFile(int8 sourcehandle, desthandle1,
desthandle2, splitposition, actualdestsize1,
actualdestsize2)

Splits a file into 2 new files. The files can be opened on different drives or the
same

drive. It requires one file to be open for read and 2 other files to be open for write.
Files handles will be automatically closed after successful executing of the
function.

sourcehandle: A valid file handle that is opened for read. This file will get split.
desthandlel: A valid file handle that is opened for write. This is the first
destination file.

desthandle2: A valid file handle that is opened for write. This is the second
destination file.

splitposition: The offset inside the source file at which the first file ends and the
second file starts.

actualdestsizel: The actual size of data written to the first file.

actualdestsize2: The actual size of data written to the second file.

1.4.5.15 GHI_FlushFile(int8 filehandle)

Flushes all buffered data inside USBwiz to the media.

filehandle: A handle of the file. This value can be any of the following:
- FILE HANDLE 0
- FILE HANDLE 1
. FILE HANDLE 2
- FILE HANDLE 3

1.4.5.16 GHI_GetFilelnfo(filename, size,
attributes, TimeDate)

Use this function to find a specific file with a known name. This will also return
found directories. Use Attributes to determine the type of found entry.

filename: A null terminated string with the file name.

size: This pointer stores the file size.

attributes: File Attributes are one byte Standard Attribute Structure in FAT
system.

TimeDate: 32-Bit variable that holds the time as a standard FAT Time Structure.

Copyright 2006 GHI Electronics, LLC. 21 of 54

USBwiz™ USB Devices Made Accessible

1.4.5.17 GHI_RenameFile(filename, newname)

This function rename an existing file to a new name.

filename: An null terminated string with the file name.
newname: The new name of the file.

1.4.5.18 GHI_SetFileSize(ints filehandle, newsize)

This command sets file size to a certain size less than its actual size and omits the
rest of the data. The file must be opened in Read-Mode.

The file handle will be automatically closed after successful executing of this
function.

filehandle: A handle of the file that is open in read mode. This value can be any of
the following:

- FILE HANDLE 0

- FILE_HANDLE 1

- FILE HANDLE 2

- FILE HANDLE 3

newsize: The new size of the file.

1.4.6 Write/ Read wrappers

These are optional wrappers to do all the steps of reading or writing through a
given buffer.

Make sure INCLUDE READWRITE WRAPPERS SUPPORT is defined at
the top of USBwiz_lib.h to be able to use the following functions.

1.4.6.1 GHI_ReadFile(handle, buffer, size,
filler, actualdatasize)

Reads data from a file into a given buffer.

handle: A handle of the file that is open in read mode. This value can be any of
the following:

- FILE_HANDLE 0

- FILE HANDLE 1

- FILE_HANDLE 2

- FILE HANDLE 3

Copyright 2006 GHI Electronics, LLC. 22 of 54

USBwiz™ USB Devices Made Accessible

buffer: This should be provided by the user to hold the data and must be at least of
size ‘size’.

size: Size of data to read.

filler: The filler can be any value of your choice.

actualdatasize: A pointer to int32 that holds how many bytes were actually read.

In most cases the returned value is the same as “size” in the read
function.
1.4.6.2 GHI_WriteFile(int8 handle, buffer, size,

actualdatasize)

Writes data to a file from a given buffer.

handle: A handle of the file that is open in write mode. This value can be any of
the following:

- FILE HANDLE 0

- FILE HANDLE 1

- FILE HANDLE 2

- FILE HANDLE 3

buffer: This should be provided by the user to hold the data and must be at least of
size ‘size’.

size: Size of data to write.

actualdatasize: A pointer to int32 that holds how many bytes were actually
written. In most cases the returned value is the same as “size” in the
write function.

1.4.7 Real Time Clock work functions

When you need to use RTC you only need to initialize it once. Then you can Set
the time and read it.

Make sure INCLUDE TIME WORK SUPPORT is defined at the top of
USBwiz_lib.h to be able to use the following functions.

1.4.71 GHI_InitializeTime(int8 backup)

The Real Time Clock inside USBwiz is needed to set the correct dates on the
saved files. There are 2 options for the RTC. It can be run using the same power
source and oscillator as the processor core or it can run off 32Khz clock and a
backup battery. Use this function when you need to switch between the 2 options.

Copyright 2006 GHI Electronics, LLC. 23 of 54

USBwiz™ USB Devices Made Accessible

backup: A flag that is when it is true, USBwiz will run the RTC on backup battery
and when it is false it will run the RTC using the same power source and
oscillator as core processor.

1.4.7.2 GHI_SetTime(time)

This function sets the time in USBwiz.

time: holds the time value to be set. The data is in the same format used by FAT
file system and is defined in FAT Time structure.

1.4.7.3 GHI_GetTime(time)

If you need to obtain the time, to save to a file for example, use this function.

time: A pointer to hold in the time value. The data is in the same format used by
FAT file system and is defined in FAT Time structure.

1.4.7.4 GHI_GetFormattedTime(buffer)

To get the time in a formatted way that is readable for the human eyes.

buffer: A null-terminated buffer that will hold the time. It must be at least 22
bytes.

Note: The formatted buffer uses zero’s to pad.
Here is a typical formatted buffer: 05/12/2009 — 02:50:34

Note: This function is a little slower than GHI_GetTime(time).

1.4.7.5 GetFATTimeStructure(year, month,
day, hours, minutes, seconds)

This function takes the time as parameters and returns a 32-Bit variable that holds
the FAT Time Structure.

The arguments just express the preferred time.
Note: You could use the FAT Time Structure directly. It’s defined in the library

for convenience, see below, but since some compilers don’t support unaligned
bits we implement this function to get the structure.

Copyright 2006 GHI Electronics, LLC. 24 of 54

USBwiz™ USB Devices Made Accessible

typedef struct
{
int32 seconds2:5; //0...30 , seconds divided by 2
int32 minutes:6; /1 0...59
int32 hours:5; /1 0...23
int32 day:5; /1 1...31
int32 month:4; /l1...12

int32 years_since 1980:7; // Years since 1980
j ;

Note2: Unlike the structure, the function takes the regular seconds and years
counts.

For further explanation you can refer to the examples section.

: 32-Bit variable that holds the time as a FAT Time Structure.

1.4.8 Sector storage functions

These functions handle directly the sectors on the storage media and is intended
for advanced users. No FAT System is required.

If used on a FAT formatted media, re-formatting the media might be need to
access the files.

