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Sound localization is the process through which a listener is able to discern

the apparent location of an acoustic source without the aid of sight. Auditory

cues to source position fall into two major categories: monaural and binaural.

The former are extracted from the information present at a single ear, while

the latter result from some form of neural comparison or correlation between

the signals at both ears. The focus here is on binaural cues, specifically the

interaural time and level differences (ITD and ILD), and whether they contain

sufficient information to accurately localize a close-range acoustic source in

three dimensions. A model has been developed, based on work published by

others, which compares ITDs and ILDs generated by a source in an unknown

location with those generated by sources in known locations. The binaural

cues used in the model were extracted from close-range head-related transfer

functions (HRTFs) measured on a KEMAR manikin. A nearest-neighbor ap-

proach is used within the model to estimate the azimuth, elevation, and range

of the unknown source.
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Chapter 1

Introduction

Today, the auditory system is primarily relied upon for its use in communi-

cation. People relay information to one another through speech, music, and

other sounds which are received by the ears and processed by the brain. But

hearing, and in particular the ability to identify the location of the origin of

a sound, was once of significant concern for survival. Despite the changes

brought about by evolution, the same mechanisms needed in the past for elud-

ing a predator or locating prey are now used to locate an on-coming vehicle

with a siren, and provide the feeling of being enveloped by the sounds of an

orchestra in a concert hall. Spatial hearing may no longer aid the average per-

son in matters of life and death, but it remains the subject of much academic

interest. With the advent of virtual reality and the demand for realistic three-

dimensional audio through headphones, its role as the subject of continued

research seems quite safe.

This chapter serves as an introduction to the work done for this thesis,

and a brief summary of pertinent background information. Section 1.1 covers

the basics of sound localization. Section 1.2 describes the head-related trans-

fer function and its use in sound localization research. Section 1.3 contains

1
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the statement of purpose for this work, and a brief outline of the remaining

chapters.

1.1 Sound Localization

Sound localization is the process through which a listener perceives the ap-

parent spatial position of an acoustic source. The auditory system is provided

with a variety of cues which lead to this perception in ways not entirely un-

derstood. Under certain circumstances, a human listener can differentiate

between sound sources that are in front and behind, above and below, to the

right and to the left. With varying degrees of accuracy, a listener can often

estimate the particular location of a source in space.

The study of sound localization must consider at least two major is-

sues: the nature of possible localization cues, and the way in which these cues

are processed and interpreted by the auditory system and the brain. To this

end, researchers have measured and analyzed the acoustic information avail-

able to a listener, studied the anatomy of the auditory system, quantified and

qualified human (and animal) localization abilities, and modeled these abili-

ties with mathematical formulae and computer programs. Blauert [1] offers a

comprehensive discussion of these and many other facets of sound localization.

Middlebrooks and Green [29] and Wightman and Kistler [42] provide excellent

reviews of the pertinent literature and summaries of auditory localization cues

and cue utilization.
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Forward

Frontal plane

Median plane

plane
Horizontal

Backward

Figure 1.1: Three normal planes which define the space around a listener
relative to the center of the interaural axis. The sphere represents the listener’s
head. Adapted from [15].

1.1.1 Auditory Space

Three normal planes are used to describe the auditory space surrounding a lis-

tener. All are referenced to the interaural axis, an imaginary line joining the

two ears. The median plane is a vertical plane through the center of the inter-

aural axis; the frontal plane is the vertical plane which contains the interaural

axis; the horizontal plane is the horizontal plane which contains the interaural

axis. The three planes are depicted in Figure 1.1. In the context of sound lo-

calization, positions in auditory space are described using a three-component,

head-centered coordinate system. Two of the components, azimuth and el-

evation, differ in their exact definitions depending on the coordinate system

used, although the former usually describes a displacement from the median

plane, and the latter a displacement from the horizontal plane. Range, the

third component, is always defined as the linear distance from the center of
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Forward
θ

r

φ
Backward

Figure 1.2: Coordinate system with azimuth θ, elevation φ, and range r. The
source position is marked with an x. See also Figure 1.3.

the listener’s head to the sound source in question.

The coordinate system we chose for this thesis is depicted in Figures

1.2 and 1.3. The azimuth angle θ is the angular displacement from the

median plane (as measured in the horizontal plane), with positive angles to

the right and negative angles to the left. The elevation angle φ measures the

vertical displacement from the horizontal plane, with positive angles above

and negative angles below. Range r is the distance from the center of the

interaural axis to the source. This system is particularly useful for positioning

a source during localization-related measurements. With a source fixed at a

distance r and elevation φ, a listener or other receiver (e.g., a microphone) can

be rotated horizontally through 360 ◦ to sample the desired azimuths. This

system is also convenient because the definitions of the angular components

are rather intuitive. If one considers a sphere of radius r centered on the

midpoint of the interaural axis of a listener, any points on the sphere with the

same azimuth fall on the same longitude line, and any points with the same
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Figure 1.3: Azimuth θ as seen from above, and elevation φ as seen from the
side. See also Figure 1.2.
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elevation fall on the same latitude line. Examples of other coordinate systems

can be found in [5] and [15], some of which are considered more appropriate for

the analysis of localization cues. Fortunately, coordinate transformations exist

which provide a one-to-one mapping of position from one coordinate system

to another, so it is possible to exploit the features of multiple systems without

loss of location-specific information.

1.1.2 Cues to Source Location

Auditory cues to source location can be classified in numerous ways. In par-

ticular, three somewhat overlapping distinctions are usually made: whether a

cue is monaural or binaural, whether it is relative or absolute, and whether

it is exploited in the time or frequency domain [28, 42]. Monaural cues are

extracted from the information present at a single ear, while binaural cues

result from some form of neural comparison or correlation between the signals

at both ears. Relative cues arise from the comparison of the signals from a

source to those from a known condition (e.g., source spectrum or location),

and thus require some a priori knowledge of the spectrum and/or location of

the source. Absolute localization cues are independent of the source spectrum,

and can be used without any previous information. Time-domain cues contain

salient temporal information, while frequency-domain cues contain location-

specific spectral information. This thesis is primarily concerned with absolute,

binaural cues, processed in both domains. Both Middlebrooks and Green [29]

and Wightman and Kistler [42] offer excellent reviews of the various cues.

