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Edgerton Center Summer Engineering Workshop

• Student-Driven Projects Workshop at MIT
• Collaboration of MIT Students and Local High School Students
• Blend of Technical Challenge and Educational Experience

Team Members: Ethan Aaron, Costas Akrivoulis, Shane Colton, Ronny Contreras, 
Max Hill, Kevin Krakauer, David McCarthy, Mike Paresky, Edwin Perez-Clancy, 
Matt Robertson, Anil Singhal, and Cameron Tenny

2007:
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2008 S.E.W. Project: “The Cap Kart”

Project Objectives:

• Design, build, and test a small electric vehicle, based on a go-kart, with 
a combined battery/ultracapacitor energy storage and drive system.

• Create a low-cost system that could be easily implemented in light, DC-
drive electric vehicles and possibly expanded to full-size vehicles.

• Employ simple design, modeling, and analysis methods, consistent with 
the educational motivations of the project.

• Create a test vehicle that is both a reliable experimental platform and a 
fun educational tool:
• Wireless data acquisition. “Drive now, analyze later.”
• Retain or improve the level of performance of a typical gas go-kart:
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Technical Background: Battery/Ultracapacitor Hybrids

Ultracapacitor
• Low energy density (by mass, 

volume, cost).

• High power density in both 
directions.

• High cycle life.

Battery
• High energy density (by mass, 

volume, cost).

• Low power density, especially 
in charging.

• Low cycle life.

• An optimized (by cost, mass, volume) combination of batteries and 
ultracapacitors can take advantage of the best characteristics of each1.

• Certain battery chemistries, such as lithium Iron phosphate, make these 
differences less dramatic.

• Similar optimizations exist with other combinations (fuel cell, flywheels, 
etc).

1R.M. Sclupbach et. al., “Design methodology of a combined batteryultracapacitor energy 
storage unit for vehicle power management,” in Proc. Power Electronics Specialist Conference, 
IEEE, Vol. 1, pp. 88-93, Acapulco, Mexico, 2003.
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Battery/Ultracapacitor Hybrids: Parallel Methods
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Ultracapacitor operating voltage is always greater 
than battery voltage.

Power sharing by summation of currents.

Regenerative braking charges the ultracapacitor, which can then 
trickle-charge the battery through the low-current DC/DC converter.

Seen in: A.W. Stienecker, M.A. Flute, and T.A. Stuart, “Improved Battery Charging in an 
Ultracapacitor–Lead Acid Battery Hybrid Energy Storage System for Mild Hybrid Electric Vehicles,”
in  Proc. SAE World Congress, Detroit, Michigan, USA,  2006.
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Battery/Ultracapacitor Hybrids: Parallel Methods
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mmccbb IVIVIV  All power transfer paths available.

Two bi-directional DC/DC converters permit power transfer in any 
direction between battery, ultracapacitor, and traction motor.

Seen in: P.C.K. Luk and L.C. Rosario, “Power and Energy Management of a Dual- Energy Source 
Electric Vehicle – Policy Implementation Issues,” in Proc. International Power Electronics and 
Motion Control Conference, IEEE, pp. 1-6, Shanghai, China, 2006.

Also seen in: “Electric Green Racing,” University of Manchseter, online final project video: 
http://www.eee.manchester.ac.uk/undergraduate/courses/specialfeatures/fourthyearproject/Electri
c_Green_Racing_medium.wmv, 2007.
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Battery/Ultracapacitor Series Configuration

Ultracapacitor
Bank

Battery
Bank

Vb

Vm

Ib Im=Ic

  mcmbb IVVIV 

Vm-Vc

Power sharing by summation of voltages.

Traction
Motor

Voltage present on the ultracapacitor reduces the current demand from the 
battery at a given motor current demand.

Regenerative braking charges the ultracapacitor only. Switch and bypass 
diode allow for selective inclusion of ultracapacitor during acceleration.
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• Starting-point for our experimental vehicle drive system.

• High-power (300A @ 36V) buck converter for armature.

• Low-power (30A @ 36V) buck converter for field. 
(Not pictured.)

• Independent field control for “gearing.”
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• Retain the same power converters.

• Add ultracapacitor module in series with motor.

• Add bypass diode and brake/boost relay.

• Modify control strategy as follows.
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• Battery-only drive, same as standard separately-excited drive.
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• Battery-only drive, same as standard separately-excited drive.
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• Low side of half-bridge held closed. Capacitor relay closed. All regen 
current flows through ultracapacitor. Batteries are not involved.

• Field strength controls braking force.

• No high-current switching.
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• Same as normal drive, but with power assist from the ultracapacitor.

• Series power sharing by sum of voltages. Battery current automatically 
reduced by half-bridge controller.
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• Same as normal drive, but with power assist from the ultracapacitor.

• Series power sharing by sum of voltages. Battery current automatically 
reduced by half-bridge controller.
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Simple Analytical Model

Armature resistance dominates dissipative effects, suggests 
a simple power conservation approach:
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Series Power Sharing During Acceleration Assist

Example simulation showing reduced battery load, increased top speed.
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Series Configuration Attributes

• Smaller ultracapacitor. Entire voltage range used, down to zero volts. 
Can be significantly lower voltage than the battery.
• Decreased cost.
• Decreased series resistance.
• Easier cell balancing.

• No external inductors. All switched current passes through motor
windings.

• One single-directional DC-DC converter; could be an off-the-shelf DC 
motor controller. Converter sees fixed battery input voltage.

• No pre-charge circuit required for the ultracapacitor.

• Simpler circuit to model, build, explain, and demonstate, important for 
the educational objective.

• Disadvanatge: No direct power transfer path between battery and 
ultracapacitor. All regenerated energy can only be re-used by motor.
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Vehicle Layout
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Electric Motor

7kW, 48V Separately-Excited DC Motor
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Electrical System

300A-peak Motor Controller and Wireless Interface
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Electrical System

Armature and Field Drive Half-Bridges

Isolators and Optical Couplers
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Field Control

Electric Sequential “Gear” Shifter
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Test Drives

(Launch Video)
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Flywheel Testing

Effective inertial loads up to 250kg.
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Flywheel Testing

Example regenerative braking profile.
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Flywheel Testing

Example acceleration assist profile.
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Flywheel Testing

Capacitor assist on torque-speed and power-speed curves.
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Conclusions and Future Work

• Series battery/ultracapacitor combination offers several advantages 
which make it well-suited for light DC-drive vehicles as an efficiency 
and/or performance enhancement.

• Experimental vehicle confirms the validity of the simple system model: 
Regenerative braking and capacitor assist efficiency predictable using 
armature resistance model.

• Simple system makes for an ideal educational project.

Future Work:

• Track testing.

• More work on merging regenerative and mechanical brakes.

• Extension to AC drive system?
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Questions?Questions?

Comments?Comments?

Thank Thank 
you!you!
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Questions?Questions?

Comments?Comments?

Thank Thank 
you!you!
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Regenerative Braking Model
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Experimental Vehicle Specifications
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Experimental Vehicle Signal Architecture
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Experimental Vehicle Program Loop