Before handling the sectors, registering the media is required. Then you can read
or write directly to the sectors.

Make sure INCLUDE _SECTOR_STORAGE SUPPORT _is defined at the top
of USBwiz_lib.h to be able to use the following functions.

1.4.8.1 GHI_RegisterSD(void)

Only used when handling sectors. This initializes an SD card before you can read
or write to the sectors.

1.4.8.2 GHI_RegisterUSBMassStorage(int8 device)

Only used when handling sectors. This initializes a USB Mass Storage before you
can read or write to the sectors.

decive: This can be USB_ DEVICE_PORT 0 or USB_DEVICE PORT 1.

Copyright 2006 GHI Electronics, LLC. 25 of 54

USBwiz™ USB Devices Made Accessible

1.4.8.3 GHI_ReadSector(sectornum)

After initializing the media, you can read the from it using this function. It reads a
sector of size 512 bytes. After calling the function the user must read 512 bytes
from USBwiz. Then GHI GetResult() must be called to get any error information.

sectornum: The sector number to read the data from.

1.4.8.4 GHI_WriteSector(sectornum)

After initializing the media, you can write data to it using this function. It writes
to sector of size 512 bytes. After calling the function the user must send 512 bytes
to USBwiz. Then GHI_GetResult() must be called to get any error information.

sectornum: The sector number to write the data to.

1.4.8.5 GHI_SwitchDevice(int8 device)

Tells USBwiz to switch between different medias when connected to different
ports.

This function should be called every time you are switching to another media for
getting information or any file handles. You only need to call it once if using the
same media.

Note: After registering the media , you are by default using that device and don't
need to switch to it!

device: This can be SD_DEVICE, USB DEVICE PORT 0 or
USB_DEVICE PORT 1.

1.4.9 Using USB HID Devices (Mouse, keyboard, joystick...)

These functions will communicate with HID devices through USBwiz. Before
using them, registering the device is required by calling GHI RegisterHID().
Then you can get the data the HID sends by calling GHI PrepareHIDReport()
which gets how many bytes the device will send and asks USBwiz to get the data.
USBwiz will send a hex string containing the data. The user must read the data
string from USBwiz and call GHI GetResult() which returns any error codes.

For example: If the report size is 4 bytes, USBwiz will sends a hex data string
after calling GHI PrepareHIDReport(). ex: 01F11203

Copyright 2006 GHI Electronics, LLC. 26 of 54

USBwiz™ USB Devices Made Accessible

Were 01 is the first byte, F1 is the second byte and so on.

Make sure INCLUDE HID SUPPORT is defined at the top of USBwiz _lib.h
to be able to use the following functions.

1.4.9.1 GHI_RegisterHID(int8 device)

This function registers the HID.
* You only need to call this function once.

device: This can be USB_DEVICE PORT 0 or USB DEVICE PORT 1.

1.4.9.2 GHI_PrepareHIDReport(ints device,
requested_size, actual_reportsize)

Tells USBwiz to get any data from the HID. You can request how many bytes you
want or read all available data.

If successful, the user must read the sent data as mentioned earlier and then get
any further errors by calling GHI_GetResult().

*If the return error code is HID_ HAS NO DATA, then the HID has no data to
send and you do not need to call any more functions.

device: This can be USB_DEVICE PORT 0 or USB DEVICE PORT 1.
requested_size: This is how many bytes the user wants to read. Set this argument
to 0 to read all available bytes.
actual reportsize: A pointer that holds the size of data which will be read.

If the requested_size is 0. This argument will equal how many
bytes are available.

1.4.10 Using USB Printers

To communicate with a printer you need to register it first! And then you can send
it any data, read it status or reset it.

Make sure INCLUDE PRINTER SUPPORT is defined at the top of
USBwiz_lib.h to be able to use the following functions.

Copyright 2006 GHI Electronics, LLC. 27 of 54

USBwiz™ USB Devices Made Accessible

1.4.10.1 GHI_RegisterPrinter(int8 device)

Must be called before using the printer to initialize it.
* You only need to call it once.

device: This can be USB_ DEVICE PORT 0 or USB DEVICE PORT 1.

1.4.10.2 GHI_ResetPrinter(int8 device)

Just resets the printer.

device: This can be USB_DEVICE PORT 0 or USB DEVICE PORT 1.

1.4.10.3 GHI_GetPrinterStatus(int8 device, status)

Gets the status of the printer and stores it.

device: This can be USB_ DEVICE PORT 0 or USB DEVICE PORT 1.
status: A pointer that stores the printer status.

1.4.10.4 GHI_PrinterPrint(int8 device, size)

Tells USBwiz to send data of size “size” to the printer to print.
After calling this function, the user must send all the data to USBwiz and then call
GHI_GetResult() to get any errors.

device: This can be USB_DEVICE PORT 0 or USB DEVICE PORT 1.
size: Size of data to be sent. (max: 255 bytes)

1.4.11 Using Serial Devices

To Communicate with a Serial device, first the device should be registered. Then
you can write or read from it.

Make sure INCLUDE SERIAL DEVICES SUPPORT is defined at the top of
USBwiz _lib.h to be able to use the following functions.

Copyright 2006 GHI Electronics, LLC. 28 of 54

USBwiz™ USB Devices Made Accessible

14111 GHI_RegisterSerialDevice(int8 device, type,
baudrate)

Registers a serial device. You only need to call this function once per device.

device: This can be USB_ DEVICE PORT 0 or USB DEVICE PORT 1.
type: The type of the serial device this can be any of the following:

¢ SERIAL CDC DEVICE

¢ SERIAL SILABS DEVICE

¢ SERIAL PROLIFICI DEVICE
¢ SERIAL PROLIFIC2 DEVICE

* SERIAL FTDI DEVICE
baudrate: Used to set the device's baudrate.

1.4.11.2 GHI_SerialWrite(int8 device, size)

After registering the device, this functions will tell USBwiz to send data of size
“Size”

to the serial device. Send all the data after using this function and then call
GHI_GetResult() to get any error codes.

device: This can be USB_DEVICE PORT 0 or USB DEVICE PORT 1.
size: The size of data to be sent. (Max 255 bytes)

1.411.3 GHI_SerialRead(ints device, sent_data_size)

After registering the device, this function will tell USBwiz to read any data if
available from the Serial device. The user must read all the data and then call
GHI_GetResult() to get any error codes.

device: This can be USB_DEVICE PORT 0 or USB DEVICE PORT 1.
sent_data size: Size of data USBwiz will send in bytes.