The use of binaural cues by the auditory system has received much

attention in the literature (e.g., see [2], [4], [9], [11], [17], [21], [36]). In par-
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ticular, the interaural time difference (ITD) and the interaural level difference

(ILD) have been the subject of much research, as they are considered to be

the two most important binaural cues to source location [42]. The ITD is the

difference in arrival time at the two ears of the signal from a single source; it is

primarily due to the difference in path lengths from the source to the two ears

imposed by the head. The ILD is the difference in sound pressure level at the

two ears. When a sound source is relatively far from the head (r ≥ 1 m), the

path length difference from the source to the two ears is small when compared

with the distance from the source to the listener’s head. Reduction in sound

pressure amplitude due to spreading between the two ears is negligible, and

the ILD results from diffraction about the head. An acoustic shadow is cast

over the far ear, reducing the sound pressure level there and thereby causing

the ILD. When the source is within 1 m of the head, however, the path length

difference is no longer negligible, and the ILD is augmented by the additional

attenuation incurred along the path to the ear farther from the source. Lord

Rayleigh provided the first theory of sound localization based on the interaural

time and intensity differences [36]. His “duplex” theory predicts that the ITD

can provide an unambiguous localization cue for low-frequency sources, and

the ILD is most useful for localizing high frequencies. Modern research has

shown this theory to be incomplete, but it continues to serve as a cornerstone

in the study of sound localization.

Of the studies of binaural localization, those which attempt to provide

indications of azimuth and/or elevation are the most common; distance local-

ization has received far less attention. Human localization is least accurate

for distance [29], and the primary cues to distance tend to be relative and
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monaural. Given a source far from the head, it is thought that its range is

perceived by the ratio of direct-to-reverberant energy received by the ears, a

quantity which decreases with distance; the increase in attenuation of high

frequencies by air with increasing distance; and the decrease in sound pressure

level with increasing distance due to spreading. If a listener is given only one

presentation of a source of unknown spectral content, none of these cues is of

much use. A comprehensive review of distance cues can be found in [44].

Of particular interest for this thesis are the absolute cues to the distance

of sources located within one meter of the head, which we refer to as close-range

sources.1 At such small distances, reverberation can be ignored if the time scale

of analysis is sufficiently short, and high-frequency attenuation by the air is

negligible. Changes in sound pressure level with distance are still available

as cues, but only with multiple presentations. The most likely distance cue

is thus the interaural level difference. As is described above, the ILD which

results from a close-range source is due to an acoustic shadow cast over the

far ear by the head, as well as the attenuation of the signal travelling to the

far ear due to spreading over the larger path length. The distance dependence

of the ILD at close range has been modeled mathematically [4, 10], but its

salience as a cue is yet to be determined.

1Sources within 1 meter of the head are often referred to as “near-field” sources in the
literature. This is actually a misuse of the term near-field, which generally describes the
area within one wavelength of an acoustic source [32].
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Figure 1.4: A sample HRTF measured on a manikin. Notice the resonance
peaks near 2.5 and 7 kHz, and the pinna notch near 10 kHz.

1.2 Head-Related Transfer Functions

Many of the cues used for sound localization are embodied in the head-related

transfer function (HRTF). The HRTF has been defined in a number of ways

(see [3]), but in general is a frequency-domain function which describes the

filtering effects of the head and outer ear on acoustic signals. For this thesis,

we use the following definition: the head-related transfer function is the ratio

of the sound pressure measured at the ear drum divided by the free-field sound

pressure measured at the center of the head with the head removed. Reflec-

tions, diffraction, and resonances that occur within the outer ear, as well as

reflections from the shoulders and torso and diffraction about the head, cause

changes in the spectrum of incoming sound which are both location and fre-

quency dependent. An example of an HRTF can be seen in Figure 1.4. The
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peaks near 2.5 and 7 kHz are due to resonances within the outer ear. The

notch near 10 kHz is the result of destructive interference from reflections

within the outer ear [34].2 Binaural localization cues, particularly interaural

time and level differences, can be extracted from the ratio of the right and

left HRTFs for a specific source position. This ratio, known as the interaural

transfer function, and its use in localization are described in detail in Chapter

3.

The HRTF varies from individual to individual, and has been measured

on human listeners as well as anthropomorphic manikins designed to have av-

erage human dimensions. Because the HRTF is a function of azimuth, eleva-

tion, range, and frequency, comprehensive sets of measurements are difficult

to make. Measurements described in the literature usually contain data evenly

sampled over a head-centered sphere of fixed radius, thus eliminating the pos-

sibility of analyzing the range dependence. However, the HRTF’s dependence

on range drops off as distance increases, so measurements made sufficiently

far from the head are considered to be representative of all distances beyond.

As a result, close-range HRTFs have been particularly neglected. We hope to

add to the small body of research in this area with this thesis.

1.3 Thesis Outline

The ultimate goal of this thesis is to create a computer-based sound localization

model which can estimate the azimuth, elevation, and range of a close-range

2This notch, known as the “pinna notch,” is considered to be one of the primary cues to
source elevation.
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acoustic source, given as input binaural cues similar to those available to the

human auditory system. In order to obtain this goal, it is first necessary to

understand the nature of the auditory cues to each component of the source

position, particularly those that occur when the source is within one meter

of the head. To this end, an extensive set of close-range head-related trans-

fer functions has been collected, and the direction- and distance-dependent

cues within them have been analyzed and extracted for use in the localiza-

tion model. Chapter 2 covers the HRTF measurements. Chapter 3 discusses

the extraction of localization cues from the HRTFs and the analysis of these

cues. Chapter 4 describes a three-dimensional localization model. Chapter 5

summarizes the results of the measurements, analysis, and modeling.



Chapter 2

Measuring the Head-Related Transfer

Function at Close Range

As is mentioned in Chapter 1, very little data have been collected on the HRTF

at small distances from the head. For the purpose of this thesis, a set of close-

range HRTF measurements was taken, upon which the majority of the analysis

in Chapter 3 is based. This chapter serves as an overview of the measurement

setup. Section 2.1 covers the various components used in the measurements.

Section 2.2 provides a brief introduction to the use of maximum-length se-

quences (MLS) in transfer-function measurements. Section 2.3 discusses the

actual measurement process. Section 2.4 covers the system calibration. Sec-

tion 2.5 describes the spatial locations covered by the measurements. Section

2.6 covers the free-field, system-response measurements.

2.1 HRTF Measurement Setup

2.1.1 Measurement Overview

The general methodology for acquiring the HRTF measurements is described

by Gardner and Martin [12]. This methodology was developed for far-field

HRTFs, and thus had to be adapted for measurements taken at close-range.

What follows is a description of the measurement process, with particular

12
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emphasis on the aspects which are specific to close-range measurements. The

procedure involves using a maximum-length sequence to create broadband

noise through a loudspeaker, recording the response to the noise at the ear of

a manikin, and manipulating the response into a head-related impulse response

(HRIR). The HRIR can be converted to its frequency domain equivalent, the

HRTF, using a Fourier transform.

