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Abstract—The problem of eliminating harmonics in a switching
converter is considered. That is, given a desired fundamental
output voltage, the problem is to find the switching times (angles)
that produce the fundamental while not generating specifically
chosen harmonics. In contrast to the well known work of Patel
and Hoft and others, here all possible solutions to the problem
are found. This is done by first converting the transcendental
equations that specify the harmonic elimination problem into
an equivalent set of polynomial equations. Then, using the
mathematical theory of resultants, all solutions to this equivalent
problem can be found. In particular, it is shown that there are new
solutions that have not been previously reported in the literature.
The complete solutions for both unipolar and bipolar switching
patterns to eliminate the fifth and seventh harmonics are given.
Finally, the unipolar case is again considered where the fifth,
seventh, 11th, and 13th harmonics are eliminated along with
corroborative experimental results.

Index Terms—Bipolar, harmonic elimination, switching con-
verter, unipoplar.

I. INTRODUCTION

THE PROBLEM of eliminating harmonics in switching
converters has been the focus of research for many years.

If the switching losses in an inverter are not a concern (i.e.,
switching on the order of a few kHz is acceptable), then the
sine-triangle PWM method and its variants are very effective
for controlling the inverter [1]. This is because the generated
harmonics are beyond the bandwidth of the system being
actuated and therefore these harmonics do not dissipate power.
On the other hand, for systems where high switching efficiency
is of utmost importance, it is desirable to keep the switching
frequency much lower. In this case, another approach is to
choose the switching times (angles) such that a desired funda-
mental output is generated and specifically chosen harmonics
of the fundamental are suppressed [1]–[5]. This is referred to
as harmonic elimination or programmed harmonic elimination
as the switching angles are chosen (programmed) to eliminate
specific harmonics.

In this work, it is shown how the complete solution (i.e.,
all possible solutions) to the problem considered in [2]–[5]
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Fig. 1. Bipolar switching scheme.

is obtained. Specifically, in [2]–[4] the harmonic elimination
problem was formulated as a set of transcendental equations
that must be solved to determine the times (angles) in an elec-
trical cycle for turning the switches on and off in a full bridge
inverter so as to produce a desired fundamental amplitude
while eliminating, for example, the fifth and seventh har-
monics. These transcendental equations are then solved using
iterative numerical techniques to compute the switching angles.
(See Figs. 8–34 of [1] for a plot of these angles as a percent
of the fundamental or Fig. 2.) Here a method is presented that
not only obtains these solutions, but also another (different)
set of the switching angles, and this other set of switching
angles actually generates a smaller harmonic distortion due
to the eleventh and thirteenth harmonics. The unipolar case is
also considered (including the case where the fifth, seventh,
eleventh, and thirteenth harmonics are eliminated) along with
corroborative experimental results.

The paper is organized as follows. In Section II, the solution
method is illustrated for the bipolar case with the problem
formulated as achieving the fundamental while not generating
the fifth and seventh harmonics. In Section III, it is then shown
how the method can be used in the case of a unipolar PWM
switching scheme, again formulating the problem so as to
achieve the fundamental while not generating the fifth and
seventh harmonics. Section IV then formulates and solves the
unipolar case using five switching angles in which the funda-
mental is achieved and the fifth, seventh, 11th, and 13th are not
generated. Experimental results are presented in Section V, and
a summary of the results is presented in Section VI.

II. BIPOLAR CASE

In this work, a standard H-bridge is used wherein choosing
the switching angles , , for the bipolar case results in an
output waveform of the form shown in Fig. 1. (In this figure, the
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Fig. 2. Bipolar switching angles versus m.

angle corresponds to the time , etc and corre-
sponds to the fundamental period .) The Fourier series expan-
sion of this output voltage waveform is

(1)

Given a desired fundamental voltage , the problem here is to
determine the switching angles , , so that

(2)

where . This is a system of 3 transcendental
equations in the unknowns , , . One approach to solving
this set of nonlinear transcendental (2) is to use an iterative
technique such as the Newton-Raphson method [3], [4]. Such
a method results in the solution in Figs. 8–34 in [1] (or Fig. 2).
Here, a methodology for finding all the solutions to (2) is pre-
sented, and our method not only gives the solutions reported in
[1], [3], [4], but also a new set of solutions which are found to
generate a lower harmonic distortion due to the 11th and 13th
harmonics (see Fig. 3).

