

A Simple Series Battery/Ultracapacitor Drive System for Light Vehicles and Educational Demonstration

Fourth International Conference & Exhibition on Ecological Vehicles and Renewable Energies Monte-Carlo, Monaco

March 26, 2009

Shane Colton <scolton@mit.edu>
Massachusetts Institute of Techology
Edgerton Center Summer Engineering Workshop 2008

Edgerton Center Summer Engineering Workshop

- Student-Driven Projects Workshop at MIT
- Collaboration of MIT Students and Local High School Students
- Blend of Technical Challenge and Educational Experience

2007:

Team Members: Ethan Aaron, Costas Akrivoulis, Shane Colton, Ronny Contreras, Max Hill, Kevin Krakauer, David McCarthy, Mike Paresky, Edwin Perez-Clancy, Matt Robertson, Anil Singhal, and Cameron Tenny

2008 S.E.W. Project: "The Cap Kart"

Project Objectives:

- Design, build, and test a small electric vehicle, based on a go-kart, with a combined battery/ultracapacitor energy storage and drive system.
- Create a low-cost system that could be easily implemented in light, DCdrive electric vehicles and possibly expanded to full-size vehicles.
- Employ simple design, modeling, and analysis methods, consistent with the educational motivations of the project.
- Create a test vehicle that is both a reliable experimental platform and a fun educational tool:
 - Wireless data acquisition. "Drive now, analyze later."
 - Retain or improve the level of performance of a typical gas go-kart:

Technical Background: Battery/Ultracapacitor Hybrids

Battery

- High energy density (by mass, volume, cost).
- Low power density, especially in charging.
- Low cycle life.

Ultracapacitor

- Low energy density (by mass, volume, cost).
- High power density in both directions.
- High cycle life.
- An optimized (by cost, mass, volume) combination of batteries and ultracapacitors can take advantage of the best characteristics of each¹.
- Certain battery chemistries, such as lithium Iron phosphate, make these differences less dramatic.
- Similar optimizations exist with other combinations (fuel cell, flywheels, etc).

¹R.M. Sclupbach et. al., "Design methodology of a combined batteryultracapacitor energy storage unit for vehicle power management," in Proc. *Power Electronics Specialist Conference, IEEE*, Vol. 1, pp. 88-93, Acapulco, Mexico, 2003.

Battery/Ultracapacitor Hybrids: Parallel Methods

$$V_c > V_b$$

Ultracapacitor operating voltage is always greater than battery voltage.

$$V_c(I_b + I_c) \approx V_m I_m$$

Power sharing by summation of currents.

Regenerative braking charges the ultracapacitor, which can then trickle-charge the battery through the low-current DC/DC converter.

Seen in: A.W. Stienecker, M.A. Flute, and T.A. Stuart, "Improved Battery Charging in an Ultracapacitor–Lead Acid Battery Hybrid Energy Storage System for Mild Hybrid Electric Vehicles," in Proc. SAE World Congress, Detroit, Michigan, USA, 2006.

Battery/Ultracapacitor Hybrids: Parallel Methods

$$V_b I_b + V_c I_c \approx V_m I_m$$
 All power transfer paths available.

Two bi-directional DC/DC converters permit power transfer in any direction between battery, ultracapacitor, and traction motor.

Seen in: P.C.K. Luk and L.C. Rosario, "Power and Energy Management of a Dual- Energy Source Electric Vehicle – Policy Implementation Issues," in Proc. International Power Electronics and Motion Control Conference, IEEE, pp. 1-6, Shanghai, China, 2006.

Also seen in: "Electric Green Racing," University of Manchseter, online final project video: http://www.eee.manchester.ac.uk/undergraduate/courses/specialfeatures/fourthyearproject/Electric_Green_Racing_medium.wmv, 2007.

Battery/Ultracapacitor Series Configuration

$$V_b I_b \approx (V_m - V_c) I_m$$
 Power sharing by summation of voltages.

Voltage present on the ultracapacitor reduces the current demand from the battery at a given motor current demand.

Regenerative braking charges the ultracapacitor only. Switch and bypass diode allow for selective inclusion of ultracapacitor during acceleration.