2.1.2 Hardware

All HRTFs were measured for a Knowles Electronics Manikin for Acoustic

Research (KEMAR) model DB-4004, an anthropomorphic manikin designed to

facilitate binaural recordings. The KEMAR consists of an adult-sized hollow

torso and a hollow head with removable pinnae. The inside of the head is

designed to hold an inner ear simulator and a microphone on each side. For

this thesis, measurements were taken on the right side only (see Section 2.6),

using a Brüel and Kjær (B&K) 4133 1
2
−inch microphone, a Knowles Occluded-

Ear Simulator, model DB-4005, and a Knowles Right Pinna, model DB-056

(see Figure 2.1). The microphone was attached to a B&K 2669C pre-amplifier,

and powered with a B&K 2807 power supply. The KEMAR was mounted on a

turntable capable of full 360 ◦ rotation. The angular position of the turntable

(and the KEMAR) could be monitored through the output of a sine-cosine

potentiometer. Figure 2.2 shows the KEMAR mounted on the turntable. All

measurements were made in an anechoic chamber with inner dimensions: 2.17

m (height) × 2.47 m (width) × 3.64 m (depth).

The choice of an appropriate loudspeaker to be used as an acoustic

source was limited by the close range of the measurements and the need to
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Figure 2.1: A rear view of the inside of the KEMAR’s head, fitted with a B&K
1
2
-inch microphone and a Knowles Occluded-Ear Simulator at the right ear.
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Figure 2.2: The KEMAR mounted on the turntable.

reproduce an audio bandwidth of approximately 20 Hz to 20 kHz. Consider

the geometry of a standard two-way loudspeaker, in particular the physical

separation of the woofer and the tweeter. At listening or measuring positions

far from the speaker, the separation of the woofer and tweeter is negligible,

and the acoustic source can be considered to be at the geometric center of

the two drivers without introducing gross error. At shorter measuring dis-

tances, however, the separation of the high- and low-frequency sources is no

longer negligible (see Figure 2.3), and the uncertainty of the elevation of the

source becomes significant. Thus, in order to maintain accuracy in position-

ing the acoustic source relative to the KEMAR, it was necessary to choose a

loudspeaker which could reproduce acoustic information across the full audio

bandwidth from a single location in space.
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Figure 2.3: A conventional two-way loudspeaker. The separation of the woofer
and the tweeter introduces an error ε when measuring the elevation angle.

The loudspeaker chosen for these measurements was a Tannoy System

600 Near-Field Reference Monitor. This particular speaker has a published fre-

quency response of ±3 dB from 52 Hz to 20 kHz. It uses a Dual Concentric TM

design which allows for accurate point-source reproduction at close range over

the desired bandwidth by placing a high-frequency waveguide (tweeter) at the

center of the woofer (see Figure 2.4).1 The full set of specifications can be

found in the user’s manual [39].

Control of the measurement system was supplied a by Packard Bell

75 MHz Pentium computer. Output to the loudspeaker and input from the

microphone and the potentiometer on the turntable were accomplished with

a National Instruments AT-MIO-16E-2 data acquisition (DAQ) board. The

analog input of this board is capable of 12-bit resolution at a maximum sam-

pling frequency of 500 kHz; the analog output also has 12-bit resolution, at a

maximum sampling frequency of 600 kHz. For this experiment, the sampling

1Dual Concentric is a trademark of TGI, Ltd.



17

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 2.4: The Tannoy loudspeaker. Note the concentric woofer and tweeter.
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Figure 2.5: HRTF measurement setup.

frequency at both the input and the output was fs = 43478.26 Hz.2 Three

single-ended input channels were used: one connected to the microphone and

one connected to each output of the sine-cosine potentiometer. One single-

ended output channel was connected to the loudspeaker. The DAQ board was

controlled by a program written in C (see Section 2.1.3).

A Tigersaurus 210/A power amplifier was used to amplify the output

of the DAQ board to drive the loudspeaker. The gain of the Tigersaurus

was held constant throughout all of the measurements to maintain a fixed

source level. A Hewlett-Packard 450A pre-amplifier was inserted between the

microphone and the DAQ board to add 20 dB of gain before sampling. The

entire measurement setup is depicted in Figure 2.5.

2A sampling frequency of 44.1 kHz would have been ideal, as it is a standard in digital
audio technology, and thus would allow use of the measurements in existing audio systems
without resampling. However, the AT-MIO-16E-2 is limited to sampling periods (Ts) of
integral microsecond length, so Ts = 23 µs, corresponding to fs = 43478.26 Hz, was chosen.
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2.1.3 Software

Two types of software were used during the experiment. The first was a set

of C-language functions which generate maximum-length sequences (MLS),

provided by Dr. William Gardner at the Massachusetts Institute of Technology.

These were used to create a 16383-point MLS using a 14-bit shift register. See

Sections 2.2 and 3.1 for details on the use of maximum-length sequences in

impulse-response measurements.

The second type of software was used to control the data acquisition

during the experiment; it was written in C using National Instruments NI-

DAQ libraries (version 4.6.1). These libraries allow for direct control of data

acquisition hardware from a DOS programming environment.3 In particular,

the DAQ capabilities of the program include controlling simultaneous analog

output and input for sending the MLS to the speaker while sampling the micro-

phone’s response, and simultaneous two-channel analog input for measuring

the angular position of the turntable. The program also generates the ap-

propriate data file name from the azimuth, elevation, and distance associated

with a particular measurement, and writes the data to disk for subsequent

processing.

All data processing during the analysis phase was done in Matlab. The

details of the analysis are given in Chapter 3.

3All data acquisition was done in a DOS environment because latencies associated with
Windows reduced the maximum sampling rate of the DAQ board to well below the required
rate.
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2.2 Impulse-Response Measurements Using Maximum-
Length Sequences

Since the HRTF can be recovered from the head-related impulse response

(HRIR) using a Fourier transform, it is possible to measure the HRTF indi-

rectly using any one of a variety of impulse-response measurement techniques.

We chose to use the method described by Gardner and Martin [12], which

uses a maximum-length sequence (MLS). An MLS is a pseudo-random, peri-

odic, binary sequence which is generated recursively in a shift register using

exclusive-or logic in a feedback loop. Ignoring the DC component, its spec-

trum is flat up to fs/2, where fs is the frequency at which it is sampled

during digital-to-analog conversion. Thus, when used to drive a loudspeaker,

it generates broad-band noise whose bandwidth is controlled by the sampling

frequency.