To use the method, the conditions (2) are first converted to an
equivalent polynomial system. Specifically, one defines

, , and uses the trigonometric
identities

(3)

Fig. 3. Normalized error (a =a ) + (a =a ) for Bipolar PWM due to
the 11th and 13th harmonics.

to transform the conditions (2) into the equivalent conditions

(4)

where and . Equation (4) is
a set of three polynomial equations in the three unknowns , ,

. Further, the solutions must satisfy .
Such a transformation to polynomial equations was also used
in [5] where the polynomials were then solved using iterative
numberical techniques. In contrast, it is shown here how the
polynomial equations can be solved directly for all solutions.

A. Elimination Using Resultants

In order to explain how one computes the zero sets of poly-
nomial systems, a brief discussion of the procedure of solving
such systems is now given. A systematic procedure to do this is
known as elimination theory and uses the notion of resultants
[6]–[9]. Briefly, one considers and as poly-
nomials in whose coefficients are polynomials in . Then,
for example, letting and have degrees 3 and
2, respectively in , they may be written in the form

(5)
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The Sylvester matrix, where
, is defined by

(6)
The resultant polynomial is then defined by

(7)

and is the result of solving and
simultaneously for , i.e., eliminating . See the Appendix
for a brief explanation of this fact.

B. Solving the Bipolar Equations

Following the procedure just outlined [10], the resultant
methodology is used to solve for all possible switching angles.
That is, is used to eliminate from and

in (4) to get the two polynomials equations ,
in two unknowns which must be solved

simultaneously. This is reduced to one polynomial in one
unknown by computing the resultant polynomial of
the polynomial pair (see [7] and [8]
for background on resultants) to get

(8)

where is a polynomial of 9th degree (see the Appendix).
As the parameter is incremented in steps of 0.01, the roots of

are found and used to back solve for and . The set
of all three tuples ( , , ) which satisfy

then give

(9)
as the set of all possible solutions to (2) for the particular value of

. This computation was done as was incremented between
0 and 1 resulting in the switching angles versus as given in
Fig. 2. As the figure shows, only at high values of
do the two sets of solutions merge into one.

To compare the two sets of solutions, the normal-
ized magnitude of their 11th and 13th harmonics (i.e.,

where is the harmonic) is
plotted in Fig. 3. As this figure shows, the new set of solutions
generates less harmonic distortion due to the 11th and 13th
harmonics.

III. UNIPOLAR CASE

The Fourier expansion of the unipolar waveform given in
Fig. 4 is

(10)

Fig. 4. Unipolar PWM switching scheme.

The problem is to determine the switching angles , , such
that

(11)

Converting (11) to polynomial equations

(12)

as in the bipolar example, the resultant methodology as pre-
sented in [10] was again used to solve for all possible switching
angles. That is, is used to eliminate
from and in (12) to get the pair of polynomial equations

, that must be solved simultane-
ously. As in the bipolar case, this is done by computing resul-
tant polynomial of the pair
to get

(13)

where is a polynomial of ninth degree (see the Ap-
pendix).

As the parameter is incremented in steps of 0.01, the roots
of are found and used to back solve for and . The
set of all three tuples ( , , ) which satisfy

then give

(14)
as the set of all possible solutions to (11) for the particular value
of . The parameter is then varied between 0 and 1, and these
switching angles are plotted versus in Fig. 5. Fig. 6 is a plot
of magnitude of the distortion (i.e., )
due to the 11th and 13th harmonics. As seen in the figure, there
are two sets of solutions for and that the two
sets of solutions produce approximately the same distortion.
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Fig. 5. Unipolar switching angles versus m.