1.4.12 Old Functions

The following functions are included for people who already have them used in
their software. And:
* They should not be used in any new projects.

Copyright 2006 GHI Electronics, LLC. 29 of 54

USBwiz™ USB Devices Made Accessible

* Updating the current product to use the new interface is highly
recommended.

Make sure
_INCLUDE OLD_STORAGE FUNCTIONS WRAPPERS SUPPORT is
defined at the top of USBwiz_lib.h to be able to use the following functions.

14121 GHI_BL_LoadFirmware(int8 drive)

Updates the firmware from a media.

drive: Can be any of the following:
'A'or'a' : For SD DEVICE

'B'or'b' : For USB_DEVICE PORT 0
'C'or'c': For USB_DEVICE PORT 1

1.4.12.2 GHI_GetResults(void)

Same as GHI GetResult().

1.4.12.3 GHI_SetARMBaudRate(bauderate)

Same as GHI SetUSBwizBaudRate().

1.4.12.4 GHI_AttachStorageMedia(int8 device,
deviceorder, LUN)

Registers a storage device. Used to read and write to sectors.
* You don't need this if you are using FAT system.

device: This is 'C' or 'S' for SD cards and 'U' for USB mass storage.
deviceorder: Either O for USB port 0, or 1 for USB port 1.
LUN: Currently ignored.

1.4.12.5 GHI_ReadSectorFromCurrentFileSystem(
sectornum)

Same as GHI_ReadSector().

Copyright 2006 GHI Electronics, LLC. 30 of 54

USBwiz™ USB Devices Made Accessible

1.4.12.6 GHI_WriteSectorFromCurrnetFileDydtem(

sectornum)

Same as GHI_WriteSector().

1.4.12.7 GHI_MountFileSystem(ints filesystemorder,

device, deviceorder)

Associates a file system number with a device.

filesystemorder: Can be 0, 1 or 2.

device: This is 'C' or 'S' for SD cards and 'U' for USB mass storage.

deviceorder: Either 0 for USB port 0, or 1 for USB port 1.

1.4.12.8 GHI_SwitchFileSystem(ints filesystemorder);

Switches the current file system.

filesystemorder: Can be 0, 1 or 2.

1.4.12.9 GHI_EnumurateUSBDevicetoRootHub(

usbdevicehandle);

You don't need to use this function anymore. It only returns
ERROR NO ERROR.

1.4.12.10 GHI_ReleaseUSBDeviceHandle(
usbdevicehandle)

You don't need to use this function anymore. It only returns
ERROR_NO ERROR.

1.4.12.11 GHI_RegisterMassStorageDevice(
usbdevicehandle, massstoragedevicehandle,

Copyright 2006 GHI Electronics, LLC.

usbport,

lastLUN)

31 of 54

USBwiz™ USB Devices Made Accessible

You don't need to use this function anymore. It only returns
ERROR NO ERROR.

1.4.12.12 InitializeFATMedia(ints DriveLetter)

Initializes a specified device with FAT file system.
DriveLetter: Can be any of the following:
'A'or'a' : For SD DEVICE

'B'or'b' : For USB_DEVICE PORT 0
'C'or'c': For USB_DEVICE PORT 1

1.4.12.13 SwitchToFATMedia(DriveLetter)

Switches the current device to another one.

DriveLetter: Can be any of the following:
'A'or'a' : For SD_DEVICE

'B'or'b' : For USB_DEVICE PORT 0
'C'or'c': For USB_DEVICE PORT 1

1.4.12.14 GHI_GetResultsQformat(void)

It behaves like GHI GetResult().

Copyright 2006 GHI Electronics, LLC. 32 of 54

USBwiz™ USB Devices Made Accessible

USBwiz_lib is written to work on any processor but there will be a need to
implement a few driver functions that will help USBwiz_lib in using your
processor. In our example code, the driver functions fro UART, SPI and
I2C for PIC are provided. We also included GHI_inter_user.c as a
template to add your own driver functions. The library should compile for
any compiler and architecture but the library doesn't know anything about
your processor nor the interface you want to use. For example, When the
library wants to send a byte to USBwiz, it will call GHI_PutC function and
then it is the use responsibility to implement the function.

void GHI_Sleep(int16 ms);

In some situations, USBwiz_lib will require some delay on some task. All
delays happen through GHI_Sleep. This function will return after x
milliseconds. This function doesn’t have to be accurate at all and can be
implemented using simple loops. You can test if your function is working
right by simply toggling an LED and use 500 ms for delay.

Void BlinEveryOneSecond(void)

{
LED=ILED; // toggle an LED
// 500 ms low + 500 ms high = switch on every 1 second
GHI_Sleep(500);

}

ms: how many millisecond to loop

int8 GHI_Openinterface(void);

The library doesn’t need this function but you will use it at power up to
initialize the interface. The interface can be UART, SPI or 12C.

Note when we say interface from now on we will be referring to
UART, SPI or I2C.

Return: O if okay or error code otherwise.

Copyright 2006 GHI Electronics, LLC. 33 of 54

USBwiz™ USB Devices Made Accessible

GHI_Closelnterface();

Will close the interface. In most cases this won’t be necessary.

: 0 if okay or error code otherwise.

GHI_SetBaudRate(baud);

This is needed only in the case of the interface is UART. It is a good
practice to switch the baud rate to a faster one. USBwiz powers up with
9600 baud. This is very slow to what you can set the baud rate to.

baud: The baud is the rate of how many bit per seconds will be
transfered.

: 0 if okay or error code otherwise.

GHI_GetC();

When there is data ready in the interface receive buffer, GHI_GetC will
fetch it and return it immediately. If there is no data ready, GHI_GetC will
wait for data to be available. You can some timeout and return O if there is
no data for a long time to prevent code lockups.

The implementation can simply pool the interface or it can read a FIFO
that is filled by the interface’s interrupt routine.

: a character (byte) from the interface when ready.

GHI_PutC(ints ch);

If the interface is ready to transmit data, GHI_PutC will place a byte in it's
transmit buffer. GHI_PutC will wait for the interface to become ready
before it sends anything.

ch: A character (byte) to be transferred to the interface when ready.

Copyright 2006 GHI Electronics, LLC. 34 of 54

USBwiz™ USB Devices Made Accessible

GHI_PutS(str);

Very similar to GHI_PutS but GHI_PutS will tragnsfer a null terminated
string to the interface. Be careful when you use a processor that has RAM
and ROM pointers, a PIC for example. GHI_PutS will work with ram
pointers only. Most processor use the same pointer for RAM and ROM,
including your PC’s processor.

str: a null terminated string to be transmitted to the interface.