Impulse-response measurements are made by exciting a system with an

MLS and measuring the response to the excitation. The impulse response of

the system (in this case, the HRIR) is found by cross-correlating the measured

system response with the original MLS. The Fourier transform of the impulse

response is the frequency response of the system (here the HRTF). Detailed

discussions of the use of maximum-length sequences for impulse-response and

transfer-function measurements can be found in Rife [40] and Rife and Van-

derkooy [37]. Golomb [13] provides an in-depth mathematical treatment of the

theory of shift register sequences. The exact procedure used to find the HRIR

and HRTF using the KEMAR’s measured response to the MLS is described

in Section 3.1.
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2.3 Measurement Process

2.3.1 Speaker Placement

The loudspeaker was mounted in a cradle and suspended by a cable from a

hook in the ceiling of the anechoic chamber. The length of the cable could

be adjusted to place the speaker at any desired height. Guide wires attached

to the speaker cradle were used to set the tilt of the speaker and control its

rotation. For each set of measurements, a multi-step process ensured accurate

positioning of the loudspeaker with respect to the KEMAR for both distance

and elevation. For a given distance d and elevation angle φ, the following

procedure was used (refer to Figure 2.6):

1. The speaker was suspended at the correct height, which was found by

adding the vertical components h1, h2, and h3;

2. The forward (or rearward) tilt of the speaker was adjusted with a mag-

netic angle locator to equal the elevation angle φ, and was secured with

a guide wire attached to the bottom (or top) of the cradle;

3. The KEMAR was rotated to face away from the speaker (azimuth =

180 ◦), and the top of the head was removed to expose the interaural

axis;

4. The position of the KEMAR was adjusted so that the center of the

interaural axis was a distance d from the center of the loudspeaker cone,

as measured using a pre-cut wooden dowel of the desired length.
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h3

h2

h1

φ

Figure 2.6: Three vertical components of the loudspeaker position. Note that:
h3 < 0 when φ > 0, and h3 > 0 when φ < 0; h1 is constant; h2 is a function of
d and φ.
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Figure 2.7: Measurement setup in the anechoic chamber.
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At this point the top of the head was replaced, and measurements were

taken as the KEMAR was rotated through a full 360 ◦. A photograph of the

setup can be seen in Figure 2.7.

2.3.2 Data Collection

Once the speaker and the KEMAR were properly located, the anechoic cham-

ber was sealed, and the data collection software was started. The program

first queried the user for the elevation and distance of the current setup, both

of which were constant throughout a given set of measurements and were used

in naming the data files. For each measurement position within the set, the

following procedure was used. The controlling program first calculated the

azimuth of the loudspeaker relative to the KEMAR by measuring the voltage

from the sine-cosine potentiometer on the turntable. It then began simultane-

ous input and output operations: two copies of the 16383-sample MLS were

sent through the DAQ card to the loudspeaker, while the pressure response at

the microphone was sampled. In all, 33500 samples were recorded and written

to the hard drive of the computer for each position.4 After each measurement

was made, the turntable was rotated to the next position, and the process was

repeated.

4The acoustic delay between the speaker and the microphone, as well as the internal
signal delay of the DAQ board cause a time lag between the output of the sequence from
the DAQ board and the arrival of the response signal from the microphone. A 33500 sample
buffer ensured capture of the entire response to the MLS despite these delays.
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2.4 Calibration

2.4.1 Data Acquisition

The microphone was calibrated with a B&K 1
2
-inch calibrator, Model 4231,

which delivers a 94 dB SPL, 1 kHz tone. The microphone response to the

calibrator was found to be within 0.5 dB of 94.0 dB before and after each

measurement set. The entire data-acquisition system (computer, DAQ card,

amplifiers, speaker, and microphone) was tested using a Hewlett-Packard dig-

itizing oscilloscope and a Stanford Research Systems 2-channel network signal

analyzer. The sampling period was verified to be 23 µs with the oscilloscope

by monitoring the length of a single pulse within the MLS at the output of

the DAQ board. The spectrum of the MLS signal was tested at four points

within the system: before the digital-to-analog converter (DAC) in the DAQ

board; between the DAC and the loudspeaker; between the microphone and

the analog-to-digital converter (ADC) in the DAQ board; and after the ADC.

The spectrum was of course altered by the non-flat frequency responses of

the microphone and speaker, and showed the expected aperture loss from the

zero-order hold operation of the DAC. These deviations from a flat response

are repeatable and correctable (see Section 2.6). The changes in the responses

of the data acquisition components were determined to be negligible over the

course of the measurements.

2.4.2 Turntable Calibration

Calibration of the turntable and the angle measurement portion of the data-

acquisition software was accomplished as follows. With the KEMAR removed,

the turntable was rotated through a full 360 ◦, in 5 ◦ increments. At each
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stopping point, the angular reading from the position monitoring/controlling

software was compared with a reading from a protractor on the base of the

table. All readings from the software were within one degree of those from the

protractor. Before each set of measurements, the KEMAR was rotated until

the software displayed an azimuth of 0 ◦, the alignment with 0 ◦ on the table

was confirmed, and the 0 ◦ mark on the table was visually aligned with the

0 ◦ axis of the loudspeaker. The actual azimuth of the speaker relative to the

KEMAR is believed to have been within one degree of the desired azimuth.

2.4.3 Temperature, Humidity, and Sound Speed

The temperature and relative humidity in the anechoic chamber were measured

before and after all measurements each day. The speed of sound (c) was

calculated using the formula found in [8]. We found c to be within 0.5 m/s of

346 m/s for all measurement periods.

2.5 Measurement Scope

In order to analyze the changes of both monaural and binaural localization

cues with range, measurements had to be taken around the KEMAR at a

variety of distances. Since the focus of this thesis is close-range localization,

we chose distances of 0.25 m, 0.50 m, 0.75 m, and 1.00 m. We originally

hoped to include 0.125 m as well, but at this distance the rotation of the

KEMAR was impeded by the loudspeaker. At each distance, the HRIR was

measured for a number of azimuths and elevations. For the 0.50, 0.75, and

1.00 m distances, elevations from −40 ◦ to 90 ◦ in 10 ◦ increments were used.
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Measurements at 0.25 m were taken from −10 ◦ to 90 ◦ in 10 ◦ increments.5

At all elevations and distances, measurements were taken through a full 360 ◦

around the KEMAR. Because the KEMAR is symmetric about the median

plane, measurements taken in one ear at azimuths θ and −θ are equivalent

to measurements taken in both ears at azimuth θ. The 360 ◦ of monaural

measurements made in the right ear thus allow for binaural analysis in the right

hemisphere. The azimuth increment was dependent on elevation. Our goal was

to sample the spherical space around the KEMAR approximately uniformly,

and using a constant azimuth increment would have resulted in oversampling

at the higher elevations. Thus, increments were chosen such that adjacent

measurement positions at each elevation fell on great-circle arcs separated by

5 ◦ in the horizontal plane. Table 2.1 contains the azimuth increment for each

elevation. In all, 2656 HRIRs were recorded.

2.6 System Response Measurements

In addition to the HRIR measurements, the impulse response of the data-

acquisition system itself was measured at 0.25 m, 0.50 m, 0.75 m, 1.00 m.

