Block Diagrams

M. Sami Fadali EBME Dept. University of Nevada

Outline

- What are block diagrams?
- Main rules: cascade, parallel, feedback.
- Interchanging: pickoff, summation.
- Combining/expanding summing junctions.
- Examples.

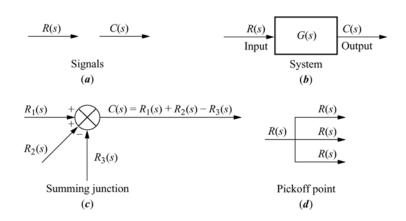
2

Block Diagrams

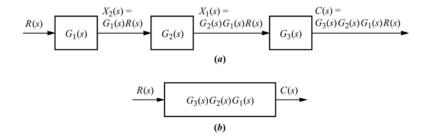
- Visual algebra: use block diagram manipulation instead of algebra.
- Block: transfer function of a subsystem.
- Line: Laplace transform of a variable.
- Simplify complex systems to obtain a single equivalent input-output transfer function.

3

Block Diagram Notation



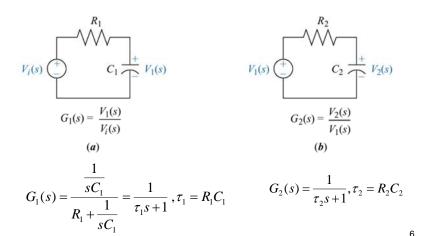
Cascade (Series) Rule



5

Cascade: No Loading Assumption

What is the transfer function of the cascade?



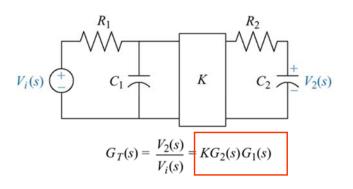
Assumption in Cascading

$$V_i(s)$$
 $\stackrel{+}{\leftarrow}$ C_1 $\stackrel{R_2}{\frown}$ $V_2(s)$

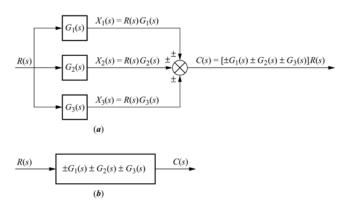
$$G_1(s)G_2(s) = \frac{1}{\tau_1\tau_2s^2 + (\tau_1 + \tau_2)s + 1}$$

$$G_{T}(s) = \frac{V_{2}(s)}{V_{i}(s)} = \frac{1}{\tau_{1}\tau_{2}s^{2} + (\tau_{1} + \tau_{2})s + 1 - C_{2}/C_{1}} \neq G_{1}(s)G_{2}(s)$$

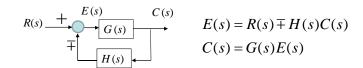
Buffer Amplifier: No loading.



Parallel Rule



Feedback Rule: Proof

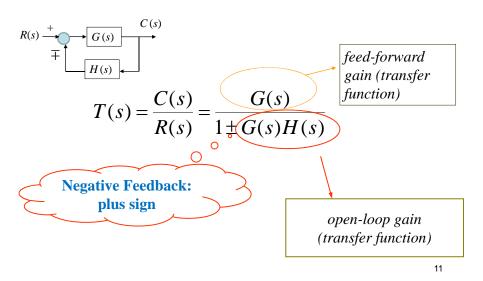


$$\frac{E(s)}{R(s)} = \frac{1}{1 \pm H(s)G(s)}$$

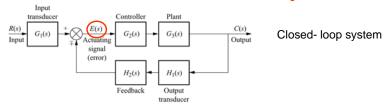
$$T(s) = \frac{C(s)}{R(s)} = \frac{G(s)}{1 \pm G(s)H(s)}$$

9

Feedback Rule



Feedback Control System



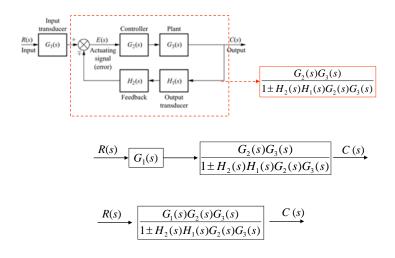
$$E(s) = G_1(s)[R(s) + H_2(s)H_1(s)C(s)]$$

$$C(s) = G_3(s)G_2(s)E(s)$$

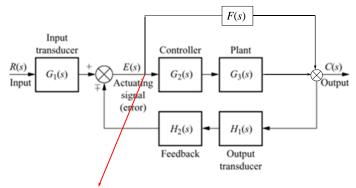
$$\frac{E(s)}{R(s)} = \frac{G_1(s)}{1 \pm H_2(s)H_1(s)G_2(s)G_3(s)}$$
 feed-forward gain

$$\frac{C(s)}{R(s)} = \frac{G_3(s)G_2(s)G_1(s)}{1 \pm H_2(s)H_1(s)G_3(s)G_2(s)}$$
 open-loop gain