IV. UNIPOLAR PWM WITH FIVE SWITCHING ANGLES

In the bipolar scheme, the RMS voltage
is constant because

and therefore the THD is constant and is
only being shifted in the frequency spectrum. However, the
unipolar PWM scheme can also produce zero voltage and
therefore inherently has lower harmonic content than the
bipolar scheme. Consequently, this scheme is now considered
for the case where five switching angles are used. The Fourier
expansion of a unipolar waveform with switching angles ,

, , , leads to the conditions

(15)

Here, is the modulation index and the angles
must satisfy (see Fig. 9 for a typical
waveform). Let if the coefficient of is 1 and

if it is
and letting , , ,

, the conditions become

Fig. 6. Normalized error (a =a ) + (a =a ) for Unipolar PWM due
to the 11th and 13th harmonics.

Fig. 7. Unipolar switching angles versus m with five switching angles.

(16)

where .
Remark: It is interesting to note that the set of polynomials in

(16) are the same equations as that of a multilevel inverter with
five dc sources and a fundamental frequency staircase output
waveform [10]. The difference between the two solutions is in
the region where the must lie. In the multilevel case, the con-
ditions are .

Following a procedure similar to that given in Sections II
and III, one systematically solves these equations by elimination
theory. This was done, and the complete set of switching angle
solutions are plotted versus in Fig. 7. Each set of solutions
( , , , , ) is labeled vertically in Fig. 7. Note that for

there are two sets of solutions; for
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Fig. 8. THD versus m for each set of switching angles.

there is only one solution set; for there
are three sets of solutions; and finally, for ,
there are again two sets of solutions.

The corresponding total harmonic distortion (THD) was com-
puted out to the 31st according to

(17)
and is plotted versus in Fig. 8 for each of the solution sets
shown in Fig. 7. As this figure shows, one can choose a partic-
ular solution for the switching angles such that the THD is 32%
or less for .

It is important to point out that if one had used an iterative
method such as Newton-Raphson, then the third solution set that
exists for would not have been found, and
this is the solution set that results in the lowest THD for this
range of modulation indices. The reason the Newton-Raphson
method would not have found this solution set is simply due to
the way it is implemented. One starts with an initial guess for
the angles at . Then this solution is used as the initial
guess for the solution when is incremented by to its
next value and so on. At , the only possible solutions
are , , , ,
or , , , , .
As Fig. 7 shows, if the first solution set is used as the starting
point in the Newton-Raphson scheme for , then as
is incremented, one would obtain a set of solutions valid for

. If the second set of solutions is used as the
starting point, then a set of solutions valid for
would be obtained. Neither of these sets results in the minimum
THD for . Consequently, the method proposed
here that finds the complete solution set allows one to be sure
that the solution with the lowest THD is used. In the interesting
work [13], a homotopy approach was used for the bipolar case
only. Though it appears to be able to find all solutions in the
bipolar case, it is not clear that it would be able to do so in the
unipolar case (e.g., find the third set in Figs. 7 and 8).

Fig. 9. Voltage waveform with m = 0:7 and f = 42 Hz.

Fig. 10. FFT of the voltage waveform of Fig. 9 withm = 0:7 and f = 42Hz.

V. EXPERIMENTAL RESULTS

An inverter was used to perform experiments to validate the
predicted results, that is, the elimination of the fifth, seventh,
11th, and 13th harmonics in the output of a three phase inverter.
A real-time computing platform [11] was used to interface the
logic signals from the computer to the gate driver board of the
inverter. The switching algorithm is implemented as a lookup
table in SIMULINK which is then converted to code. The soft-
ware provides icons to interface the SIMULINK model to the dig-
ital I/O board and converts the code into executables. The
computational time step size was 32 m. The induction motor
used in the experiments had the following name plate data:

Rated hp hp

Rated Current A

Rated Speed rpm

Rated Voltage V RMS line to line Hz
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Fig. 11. Current waveform in phase a of the test (induction) motor with m =

0:7 and f = 42 Hz.