Null terminated means that the least byte of the string must be zero.

GHI_DatalsReady();

It is a good practice to check that there is some data in the receive buffer
before using GHI_GetC so we will not lockup the code.

: 1 if data is ready and 0 if there is no data ready.

GHI_ToggleWakePin();

USBwiz_lib doesn’t know how to toggle the wake pin on your system.
Implement this function to do so if you need to use the sleep mode.

Copyright 2006 GHI Electronics, LLC. 35 of 54

USBwiz™ USB Devices Made Accessible

Notel: The following code require proper set-up in the program
Note2: For the sake of simplicity, the code doesn’t check for error codes. It’s
highly recommended that you do.

3.1.Simple file write/read process

int8 file_name[] = “FILE.EXT”, buffer[3];

int32 size;

/| Using Mass storage port O
GHI_MountFATFileSystem(USB_DEVICE_PORT_0);,

/| Open a file for write using the O handle
GHI_Opentile(FILE_HANDLE_0, file_name, FILE_WRITE_MODE);

/| write 2 bytes to handle O
GHI_SendWriteCommand(FILE_HANDLE_O, 2);

/| sending 2 bytes
GHI_PutC(‘V’);
GHI_PutC(‘A’);

/| after this the size should be 2 in most cases
GHI_GetReadAndWriteResults(&size);

/| writing done, let’s read it
/] release the handle O
GHI_CloseFile(FILE_HANDLE_O);

/| re-open the same file for read
GHI_Opentile(FILE_HANDLE_O, file_name, FILE_READ_MODE);

Copyright 2006 GHI Electronics, LLC. 36 of 54

USBwiz™ USB Devices Made Accessible

/| read 3 bytes using “’ as a filler
GHI_SendReadCommand(FILE_HANDLE_O, 3, ’);

/| read three bytes
GHI_GetC(&buffer[0]);
GHI_GetC(&buffer[1]);
GHI_GetC(&buffer[2]);

I

/* Now the buffer should look like this:
/* buffer[O] O ¢V’

/* buffer[1] O ‘A’

/* buffer[2] O *

*/

/| after this the size should be 2 indicating reading 2 bytes successfully
GHI_GetReadAndWriteResults(&size);

/] release the handle
GHI_CloseFile(FILE_HANDLE_0);

3.2.Read/Write Wrappers
/] ...

int8 buffer[3], file_namel] - “FILE. TXT";

int32 size;

/| Using Mass storage port O
GHI_MountFATFileSystem(USB_DEVICE_PORT_O);

/| open a file
GHI_Opentile(FILE_HANDLE_O, file_name, FILE_WRITE_MODE);

/] file buffer
buffer[O] = 'A" buffer[1] = 'B";

Copyright 2006 GHI Electronics, LLC. 37 of 54

USBwiz™ USB Devices Made Accessible

/| write 2 bytes
GHI_WriteFile(FILE_HANDLE_O, buffer, 2, &size),

/| now size should be 2 “actual written bytes”

/] close file
GHI_Closetile(FILE_HANDLE_O);

/| re-open for write
GHI_OpentFile(FILE_HANDLE_O, file_name, FILE_ READ_MODE);

/| read 3 bytes using '#' as a filler
GHI_ReadFile(FILE_HANDLE_O, buffer, 3, '#', &size),

/| now size should be 2 “actual read bytes”

[* The buffer should be now
/* buffer[0] =="A";

[* buffer[1] == 'B".

[* buffer[2] == '#';

*/

/] close file
GHI_Closetile(FILE_HANDLE_O);

3.3.Enumerating Files

/...

int8 file_name[16], file_ext[4], attributes;

int32 size;

/| assuming using an SD card
GHI_MountFATFileSystem(SD_DEVICE),

/| Start the list

Copyright 2006 GHI Electronics, LLC. 38 of 54

USBwiz™ USB Devices Made Accessible

GHI_InitGetFile();

// loop until the end
While(GHI_GetNextFile(file_name, file_ext, &attribute, &size) 1-

ERROR_END_OF_DIR_LIST)

/[just print the file name

printf(“%s\n”, file_name);

3.4.Read and write simultaneously

/] ...

int8 Iread_file[] = “READFROM.TXT”, write_file[] = “WRITETO.TXT”;

int32 size;
/| assuming using usb port O to read from and usb port 1 to write to

GHI_MountFATFileSystem(USB_DEVICE_PORT_0);
GHI_MountFATFileSystem(USB_DEVICE_PORT_1);

/[switch to the first file system on USB port O
GHI_SwitchDevice(USB_DEVICE_PORT_0);

/| assuming this file already exist
GHI_OpenfFile(FILE_HANDLE_O, read_file, FILE_READ_MODE);

/| switch to the second file system on USB port 1
GHI_SwitchDevice(USB_DEVICE_PORT_1);

/] open for write
GHI_Opentile(FILE_HANDLE_1, write_file, FILE_WRITE_MODE);,

Copyright 2006 GHI Electronics, LLC. 39 of 54

USBwiz™ USB Devices Made Accessible

/| read and write 10 bytes
GHI_SendReadWriteFileCommand(FILE_HANDLE_O, FILE_HANDLE_1, 10),

/| get results. After this call, size should be 10
GHI_GetReadAndWriteResult(&size),

/[end
GHI_CloseFile(FILE_HANDLE_O);
GHI_CloseFile(FILE_HANDLE_1);

Note: You could mount the first file system and get a file handle, then mount the
second file

system and get the other file handle without the need to switch devices.

3.5.Write to multiple files simultaneously “ Shadow
writing”

/...

int8 file1_results, file2_results, file1[] = “FILE1.EXT”, file2[] = “FILE2.EXT”;

int32 actual filel_size, actual file2_size;

/| first mount the file system on SD_CARD
GHI_MountFATFileSystem(SD_DEVICE),

/| open two files for writing

GHI_OpenFile(FILE_HANDLE_0, file1, FILE_WRITE_MODE);
GHI_OpenfFile(FILE_HANDLE_1, file2, FILE_WRITE_MODE);

/| write 2 bytes
GHI_SendShadowWriteTwoFiles(FILE_HANDLE_O, FILE_HANDLE_1, 2);

/] Send data
GHI_PutC('V');

Copyright 2006 GHI Electronics, LLC. 40 of 54

USBwiz™ USB Devices Made Accessible

GHI_PutC('P");

/| get results
GHI_GetShadowWriteTwoFileResults(&file1_results, &fileZ_results,
&actual filel_size,
&actual_file2_size);
I
if successful : filel_results == file2_results == ERROR_NO_ERROR;
actual_filel_size == actual filel_size == 2;

*
/| close handles

GHI_CloseFile(FILE_HANDLE_0);
GHI_CloseFile(FILE_HANDLE_1);

3.6.Real Time Clock

NOTE: The compiler should support unaligned bits in order to use the FAT Time
Structure directly. Please consult your compiler manual.