Simplify Block Diagram



Effect of Pickoff

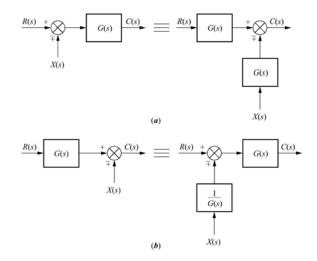


CANNOT use the feedback formula since E(s) is needed.

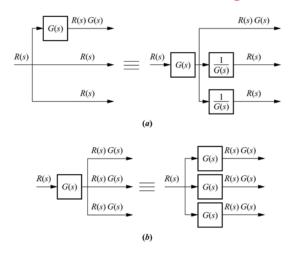
Interchange order of Blocks and Summing Junction

13

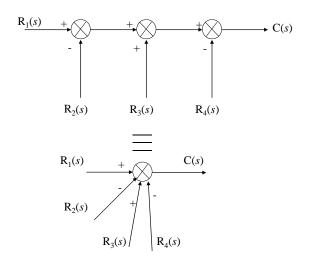
15



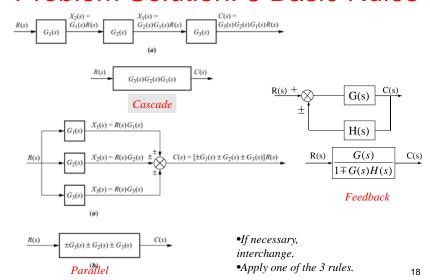
Interchange Order of Blocks and Branching



Combining/Expanding Summing Junctions

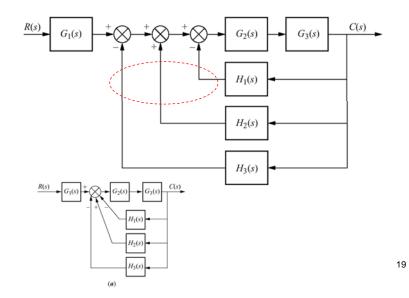


Problem Solution: 3 Basic Rules

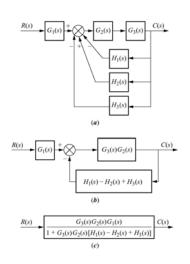


Example 5.1

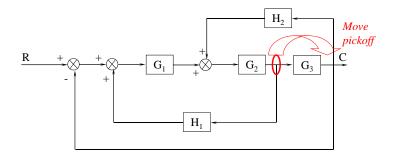
17



Simplify

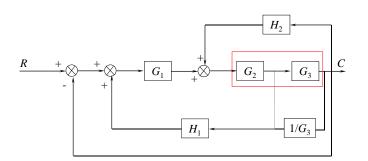


Example

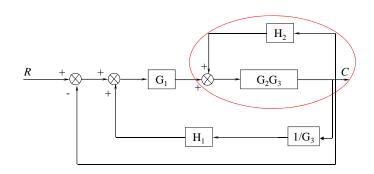


21

Move Pickoff Point



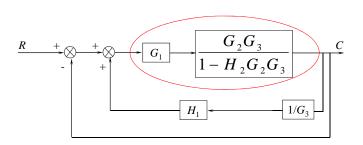
Cascade Rule



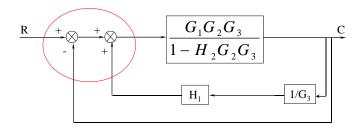
Feedback Rule

22

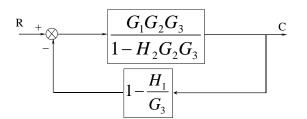
24



Cascade Rule



Parallel Rule



25

Feedback Rule

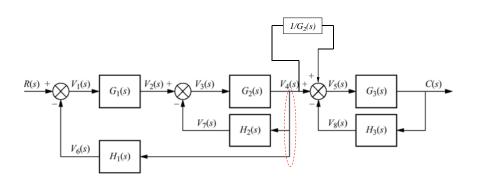
$$T(s) = \frac{C(s)}{R(s)}$$

$$= \frac{\frac{G_1 G_2 G_3}{1 - H_2 G_2 G_3}}{1 + \left(\frac{G_1 G_2 G_3}{1 - H_2 G_2 G_3}\right) \left(1 - \frac{H_1}{G_3}\right)}$$