Fig. 12. FFT of the current in phase a of the test motor with m = 0:7 and
f = 42 Hz.

Two sets of experiments were performed to compare with the
computational results given in Figs. 7 and 8.

A. First Experimental Set

In this first experiment, the modulation index was set as
and the frequency . Fig. 9 shows the measured

voltage waveform from phase of the inverter output. A (nor-
malized) fast fourier transform (FFT) of this waveform is plotted
in Fig. 10. As predicted, the fifth, seventh, eleventh, and thir-
teenth harmonics are quite small consistent with their predicted
value of zero. As can be seen from the harmonic specturm in
Fig. 10, the lowest substantial nontriplen harmonics are the sev-
enteenth and nineteenth. As the interest here is a three phase
drive, the triplen harmonics in the phase voltages will cancel
in the line-line voltages. Application of the voltages to the test
motor resulted in a current waveform for phase as given in
Fig. 11 with its corresponding FFT plotted in Fig. 12. The total

Fig. 13. Voltage waveform of phase a with m = 0:5 and f = 30 Hz.

Fig. 14. FFT of the voltage waveform of Fig. 13 with m = 0:5 and f =

30 Hz.

voltage THD computed using (17) was 29.7% based on the FFT
data in Fig. 10 which compares well with the predicted value of
31.5% given in Fig. 8. The total current THD was found to be
12.6% using the FFT data in Fig. 12.

B. Second Experimental Set

In the second experiment, the modulation index was set as
and the frequency . Fig. 13 shows the

measured output voltage waveform from phase of the inverter,
and its corresponding FFT is plotted in Fig. 14. As predicted, the
fifth, seventh, eleventh, and thirteenth harmonics are essentially
zero consistent with their predicted value of zero. Application
of the voltages to the test motor resulted in the current waveform
given in Fig. 15, and the FFT of this waveform is presented in
Fig. 16. The total voltage THD computed using (17) was 43.3%
based on the FFT data in Fig. 14 which compares favorably with
the predicted value of 39% given in Fig. 8. The total current
THD was found to be 17.6% using the FFT data in Fig. 16.



CHIASSON et al.: COMPLETE SOLUTION TO THE HARMONIC ELIMINATION PROBLEM 497

Fig. 15. Current waveform in phase a of the test (induction) motor with m =

0:5 and f = 30 Hz.

Fig. 16. FFT of the current in phase a of the test motor with m = 0:5 and
f = 30 Hz.

VI. CONCLUSION

The complete solution to the harmonic elimination problem
can be found using the theory of resultants from elimination
theory. The solution is complete in the sense that any and all
solutions were found. Experimental work was presented to cor-
roborate the developed technique.

APPENDIX I

RESULTANTS [7]–[9], [12]

Given two polynomials and how does one
find their common zeros? That is, the values ( , ) such that

Consider and as polynomials in whose
coefficients are polynomials in . There is always a polynomial

(called the resultant polynomial) such that

So if then , that is, if
( , ) is a common zero of the pair ,
then the first coordinate is a zero of . To see how
one obtains , let

Next, see if polynomials of the form

can be found such that

(18)

Equating powers of , this equation may be rewritten in ma-
trix form as

The matrix on the left-hand side is called the Sylvester matrix
and is denoted here by . The inverse of has the
form

where is the adjoint matrix and is a 5 5 poly-
nomial matrix in . Solving for , gives

Choosing guarantees that ,
, , , are polynomials in . That

is, the resultant polynomial defined by is
the polynomial required for (18).
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APPENDIX II
RESULTANT POLYNOMIALS AND
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