You could however use the structure indirectly using this function, see examples
below!

int32 GetFATTimeStructure(int32 year, int32 month, int32 day, int32 hours, int32
minutes, int32 seconds);

3.6.1 Using the FAT Time Structure directly

/...
FAT Time_ Structure time;
int32 time var;

int8 buffer[32];

/| set the time to FEB.4.2007 13:10:10
time.seconds2 = 5; /| this should be the seconds divided by 2

Copyright 2006 GHI Electronics, LLC. 41 of 54

USBwiz™ USB Devices Made Accessible

time.minutes = 10;

time.hours = 13;

time.day - 4;

time.month - 2;
time.years_since_ 1980 = 2007-1980;

GHI_InitializeTime(0), /[initialize with ‘0’ “NO backup battery”,
use ‘1’ if any

time_var - *(int32*)(&time); /| cast the structure to int32
GHI_SetTime(time_var), /] set the time

/| Exactly after 2 years and 5 minutes

GHI_GetTime(&time_var), /] read the time

time - *(FAT_Time_Structure *)(&time_var) /[cast it to the structure

I
I
I
I
I
I
I
I
*/

now the structure should look like this

time.seconds2 1 5 /| it’s seconds divided by 2
time.minutes [15

time.hours [13

time.day [0 4

time.month [2

time.years_since_ 1980 [29

/[you can use this function to display the time, although it is a little slower than

the above one

GHI_GetFormattedTime(buffer), /| get the time
printf(“%s\n”, buffer); /[print it
/ %

[* the output should look like this:.
/* 02/04/2007 — 13.15.00

*/

Copyright 2006 GHI Electronics, LLC. 42 of 54

USBwiz™ USB Devices Made Accessible

3.6.2 Another way to use the FAT Time Structure

/...

int32 seconds, minutes, hours, day, month, years;
int32 time;
int8 buffer[32];

/| set the time parameters
seconds = 40;

minutes = 30;

hours - 4;

day - 11;

month - §;

years = 2006;

/| Set the time into 32bit structure

time - GetFATTimeStructure(years, month, day, hours, minutes, seconds);

GHI_InitTime(0); /[initialize with ‘0’ “NO backup battery”, use ‘1’ if
any
GHI_SetTime(time); /] set the time

/] After 1 hour, 20 minutes

GHI_GetFormattedTime(buffer), /| read the time, you also use
/I GHI_GetTime(&time);
printf(“%s\n”, buffer); /| print it
/*

/* the output should look like this:.
/*08/11/2006 — 05:50:40
*/

3.7.HIDs (Mouse, keyboard, ...)

/...

Copyright 2006 GHI Electronics, LLC. 43 of 54

USBwiz™ USB Devices Made Accessible

in8 report[16], report_size, index;

/I Connecting a device (assuming a mouse) to port O
GHI_RegisterHID(USB_DEVICE_PORT_0);

/[the user moved the mouse to the right and clicked the right button
/| let's read any data
GHI_PrepareHIDReport(USB_DEVICE_PORT_O, &report_size);

/[usually for mouses the report_size is 4 bytes, so report_size --

/[the report is a hex string simillar to 0100FFO2
/| this was 4 bytes
/| read the report into the buffer
for(index - O; index < (report_size * 2); index++)
{

report[index] - GHI_GetC();

/] get any errors
GHI_GetResult(),

/* now the buffer might look like this

/* “the user moved the mouse to the right and clicked the right button”
/* buffer bits -> [O][1] [2][3] [4][5] [6][7]

[* buffer values -> [0][2] [0][D] [0][O] [O][O]

*/

Note: For information on decoding the report, check the HID tutorial at
www.ghielectronics.com

3.8.Printers

Copyright 2006 GHI Electronics, LLC. 44 of 54

USBwiz™ USB Devices Made Accessible

There are printer commands to talk to a specific printer and USBwiz provides the
functionality to communicate with a printer. So we need to send the printer some
commands through USBwiz to print!

An easy way to test a printer without the knowledge of its commands is to use
“print to file” and send the file to USBwiz. To print to a file, you can follow these
steps:
1. Create a txt file and type a string in it:

“new.txt” has “This was printed using USBwiz!!”

Copyright 2006 GHI Electronics, LLC. 45 of 54

USBwiz™ USB Devices Made Accessible

£ new.txt - Notepad
File Edit Format Wiew Help

This was printed using USBwiz!!

2. Go to file -> print.
3. Select your printer and check print to a file.

Gerneral |
Select Printer
l 1@ |
=2 =2
Add Printer Brother Brokher PrimaoPDF
Fax-2820 UsE PC-Fax
Status: Ready Frint ta file
Location:

Comment; Brather Fée-2820 LISE

Fage Range
%) Al Mumber of copies: i'_l_ﬁ—l
Selection Current Page
= Collate
L fepl[aR!
[Print ,] [Cancel] [Apply]

4. Hit print and for the output file name type “TEST.PRT” and hit OK.
5. Now we got the file.

/] ...

int8 buffer[255], actual_size, error, index;
int8 file_name - “TEST.PRT”;

/| Register the printer to port 1

Copyright 2006 GHI Electronics, LLC. 46 of 54

USBwiz™ USB Devices Made Accessible

GHI_RegisterPrinter(USB_DEVICE_PORT_1);

/| Reset the printer
GHI_ResetPrinter(USB_DEVICE_PORT 1);

/| Assume the media that has the file is connected to port O

/| let's open the file
GHI_MountFATFileSystem(USB_DEVICE_PORT_0);
GHI_OpenFile(FILE_HANDLE_O, file_name, FILE_READ_MODE);

/| Now read the file and send to printer

/I we send every 255(0xFF) bytes at a time because it is maximum you can send

at
/] a time
while(1)
{
error - GHI_ReadFile(FILE_HANDLE_O, buffer, OXFF, *, &actual_size)
if(error)
return error;
/| we read all the file
if(actual_size -- 0)
break;
/] since there is no errors, the actual_size should be OXFF unless we
reached
/] end of file.
/| Print

GHI_PrinterPrint(USB_DEVICE_PORT _1, actual_size);
/| send the data

for(index - O; index < actual_size; index++)
GHI_PutC(buffer[index]);

Copyright 2006 GHI Electronics, LLC. 47 of 54

USBwiz™ USB Devices Made Accessible

/| get any errors “ the user should check”
error - GHI_GetResult();

/| We are done and the printer should be printing now.