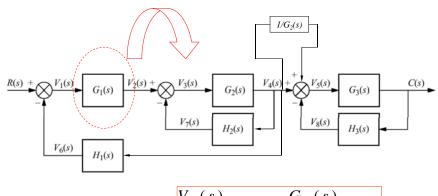
Example



Two Feedback Loops



Book: Move Block

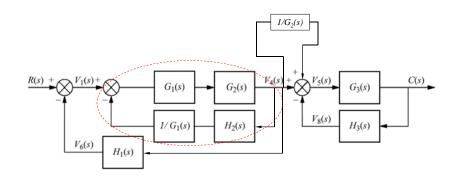


Easier: Use feedback rule

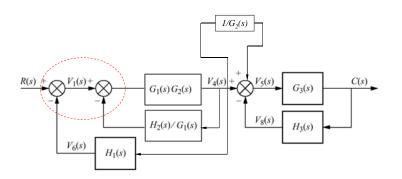
 $\frac{V_4(s)}{V_2(s)} = \frac{G_2(s)}{1 + G_2(s)H_2(s)}$

30

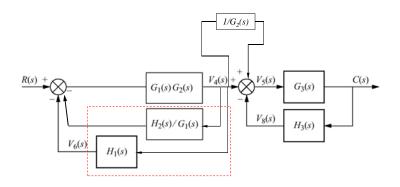
Feedback Rule



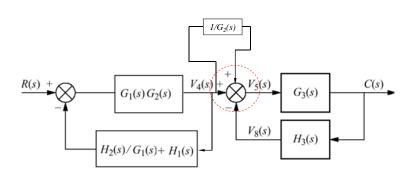
Combine Summing Junctions



Parallel Rule



Can we use parallel rule?

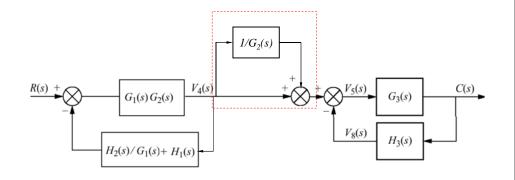


34

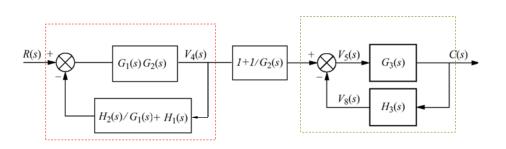
36

Expand Summation

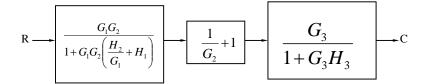
33



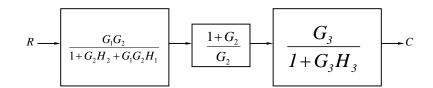
Parallel Rule



Feedback Rule



Simplify



37

Cascade Rule

$$R \longrightarrow \frac{G_{1}(1+G_{2})G_{3}}{\left(1+G_{2}H_{2}+G_{1}G_{2}H_{1}\right)\left(1+G_{3}H_{3}\right)} \longrightarrow C$$

Motor with Feedback

$$E_m(s) = K_e s \theta(s)$$

$$I_a = \frac{E_a(s) - E_m(s)}{L_a s + R_a + R}$$

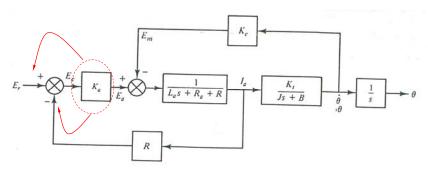
$$e_r \qquad e_c \qquad \text{Amplifier} \qquad e_a \qquad i_a \qquad e_m \qquad B$$

$$\theta(s) = \frac{1}{s} \Omega(s) = \frac{1}{s} \times \frac{K_t}{J s + B} I_a$$

$$E_a(s) = K_a E_c(s)$$

$$E_a(s) = K_a E_c(s)$$
$$E_c(s) = E_r(s) - RI_a(s)$$

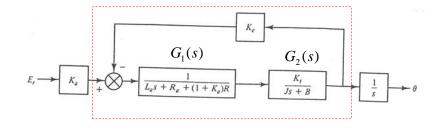
Block Diagram



$$G_1(s) = \frac{1/(L_a s + R_a + R)}{1 + K_a R/(L_a s + R_a + R)} = \frac{1}{L_a s + R_a + R + K_a R}$$

41

Feedback Loop



$$\frac{\theta(s)}{E_r(s)} = \frac{K_a G_1(s) G_2(s)}{1 + K_e G_1(s) G_2(s)} \frac{1}{s}$$