This was done by removing the microphone from the KEMAR, and mounting

it on a stand. At each of the four distances, the microphone was positioned on

the 0 ◦ axis of the loudspeaker, and the impulse response of the system at that

distance was measured using the same process as that for the HRIRs. These

measurements served two purposes. First, all of the HRIRs are “colored” by

5It was impossible to rotate the KEMAR through 360 ◦ with the loudspeaker at elevations
below −10 ◦ (and at a distance of 0.25 m) without contact between the loudspeaker and the
KEMAR’s shoulder.

6Only one measurement was taken at the 90 ◦ elevation position.
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Elevation Azimuth
Increment

(degrees) (degrees)
-40 6.43
-30 6.00
-20 5.00
-10 5.00
0 5.00
10 5.00
20 5.00
30 6.00
40 6.43
50 8.00
60 10.00
70 15.00
80 30.00
90 N/A6

Table 2.1: Dependence of azimuth increment on elevation, adapted from Gard-
ner and Martin [12]

the frequency response of the system. If the impulse response of the system

itself is known, an inverse filter can be designed to remove the effects of the

system, leaving only the true HRIR. See Section 3.1.3 for a description of the

design and implementation of the inverse filters. Note that this filtering is

not necessary when analyzing interaural cues, as the same inverse filter will

be applied to both the left and right ears, and thus the effect will be divided

out. Second, as is discussed in Chapter 1, we define the HRTF as the sound

pressure at the ear divided by the sound pressure at the center of the head with

the head not present. The response without the head is simply the free-field

response measured by the microphone at the correct distance from the sound

source, which is precisely the same as the response of the data-acquisition

system itself. Thus any one of the measurements made with the KEMAR can
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be divided by the system response measurement made at the same distance to

yield the actual monaural HRTF.



Chapter 3

Data Analysis

This chapter covers the analysis of the data collected with the KEMAR manikin.

The primary focus is on the range dependence of localization cues, and the

agreement of the KEMAR data with mathematical predictions. Section 3.1

describes the method used to extract the HRIRs from the measurements dis-

cussed in Chapter 2. Section 3.2 describes a mathematical model used to

simulate monaural and binaural localization cues. Sections 3.3 and 3.4 cover

monaural and binaural localization cues, respectively, which are extracted from

the KEMAR data. Emphasis is placed on the binaural cues because they are

used in the localization model discussed in Chapter 4.

3.1 Data Reduction

3.1.1 Extracting the HRIR from the Measured Data

The first step in the data-analysis process was to convert the measurements

taken with the KEMAR into head-related impulse responses. As is discussed

in Section 2.3, this was done by cross-correlating the MLS with the system

response to the MLS. The exact method used for this work was taken from

Gardner and Martin [12]. Given an MLS of length N , the first N samples of

30
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the recorded system response were discarded, and two copies of the second N

samples were concatenated. This sequence (of length 2N) was cross-correlated

with the original MLS; the correlation was implemented with discrete Fourier

transform multiplication. A 512-point impulse response was extracted from

the result of the correlation starting at the 62nd sample, since the internal

delay of the acquisition system was measured to be 61 samples (see Section

3.1.2). Each 512-point impulse response was then windowed with a 512-point

Hanning window, normalized to the maximum HRIR value, multiplied by 215,

and stored as 2-byte short integers.

3.1.2 Calculation of the System Delay

The internal system delay was calculated from the system impulse-response

measurements which were made with the microphone removed from the KE-

MAR, as described in Section 2.6. In each recorded data file, the waveform

of the system impulse response is preceded by a series of zero-valued sam-

ples, which correspond to a delay between the onset of the data collection and

the processing of the response by the software. This time lag is made up of

two components: an acoustic delay proportional to the distance between the

speaker and the microphone, and the system delay. The length of the acoustic

delay can be calculated by dividing the distance between the loudspeaker and

the microphone by the speed of sound. The system delay is then found by

subtracting the acoustic delay (in samples) from the total time lag. For each

of the four system impulse-response measurements, the internal system delay
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was found to be 61 samples.1

3.1.3 Inverse Filters

As is mentioned in Section 2.6, the data-acquisition system itself has a partic-

ular frequency response that is imposed on the measured HRTFs. The effects

of the system frequency response can be removed with a filter whose frequency

response is the reciprocal of the system frequency response. Once the system

impulse response was found at each of the four distances, the corresponding

inverse filter for each distance was generated with the following process.

1. The system impulse response was windowed with a Hanning window,

and the system frequency response was found by applying the Fourier

transform;

2. The log-magnitude of the frequency response was inverted at each point

to create a frequency response equal to the reciprocal of the system

response;

3. The gain of the inverted frequency response was clipped at a maximum

of 30 dB;

4. An inverse Fourier transform was applied to the inverted, clipped fre-

quency response to generate an impulse response;

5. The inverse impulse response was windowed with a Hanning window.

1The assumption that the system delay is constant at 61 samples was later found to be
false. See Section 3.4.1 for details.
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Once the filters were created, each HRIR measurement was convolved with the

appropriate inverse filter to remove the effects of the measurement system.

3.2 Mathematical Predictions

3.2.1 Overview

Numerous attempts have been made to predict interaural time and level differ-

ences (ITDs and ILDs) mathematically [1, 17]. Unfortunately, many models

assume for simplicity that the waves impinging on the head are planar. The

predictions made with these models tend to be quite good for sources far from

the head (where the curvature of the wavefronts at the head is negligible),

but break down for close-range sources where the wavefronts are significantly

curved. Thus, any model suitable for close-range HRTF, ITD, or ILD predic-

tions must employ a source radiating spherical waves.

Reasonably accurate predictions of monaural HRTFs and binaural phe-

nomena can be made with a mathematical model which approximates the head

as a rigid sphere and assumes an external point source radiating spherical

waves [3, 10, 35]. One can find the pressure at any point on the surface of

the sphere due to the external point source; judicious choice of measurement

points to represent the ears allows for the modeling of HRTFs, ITDs, and

ILDs.

The pressure at a given point on a rigid sphere from an external point

source radiating spherical waves (from [35], derived in [32]) is given by:

Ps(r, a, f, θ) =

ρcU0

2πa2
×

{ ∞∑

m=0

(
m +

1

2

)
Pm(cos θ)

hm(kr)

h′m(ka)

}
ej(2πft−π

2
) (3.1)
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where

ρ = density of air

c = speed of sound in air

f = frequency of the point source vibration

k = wave number = 2πλ where λ = wavelength

a = radius of the sphere

r = distance from the center of the sphere to the source

θ = angle between the ray from the center of the sphere to the
source and the radius from the center of the sphere to the
measurement point on the surface

U0 = volume velocity of the source

Pm(cos θ) = Legendre polynomial in cos θ

hm(kr) = Spherical Hankel function in kr

h′m(ka) = derivative of the Spherical Hankel function in ka

Note that there is no dependence on elevation (φ) because of symmetry, so

all results are interpreted for 0 ◦ elevation. Calculation of a monaural HRTF

requires dividing the pressure at the ear by the free-field pressure at the center

of the head. The free-field pressure at a distance r from a spherically radiating

point source is given by:

Pff (r, f) =
ρckU0

4πr
ej(2πft−kr+π

2
) (3.2)

with constants and variables as defined for (3.1).