3.9.Serial Devices
//...
int8 size, i, buffer[255];

/| Assume a FTDI device is connected to usb port O
/] And we want to set the baudrate to 9600.

/] First must initialize
GHI_RegisterSerialDevice(USB_DEVICE_PORT_O, SERIAL_FTDI_DEVICE, 9600);

/| writing data. Just send two bytes.
GHI_SerialWrite(USB_DEVICE_PORT_O, 2);

/| send the data
GHI_PutC(A');

GHI_PutC('BY);

/] Get any errors
GHI_GetResult(),

/| Done writing
/| Assuming the deviced respoded with 'C' then 'D'

/| Let's read
GHI_SerialRead(USB_DEVICE_PORT 0, &size),

Copyright 2006 GHI Electronics, LLC. 48 of 54

USBwiz™ USB Devices Made Accessible

/| now the size should equal 2

/| read the data
for(i = 051 <size; i++)
buffer[i] = GHI_GetC();

/| Get any errors
GHI_GetResult(),

/* Now the buffer should look like.
/* buffer[0] ---"'C'

/* buffer[1] --- D'

*/

Copyright 2006 GHI Electronics, LLC. 49 of 54

USBwiz™

USB Devices Made Accessible

FAT Time Structure

Time and Date structure is a DWORD Standard structure in FAT system.

31..25 Year1980 Years since 1980

24.21 Month 1..12

20..16 Day 1..31

15..11 Hour 0..23

10..5 Minute 0..59

4..0 Second2 Seconds divided by 2
(0..30)

FAT Attribute Structure

File Attributes are one byte Standard Attribute Structure in FAT system.

Reserved | Archive | Folder

Volume ID

System | Hidden | Read

Only

Copyright 2006 GHI Electronics, LLC.

50 of 54

USBwiz™ USB Devices Made Accessible

Copyright 2006 GHI Electronics, LLC. 51 of 54

USBwiz™

USB Devices Made Accessible

Appendix B: Error Codes

Description

Value

No Error

0x00

ERROR READ SECTOR

0x01

ERROR_WRITE SECTOR

0x02

ERROR ERASE SECTOR

0x03

ERROR _MBR SIGNATURE MISSMATCH

Ox11

ERROR BS SIGNATURE MISSMATCH

0x12

ERROR SECTOR _SIZE NOT 512

0x13

ERROR FSINFO SIGNATURE MISSMATCH

0x14

ERROR CLUSTER OVER RANGE

0x21

ERROR CLUSTER UNDER RANGE

0x22

ERROR NEXT CLUSTER VALUE OVER RANGE

0x23

ERROR NEXT CLUSTER VALUE UNDER RANGE

0x24

ERROR NO FREE CLUSTERS

0x25

ERROR FILE NAME FORBIDDEN CHAR

0x31

ERROR FILE NAME DIR NAME OVER 8§

0x32

ERROR FILE NAME DIR EXTENSION OVER 3

0x33

ERROR FILE NAME FIRST CHAR ZERO

0x34

ERROR MEDIA FULL

0x35

DIR ENT FOUND

0x40

DIR ENT NOT FOUND

0x41

ERROR FOLDER IS CORRUPTED FIRST CLUSTER

0x42

ERROR FOLDER IS CORRUPTED DIR DOT NOT FOUND 0x43

ERROR FOLDER IS CORRUPTED DIR DOTDOT NOT FOUND 0x44

ERROR ROOT DIRECTORY IS FULL

0x45

ERROR _OPEN FOLDER FILE

0x46

ERROR WRTIE TO READ MODE FILE

0x47

ERROR _SEEK REQUIER READ MODE

0x48

ERROR INVALID SEEK POINTER

0x49

ERROR_FOLDER NOT EMPTY

0x4A

ERROR IS NOT FOLDER

0x4B

ERROR READ MODE REQUIRED

0x4C

ERROR END OF DIR LIST

0x4D

ERROR FILE PARAMETERS

0x4E

ERROR INVALID HANDLE

0x4F

ERROR _EOF

0x50

ERROR NEW SIZE ZERO

0x51

ERROR HCD CHIP NOT FOUND

0x60

ERROR HCD PTD COMP CRC

0x61

ERROR HCD PTD COMP BIT STUFFING

0x62

ERROR HCD PTD COMP DATA TOGGLE

0x63

ERROR HCD PTD COMP STALL

0x64

ERROR HCD PTD COMP DEVICE NO RESPOND

0x65

ERROR HCD PTD COMP PID CHECK FAIL

0x66

ERROR HCD PTD COMP UNEXPECTED PID

0x67

ERROR HCD PTD COMP DATA OVERRUN

0x68

ERROR HCD PTD COMP DATA UNDERRUN

0x69

ERROR HCD PTD COMP RESERVEDI

0x6A

ERROR HCD PTD COMP RESERVED2

0x6B

Copyright 2006 GHI Electronics, LLC.