Standard Separately-Excited Drive

- Starting-point for our experimental vehicle drive system.
- High-power (300A @ 36V) buck converter for armature.
- Low-power (30A @ 36V) buck converter for field.
 (Not pictured.)
- Independent field control for "gearing."

Series Ultracapacitor Modification

- Retain the same power converters.
- Add ultracapacitor module in series with motor.
- Add bypass diode and brake/boost relay.
- Modify control strategy as follows.

Normal Drive (Capacitor Bypass)

Battery-only drive, same as standard separately-excited drive.

Normal Drive (Capacitor Bypass)

• Battery-only drive, same as standard separately-excited drive.

Regenerative Braking

- Low side of half-bridge held closed. Capacitor relay closed. All regen current flows through ultracapacitor. Batteries are not involved.
- Field strength controls braking force.
- No high-current switching.

Capacitor Assist

- Same as normal drive, but with power assist from the ultracapacitor.
- Series power sharing by sum of voltages. Battery current automatically reduced by half-bridge controller.

Capacitor Assist

- Same as normal drive, but with power assist from the ultracapacitor.
- Series power sharing by sum of voltages. Battery current automatically reduced by half-bridge controller.

Simple Analytical Model

Armature resistance dominates dissipative effects, suggests a simple power conservation approach:

$$P_{\rm motor} = P_{\rm batt} + P_{\rm cap} - I_a^2 R_a = \tau_a \varpi \; , \quad (1) \label{eq:pmotor}$$

$$P_{cap} = I_a V_c \Longrightarrow \qquad (2)$$

$$P_{batt} = \tau_a \varpi + I_a^2 R_a - I_a V_c, \qquad (3)$$

Series Power Sharing During Acceleration Assist

Example simulation showing reduced battery load, increased top speed.

Series Configuration Attributes

- Smaller ultracapacitor. Entire voltage range used, down to zero volts.
 Can be significantly lower voltage than the battery.
 - Decreased cost.
 - Decreased series resistance.
 - Easier cell balancing.
- No external inductors. All switched current passes through motor windings.
- One single-directional DC-DC converter; could be an off-the-shelf DC motor controller. Converter sees fixed battery input voltage.
- No pre-charge circuit required for the ultracapacitor.
- Simpler circuit to model, build, explain, and demonstate, important for the educational objective.
- Disadvanatge: No direct power transfer path between battery and ultracapacitor. All regenerated energy can only be re-used by motor.

Vehicle Layout

Electric Motor

7kW, 48V Separately-Excited DC Motor

Electrical System

300A-peak Motor Controller and Wireless Interface

Electrical System

Armature and Field Drive Half-Bridges

Field Control

Electric Sequential "Gear" Shifter

Test Drives

(Launch Video)

Effective inertial loads up to 250kg.

Example regenerative braking profile.

Example acceleration assist profile.

27

Conclusions and Future Work

- Series battery/ultracapacitor combination offers several advantages which make it well-suited for light DC-drive vehicles as an efficiency and/or performance enhancement.
- Experimental vehicle confirms the validity of the simple system model: Regenerative braking and capacitor assist efficiency predictable using armature resistance model.
- Simple system makes for an ideal educational project.

Future Work:

- Track testing.
- More work on merging regenerative and mechanical brakes.
- Extension to AC drive system?

Regenerative Braking Model

$$P_{cap} = \tau_b \varpi - I_r^2 R_a = I_r V_c, \qquad (5)$$

Experimental Vehicle Specifications

Table 1: Experimental Vehicle Components and Specifications

Batteries	12V, 79Ah sealed AGM Pb-Acid
	from SeaVolt, 24kg ea, ~5mΩ ea.
Ultra-	Maxwell 16V (6-cell), 110F with
capacitor	active balancing, $3kg$, $\sim 3m\Omega$
Motor	D&D SepEx brushed DC, 10kW
	peak, 23kg

Mass (no driver): 160kg

Peak Current: 300A

Peak Acceleration: 0.6g

Top Speed: 16m/s (58km/hr)

Experimental Vehicle Signal Architecture

Experimental Vehicle Program Loop