We used a head radius a = 8.75 cm and a speed of sound c = 346

m/s to make predictions for source distances r = 0.25, 0.50, 0.75, 1.00, and

1.40 meters.2 The density of air and the source volume velocity divide out in

28.75 cm is traditionally used as the radius when modeling the head as a sphere (see
[1], [10]), based on the “average” head size. It is also one-half of the front-to-back diameter
of the KEMAR head, and thus is reasonably appropriate for comparison to our measured
data.
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both monaural (Ps/Pff ) and binaural (Ps,right/Ps,left) calculations. The “ears”

were placed at positions of 100 ◦ and 260 ◦ (with 0 ◦ at the front of the modeled

head), as recommended by Blauert [1] and Duda [10].

3.2.2 Monaural HRTF Predictions

The monaural HRTFs predicted by the spherical head model can be seen in

Figure 3.1. Each curve was generated by solving for Ps,right/Pff (see (3.1) and

(3.2)) at the given azimuth and distance at 100 Hz intervals from 100 Hz to 16

kHz. The graphs shown cover azimuths of −90 ◦ ≤ θ ≤ 90 ◦ in 30 ◦ increments.

Symmetry of the sphere dictates that the plots for 90 ◦ ≤ θ ≤ 270 ◦ are the

same as the ones shown.

There are a number of distance-dependent trends which can be seen in

Figure 3.1. First, the magnitude of the low-frequency portion of the HRTF

increases relative to that of the high-frequency portion as distance from the

head decreases. For example, at θ = 90 ◦ (Figure 3.1 (a)), the difference be-

tween the magnitude at 16 kHz and 100 Hz decreases monotonically from

5.7 dB at 1.40 m to 4.4 dB at 0.25 m. On the contralateral side (θ = −90 ◦),

where there is significant high-frequency shadowing, the difference between the

low-frequency magnitude and the high-frequency magnitude increases mono-

tonically from 3.2 dB at 1.40 m to 5.5 dB at 0.25 m. At both azimuths, the

majority of the increase occurs in the transition from 0.5 m to 0.25 m. This

increased low-frequency content (relative to high-frequency content) with de-

creasing distance may be perceived as a low-pass filtering of the source as it

approaches the listener, which may in turn serve as a cue to distance. This

result is somewhat contrary to expectations: because the relative attenuation
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Figure 3.1: Sphere model predictions of HRTFs.
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Figure 3.1 (continued): Sphere model predictions of HRTFs.
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of high frequencies by air increases as distance increases, more distant sources

are also perceived as low-pass filtered (see [29]). This apparent contrast was

noted by Coleman [7], who commented,

...the frequency spectrum may play a dual role in auditory depth

perception with relatively greater high-frequency content signaling

a closer source at distances greater than several feet but signify-

ing a more distant sound source when the source is close to the

observer.

The second distance-dependent feature of the modeled HRTFs is the

overall magnitude. The HRTF measured at the near ear decreases in overall

magnitude with increasing source distance, while that measured at the far

ear increases with increasing source distance. This effect is most pronounced

when the source is near an azimuth of 90 ◦ or −90 ◦, and it is due to the 1/r

dependence of pressure from the spherical source. It is most easily explained

for sources at θ = 90 ◦ or −90 ◦. When the source distance is doubled (for

example) from r to 2r, the free-field pressure measured at the position of

the center of the head (Pff ) will decrease by 6 dB, since the distance to the

source is measured from that point. The distance from the ipsilateral ear

(here θ = 90 ◦) to the source will increase from (r − a) to (2r − a). Since

(2r − a)/(r − a) > 2 (assuming both r, a > 0), Ps,right will decrease by more

than 6 dB, with the overall effect of the magnitude of the ipsilateral HRTF

(Ps,right/Pff ) decreasing. Given this same doubling of source distance, the

distance from the source to the contralateral ear (here θ = −90 ◦) will increase

from [(r− a) + πa] to [(2r− a) + πa]. Since [(2r− a) + πa]/[(r− a) + πa] < 2,
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Figure 3.2: Interaural time differences predicted with the spherical head model.

Ps,left will decrease by less than 6 dB, with the overall effect of the magnitude

of the contralateral HRTF (Ps,left/Pff ) increasing. Use of this trend as a cue

to distance would require some a priori knowledge of the azimuth of the source

since the trend itself is azimuth dependent.

3.2.3 Interaural Time Difference Predictions

The predictions of interaural time differences for φ = 0 ◦ elevation can be seen

in Figure 3.2. ITD values were calculated for 0 ◦ ≤ θ ≤ 180 ◦ in 5 ◦ increments.3

Each curve was created by averaging the ITDs from 200 Hz to 1.5 kHz at 100

Hz intervals .4

The data clearly show that the ITD has a very weak dependence on

3Left/right symmetry of the sphere limits the necessary calculations to azimuths 0 ◦ ≤
θ ≤ 180 ◦.

4The 200 - 1500 Hz bandwidth was chosen to match that used when extracting ITDs
from the KEMAR data.
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range, particularly when the source is far from the interaural axis. However,

when the source azimuth is near 90 ◦, there is a small increase in the ITD with

decreasing distance, particularly when the source is within 0.50 m. The ITD

at 90 ◦ increases only 9 µs when the source is moved from 1.40 m to 0.50 m

(from 714 µs to 723 µs), but 16 µs when the source is moved from 0.50 m to

0.25 m (from 723 µs to 739 µs). Brungart [3] reports similar results, and has

shown an additional (and larger) increase in the ITD near 90 ◦ when the source

is moved from 0.25 m to 0.125 m. Based on the facts that the time difference

is dependent on the path length difference between the two ears, and the ears

are fixed, the small increase in ITD must be due to the fact that the curvature

of the wavefronts impinging on the head increases as source distance decreases.

The predicted ITDs are not symmetric about 90 ◦ because the “ears”

were not modeled at opposite ends of a diameter. The ITDs drop off more

quickly to the rear of the listener because the ears are closer to the back of

the head than to the front. The azimuth range in which the ITD at 0.25 m

is visibly greater than the others is approximately 50 ◦ ≤ θ ≤ 150 ◦, which is

centered around the 100 ◦ ear position rather than 90 ◦.