52 of 54

USBwiz™

USB Devices Made Accessible

Description Value
ERROR _HCD PTD COMP BUFFER OVERRUN 0x6C
ERROR HCD PTD COMP BUFFER UNDERRUN 0x6D
ERROR HCD INALID CHIP ID 0x6E
ERROR HCD USB DEVICE NOT CONNECTED 0x6F
ERROR PORT NMBER NOT AVILABLE 0x70
ERROR USBD NO ENOUGH PIPES 0x71
ERROR USBD HANDLE INUSE 0x72
ERROR USBD INCORRECT DESCRIPTOR 0x73
ERROR USBD NONCONTROL TRANSFER FUNCTION 0x74
ERROR USBD DATA SIZE IS BIG FOR ENDPOINT 0x75
ERROR USBD TIMEOUT 0x76
ERROR USBD CONTROL TRANSFER REQUIERED 0x77
ERROR USBD NACK 0x78
ERROR USBD HANDLE CORRUPTED 0x79
ERROR USBD DESCRIPTOR CORRUPTED 0x7A
ERROR DESCRIPTOR NOT FOUND 0x7B
ERROR USB HUB)NOT FOUND 0x7C
ERROR BOMS CSW COMMAND FAILD 0x81
ERROR BOMS CSW STATUS PHASE ERROR 0x82
ERROR BOMS WORNG LUN NUMBER 0x83
ERROR BOMS WORNG CSW _SIGNATURE 0x84
ERROR BOMS WORNG TAG MISSMATCHED 0x85
ERROR USB MASS STORAGE DEVICE NOT READY 0x90
ERROR USB MASSSTORAGE PROTOCOL NOT SUPPORTED 0x91
ERROR USB MASSSTORAGE SUBCLASS NOT SUPPORTED 0x92
ERROR SPC INVALID SENSE 0x93
ERROR SPC NO ASC ASCQ 0x94
ERROR USB MASSSTORAGE NOT FOUND 0x95
ERROR COMMANDER BAD COMMAND 0xAl
ERROR_COMMANDER STR LEN TOO LONG 0xA2
ERROR_ COMMANDER NAME NOT VALID 0xA3
ERROR COMMANDER NUMBER INVALID 0xA4
ERROR COMMANDER WRITE PARTIAL FAILURE 0xAS
ERROR COMMANDER UNKNOWN MEDIA LETTER 0xA6
ERROR COMMANDER FAILED TO OPEN MEDIA 0xA7
ERROR COMMANDER INCORRECT CMD PARAMETER 0xAS8
ERROR USB COMMANDER CONFIG NOT LOADED 0xA9
ERROR CHECK SUM 0xAA
ERROR FILE SYSTEM NOT MOUNTED 0xAB
ERROR _FTDI DEVICE NOT REGISTERED 0xB1
ERROR INCORRECT VENDORID 0xB2
ERROR INCORRECT PRODUCTID 0xB3
ERROR PRINTER NOT REGISTERED 0xB4
HID HAS NO DATA 0xB5(not error)
ERROR_COMMANDER UNKNOWN ERROR 0xFD

Copyright 2006 GHI Electronics, LLC.

53 of 54

USBwiz™ USB Devices Made Accessible

Copyright GHI Electronics, LLC. Trademarks are owned by their respective companies.

..................... DISCLAIMERccoeiie
IN NO EVENT SHALL GHI ELECTRONICS, LLC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
IABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

COMPANIES, WHO UNITIZE uALFAT OR USBwiz IN THEIR PRODUCTS, MUST CONTACT MICROSOFT
CORPORATION FOR FAT FILE SYSTEM LICENCING. GHI ELECTRONICS, LLC SHALL NOT BE LIABLE FOR
UNPAID LICENSE(S).

SPECIFICATONS ARE SUBJECT TO CHANGE WITHOUT ANY NOTICE.

Copyright 2006 GHI Electronics, LLC. 54 of 54

	1.The Library
	1.1.	Getting Started
	1.2.	The Library TYPEs	
	1.3.	The Library INCLUDEs “Reducing the code size”
	 1.3.1 How To Use Them With The Pic Examples?
	 1.3.2 _INCLUDE_FAT_SYSTEM_SUPPORT_
	 1.3.3 _INCLUDE_EXTENDED_FAT_SYSTEM_SUPPORT_
	 1.3.4 _INCLUDE_READWRITE_WRAPPERS_SUPPORT_
	 1.3.5 _INCLUDE_TIME_WORK_SUPPORT_
	 1.3.6 _INCLUDE_STORAGE_SECTOR_SUPPORT_
	 1.3.7 _INCLUDE_HID_SUPPORT_
	 1.3.8 _INCLUDE_PRINTER_SUPPORT_
	 1.3.9 _INCLUDE_SERIAL_DEVICES_SUPPORT_
	 1.3.10 _INCLUDE_EXTRA_COMMANDS_SUPPORT_
	 1.3.11 _INCLUDE_OLD_STORAGE_FUNCTIONS_WRAPPERS_SUPPORT_

	1.4. The Library Functions
	 1.4.1 The Return Value
	 1.4.2 General Functions
	 1.4.2.1 int16 GHI_GetLibraryVersion(void)
	 1.4.2.2 int8 GHI_GetResult(void)
	 1.4.2.3 int8 GHI_GetVersion(int8* major,int8 * BCDminor)
	 1.4.2.4 int8 GHI_SetUSBwizBaudRate(int32 bauderate)

	 1.4.3 More functionality
	 1.4.3.1 int8 GHI_UpdateFirmware(int8 device)
	 1.4.3.2 int8 GHI_ReadDeviceInfo(int8 device, DEVICE_INFO* info)
	 1.4.3.3 int8 GHI_SoftwareReset(void)

	 1.4.4 FAT File System Functions
	 1.4.4.1 int8 GHI_MountFATFileSystem(int8 device)
	 1.4.4.2 int8 GHI_SwitchDevice(int8 device)
	 1.4.4.3 int8 GHI_ChangeDirectory(int8* filename)
	 1.4.4.4 int8 GHI_MakeDirectory(int8* filename)
	 1.4.4.5 int8 GHI_OpenFile(int8 filehandle, int8 *filename, int8 openmode)
	 1.4.4.6 int8 GHI_SendWriteCommand(int8 filehandle, int32 desireddatasize)
	 1.4.4.7 int8 GHI_SendReadCommand(int8 filehandle, int32 desireddatasize, int8 filler)
	 1.4.4.8 int8 GHI_GetReadAndWriteResult(int32 * actualdatasize)
	 1.4.4.9 int8 GHI_CloseFile(int8 filehande)
	 1.4.4.10 int8 GHI_DeleteFile(int8 *filename)