Based on the results of the sphere-model simulations, the interaural

time difference does not appear to be useful as a cue to source distance, except

perhaps when the source is extremely close to the head and nearly aligned with

the interaural axis. With the correct coordinate transformation, however, the

ITD can be used effectively as a cue to azimuth. We exploit this fact in the

localization model described in Chapter 4.
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3.2.4 Interaural Level Difference Predictions

The ILD predictions from the spherical head model are shown in Figure 3.3.

They were generated with (3.1) by solving for Ps,right/Ps,left for azimuths 0 ◦ ≤
θ ≤ 180 ◦ in 5 ◦ increments, and for frequencies 200 Hz to 2.0 kHz in 200

Hz increments and 2.0 kHz to 10.0 kHz in 2.0 kHz increments. Again, the

symmetry of the spherical model restricts the measurements to the horizontal

plane (φ = 0), and dictates that the ILDs for −180 ◦ ≤ θ ≤ 0 ◦ will be

the same as those shown. At low frequencies, the ILDs predicted by the

spherical model increase monotonically from 0 dB as the source moves toward

the measurement ear from the front of the head (0 ◦ ≤ θ ≤ 100 ◦), then decrease

monotonically as the source passes the ear and moves to the rear of the head

(100 ◦ ≤ θ ≤ 180 ◦). The peak is at 100 ◦ rather than 90 ◦ due to the placement

of the ears within the model. When the wavelength of the sound impinging

on the head is much greater than the radius of the head [as it is in Figure 3.3

(a) – (c)], diffraction by the head is minimal, and the ILD is due mainly to

the additional attenuation due to spreading incurred by the signal travelling

to the far ear. As the source moves closer to the head, the ratio of the distance

to the far ear and the distance to the near ear increases since the path length

difference remains constant; this results in an increase in ILD. The path length

difference can actually exceed the distance to the near ear when the source is

within 0.5 m, thus giving rise to the large ILDs when the source is 0.25 m from

the head.

As the source frequency is increased, two trends become evident. First,

the overall magnitude of the ILD increases. This is due to an acoustic shadow
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(a) 200 Hz. (b) 400 Hz.
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(c) 600 Hz. (d) 800 Hz.
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Figure 3.3: Sphere model predictions of ILDs: 200 Hz – 1000 Hz.
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(f) 1.2 kHz. (g) 1.4 kHz.
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(h) 1.6 kHz. (i) 1.8 kHz.
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Figure 3.3 (continued): Sphere model predictions of ILDs: 1.2 kHz – 2.0 kHz.
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(k) 4.0 kHz. (l) 6.0 kHz.
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Figure 3.3 (continued): Sphere model predictions of ILDs: 4.0 kHz – 10.0 kHz.
Note the change in scale from (a) - (j).
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cast by the head which reduces the pressure at the far ear, and pressure dou-

bling on the near side due to the rigid surface of the sphere.5 Second, the ILDs

at all distances have a local minimum in the vicinity of θ = 80 ◦. Construc-

tive interference of the diffracted waves traveling around the sphere creates an

acoustic “bright spot” on the contralateral side of the sphere: the diffracted

waves arrive roughly in phase at the far ear, causing an increase in pressure

(relative to lower frequencies). This increase in pressure (Ps,left) causes the

dip in the ILD.

A further increase in source frequency results in additional changes

to the ILDs. The notch near the interaural axis described above deepens,

reaching a maximum depth of approximately 15 dB at 8.0 kHz (see Figure 3.3

(m)). The notch is centered around an azimuth of 80 ◦. When the source is

positioned at θ = 80 ◦, the far ear (modeled at θ = 260 ◦) is at the opposite end

of a diameter of the sphere from the point where the sound impinges on the

head. All paths around the sphere to the far ear are thus of equal distance (1/2

of the circumference, or πa where a is the radius), resulting in a maximum of

constructive interference of the diffracted waves and a local minimum in the

ILD. At 4.0 kHz and above, additional local maxima and minima can be seen

in the ILD curves. These are caused by the more complex diffraction which

occurs when the radius of the sphere is equal to or greater than the wavelength

of the sound from the source. The patterns in the high-frequency ILD curves

are consistent across all measurement distances (albeit reduced in magnitude).

Despite the irregularities in shape, the ILD curves show a trend of increasing

5See [32] for an in-depth discussion on the physical acoustics of diffraction about a rigid
sphere.
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overall magnitude with increasing frequency.

The feature common to the predicted ILD at all azimuths and frequen-

cies is a monotonic increase in magnitude with decreasing source distance.

This strong dependence on range, which is most pronounced when the source

is within 0.5 m of the head, should serve as an excellent localization cue for

close-range sources.

3.3 Monaural Cues from the KEMAR Data

A small sample of the 2656 HRTFs measured with the KEMAR is shown in

Figure 3.4. In particular, these match the spherical model HRTFs (see Figure

3.1) in azimuth and elevation (with the addition of the data from θ = 180 ◦

in Figure 3.4 (h)). The two distance-dependent trends noted for the modeled

HRTFs are also present in the KEMAR HRTFs. First, the measured HRTFs

show an increased low-frequency content relative to high-frequency content as

the source moves closer to the head. Second, the magnitude (particularly at

low frequency) of the HRTF decreases with increasing source distance for the

ear nearer the source, and increases with increasing source distance for the ear

further from the source.

Because our goal is to exploit binaural rather than monaural cues in

our localization model, an in-depth analysis of the changes in the monaural

HRTF with distance has been omitted. Despite this fact, two features of the

KEMAR HRTFs should be noted here. The first is the pinna notch, which is

not present in the modeled HRTFs because the model makes no attempt to

simulate the outer ear. Certain features of this notch, in particular the slope
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(a) Azimuth = 90 ◦. (b) Azimuth = 60 ◦.
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Figure 3.4: KEMAR HRTFs.
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Figure 3.4 (continued): KEMAR HRTFs.
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of its low-frequency side and the frequency at maximum depth, are generally

considered to serve as the main cue to source elevation, particularly in the

median plane where binaural cues are greatly reduced (see Han [16]). The

notch affects the interaural level difference, and thus plays an indirect role in

binaural localization; see Section 3.4.2 for more detail. The second notable

feature of the KEMAR HRTFs in Figure 3.4, particularly those measured at

a distance of 0.25 m, is the apparent comb-filtering in the high frequencies.

This is due to multiple reflections between the head and the loudspeaker cab-

inet during the measurement, and is greatly reduced when the source is at

larger distances. Brungart [3] has developed an alternative measurement pro-

cedure which utilizes a much smaller source, and thus may eliminate this comb

filtering.