	 1.4.5 The Extended FAT File System Functions
	 1.4.5.1 void GHI_StartMediaStatistics (void)
	 1.4.5.2 int8 GHI_GetResultMediaStatistics(int32 * size, int32 * free)
	 1.4.5.3 void GHI_StartQformat(void)
	 1.4.5.4 int8 GHI_InitGetFile(void)
	 1.4.5.5 int8 GHI_GetNextFile(int8 * file_name, int8 * file_ext, int8 *attributes, int32 * size)
	 1.4.5.6 int8 GHI_RemoveDirectory(int8* filename)
	 1.4.5.7 int8 GHI_SendReadWriteFileCommand(int8 readhandle, int8 writehandle, int32 size)
	 1.4.5.8 int8 GHI_SendShadowWriteTwoFiles(int8 firstfilehandle, int8 secondfilehandle, int32 desireddatasize)
	 1.4.5.9 int8 GHI_GetShadowWriteTwoFileResults(int8 *fresult1, int8 *fresult2, int32 *writtendata1, int32 *writtendata2)
	 1.4.5.10 int8 GHI_SendShadowWriteThreeFiles(int8 firstfilehandle, int8 secondfilehandle, int8 thirdfilehandle, int32 desireddatasize)
	 1.4.5.11 int8 GHI_GetShadowWriteThreeFileResults(int8 *fresult1, int8 *fresult2, int8 *fresult3, int32 *writtendata1, int32 *writtendata2, int32 	*writtendata3)
	 1.4.5.12 int8 GHI_SeekFile(int8 filehandle, int32 newposition)
	 1.4.5.13 int8 GHI_GetPointerPosition(int8 filehandle, int32 *sector, int16* positioninsector)
	 1.4.5.14 int8 GHI_SplitFile(int8 sourcehandle, int8 desthandle1, int8 desthandle2, int32 splitposition, int32 * actualdestsize1, int32 * actualdestsize2)
	 1.4.5.15 int8 GHI_FlushFile(int8 filehandle)
	 1.4.5.16 int8 GHI_GetFileInfo(int8 *filename, int32 *size, int8 *attributes, int32 *TimeDate)
	 1.4.5.17 int8 GHI_RenameFile(int8 *filename,int8 *newname)
	 1.4.5.18 int8 GHI_SetFileSize(int8 filehandle,int32 newsize)

	 1.4.6 Write/ Read wrappers
	 1.4.6.1 int8 GHI_ReadFile(int8 handle, int8 *buffer, int32 size, int8 filler, int32 *actualdatasize)
	 1.4.6.2 int8 GHI_WriteFile(int8 handle, int8 *buffer, int32 size, int32*actualdatasize)

	 1.4.7 Real Time Clock work functions
	 1.4.7.1 int8 GHI_InitializeTime(int8 backup)
	 1.4.7.2 int8 GHI_SetTime(int32 time)
	 1.4.7.3 int8 GHI_GetTime(int32 * time)
	 1.4.7.4 int8 GHI_GetFormattedTime(int8 *buffer)
	 1.4.7.5 int32 GetFATTimeStructure(int32 year, int32 month, int32 day, int32 hours, int32 minutes, int32 seconds)

	 1.4.8 Sector storage functions
	 1.4.8.1 int8 GHI_RegisterSD(void)
	 1.4.8.2 int8 GHI_RegisterUSBMassStorage(int8 device)
	 1.4.8.3 int8 GHI_ReadSector(int32 sectornum)
	 1.4.8.4 int8 GHI_WriteSector(int32 sectornum)
	 1.4.8.5 int8 GHI_SwitchDevice(int8 device)

	 1.4.9 Using USB HID Devices (Mouse, keyboard, joystick...)
	 1.4.9.1 int8 GHI_RegisterHID(int8 device)
	 1.4.9.2 int8 GHI_PrepareHIDReport(int8 device, int8 requested_size, int8 * actual_reportsize)

	 1.4.10 Using USB Printers
	 1.4.10.1 int8 GHI_RegisterPrinter(int8 device)
	 1.4.10.2 int8 GHI_ResetPrinter(int8 device)
	 1.4.10.3 int8 GHI_GetPrinterStatus(int8 device, int8 * status)
	 1.4.10.4 int8 GHI_PrinterPrint(int8 device, int8 size)

	 1.4.11 Using Serial Devices
	 1.4.11.1 int8 GHI_RegisterSerialDevice(int8 device, int8 type, int32 baudrate)
	 1.4.11.2 int8 GHI_SerialWrite(int8 device, int8 size)
	 1.4.11.3 int8 GHI_SerialRead(int8 device, int8 *sent_data_size)

	 1.4.12 Old Functions
	 1.4.12.1 int8 GHI_BL_LoadFirmware(int8 drive)
	 1.4.12.2 int8 GHI_GetResults(void)
	 1.4.12.3 int8 GHI_SetARMBaudRate(int32 bauderate)
	 1.4.12.4 int8 GHI_AttachStorageMedia(int8 device, int8 deviceorder, int8 LUN)
	 1.4.12.5 int8 GHI_ReadSectorFromCurrentFileSystem(int32 sectornum)
	 1.4.12.6 int8 GHI_WriteSectorFromCurrnetFileDydtem(int32 sectornum)
	 1.4.12.7 int8 GHI_MountFileSystem(int8 filesystemorder, int8 device, int8 deviceorder)
	 1.4.12.8 int8 GHI_SwitchFileSystem(int8 filesystemorder);
	 1.4.12.9 int8 GHI_EnumurateUSBDevicetoRootHub(int8 usbport, int8 usbdevicehandle);
	 1.4.12.10 int8 GHI_ReleaseUSBDeviceHandle(int8 usbdevicehandle)
	 1.4.12.11 int8 GHI_RegisterMassStorageDevice(int8 usbdevicehandle, int8 massstoragedevicehandle, int8 *lastLUN)
	 1.4.12.12 int8 InitializeFATMedia(int8 DriveLetter)
	 1.4.12.13 int8 SwitchToFATMedia(int8 DriveLetter)
	 1.4.12.14 int8 GHI_GetResultsQformat(void)

	2.Driver Functions
	void GHI_Sleep(int16 ms);
	int8 GHI_OpenInterface(void);
	int8 GHI_CloseInterface(void);
	int8 GHI_SetBaudRate(int32 baud);
	int8 GHI_GetC(void);
	void GHI_PutC(int8 ch);
	void GHI_PutS(int8 * str);
	int8 GHI_DataIsReady(void);
	void GHI_ToggleWakePin(void);

	3.Examples
	3.1.Simple file write/read process
	3.2.Read/Write Wrappers	
	3.3.Enumerating Files
	3.4.Read and write simultaneously
	3.5.Write to multiple files simultaneously “ Shadow writing”
	3.6.Real Time Clock
	 3.6.1 Using the FAT Time Structure directly
	 3.6.2 Another way to use the FAT Time Structure

	3.7.HIDs (Mouse, keyboard, ...)
	3.8.Printers
	3.9.Serial Devices

	Appendix A:
	FAT Time Structure
	FAT Attribute Structure

	Appendix B: Error Codes