3.4 Binaural Cues from the KEMAR Data

3.4.1 Interaural Time Differences

There are a number of ways to extract interaural time differences from HRTF

data. One is to use a left/right pair of HRIRs as input to a cochlear model,

and extract the ITD from various frequency bands by cross-correlating the left

and right output of the model for each band (see [21] and [25]). Since the ITD

shows little variation with frequency for a given source location, a first-order

approximation of the ITD may also be obtained by simply finding the time

lag associated with the maximum of the cross-correlation of the left and right

HRIRs (see [42]). By defining the interaural transfer function (ITF) as the

ratio of the right and left HRTFs (for a particular source position), one can

calculate the ITD from the derivative of the unwrapped phase (group delay)
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of this ITF (see [3] and [9]). For this thesis, the last of the three methods was

chosen. In particular, the ITD is obtained from the slope of the best linear fit

to the unwrapped phase of the ITF, using a bandwidth of 200 Hz to 1.5 kHz.6

The ITDs calculated for source elevation φ = 0 ◦ and all measurement

distances are shown in Figure 3.5. The jagged nature of the curves is due

to jitter in the data-acquisition system. As is explained in Section 3.1.2, the

DAQ system delay was calculated to be 61 samples, and thus the first 61

samples of each HRIR were discarded. Unfortunately, the system delay was

not constant, but in fact varied over a small but significant range (see Figure

3.6).7 If the system delay differs by n samples between the left- and right-ear

measurements used to calculate a particular ITD, the ITD will be artificially

increased or decreased by 23 µs (since the sampling period Ts = 23 µs). The

effect of even a 1 sample difference is not negligible, in particular near the

midline (0 ◦ ≤ θ ≤ 20 ◦ and 160 ◦ ≤ θ ≤ 180 ◦) where the ITD is less than

200 µs.

Because there is no way to know the exact system delay for a given

measurement, the jitter cannot be removed from the ITD data. In order

to compensate, we smoothed all of the ITD curves (see Figure 3.8) with a

polynomial best fit.8 The ITD values used in the localization model described

6This bandwidth was chosen because the ITD is considered to be a useful cue only at low
frequencies. The interaural phase difference implied by the ITD is not detectable above 1.5
kHz, and thus the ITD ceases to be an unambiguous cue to localization at higher frequencies
[5].

7The data for Figure 3.6 were obtained by connecting the output channel of the DAQ
board directly to the input channel. A sampled step function of magnitude 1 was sent
through the signal path, and the index of the first non-zero sample seen at the input was
stored. The figure shows the results for 2656 trials.

8The order of the polynomial varied with elevation, since the number of measurements
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(a) Elevation = −40 ◦. (b) Elevation = −30 ◦.
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Figure 3.8: Interaural time differences extracted from the KEMAR data.
Panes (a)–(c) show only three curves because no measurements were made
below φ = −10 ◦ at 0.25 m.

in Chapter 4 are taken from the smoothed data.

The smoothed ITDs extracted from the KEMAR data are in relatively

good agreement with the predicted values. In particular, those from elevations

−10 ◦, 30 ◦, 40 ◦, 50 ◦, 60 ◦, and 70 ◦ [Figure 3.8 panes (d) and (h)–(l)] clearly

show that the ITD is not a function of range for sources more than 0.5 m from

decreased as the elevation moved away from 0 ◦.
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(e) Elevation = 0 ◦. (f) Elevation = 10 ◦.
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Figure 3.8 (continued): Interaural time differences extracted from the KEMAR data.
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(i) Elevation = 40 ◦. (j) Elevation = 50 ◦.
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(k) Elevation = 60 ◦. (l) Elevation = 70 ◦.
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Figure 3.8 (continued): Interaural time differences extracted from the KEMAR data.
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the head, and that the ITD increases slightly when the source is moved from

0.5 m to 0.25 m. Panes (a)–(c) also show that the ITD is not dependent on

range for sources outside a 0.5 m radius. Despite the lack of measurements at

0.25 m for elevations below −10 ◦, it would be logical to expect a small increase

in the ITD for sources inside 0.5 m, based on extrapolation from measurements

made at positive elevations. The actual ITDs for elevations 0 ◦, 10 ◦, and 20 ◦

are somewhat more jagged than the others, and the expected trends at these

elevations have been obscured by the smoothing.

The slight asymmetry around 90 ◦ in both the measured and predicted

ITD plots is due to the ears being set slightly back from the center of the

head.9 The curves from the measured data are slightly more narrow than

those from the predicted data (see Figure 3.2) because the KEMAR head is

not perfectly spherical. The interaural axis is somewhat shorter than the front-

to-back “diameter” of the head (14.5 cm vs. 17.5 cm), so the measured ITDs

are smaller than the predicted ITDs near the median plane. The discrepancy

in the peaks of the 0.25 m ITDs (predicted = 739 µs, measured = 852 µs)10

can be attributed to small errors introduced by the smoothing process and

in the positioning system, as well as facial features of the KEMAR (e.g., the

nose) which increase the interaural path length. Overall, the analysis of the

data extracted from the KEMAR measurements leads to the same conclusion

as the analysis of the spherical head model predictions: the interaural time

difference is not strongly dependent on the distance of an acoustic source from

9This agreement between the predicted and measured values indicates that θ = 100 ◦

and θ = 260 ◦ are good azimuthal locations for the “ears” in the sphere model.
10The difference of 113 µs is equivalent to a .039 m difference in path length, given a

speed of sound equal to 346 m/s.
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a listener, and thus it is not a useful cue in distance localization.

3.4.2 Interaural Level Differences

There are also a number of ways to extract interaural level differences from

the collected data. ILD extraction does differ from ITD extraction, however,

in that the ILD shows significant changes with frequency (as one would expect

given that the ILD is largely due to diffraction around the head), and thus

cannot be collapsed into one value per source position. The use of a cochlear

model has been suggested for ILD analysis. The log magnitude difference

between the left and right outputs can be found for as many narrow-band

channels as are available in the cochlear model (see [21] and [25]). A fast

Fourier transform (FFT) method may also be used, where the log-magnitude

value of the interaural transfer function at a given frequency is interpreted

as the ILD at that frequency (see [9]). This is equivalent to subtracting the

log-magnitude of the left HRTF from that of the right HRTF (for a given

source position) at the frequency of interest. The latter method is the simpler

of the two, but it does supply a finer frequency resolution than is available

in the cochlea [21].11 We chose the FFT method for its ease of use and for

more straightforward comparison to the sphere model predictions described in

Section 3.2.4.

The ILDs extracted from the KEMAR which match the predicted ILDs

in elevation (φ = 0 ◦) and frequency are shown in Figure 3.9. The agreement at

low frequencies [panes (a)–(e)] is quite good, with the measured ILDs showing

11The frequency resolution of the cochlea is limited by the bandwidth of critical bands
(see [34]).
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(a) 200 Hz. (b) 400 Hz.
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(c) 600 Hz. (d) 800 Hz.
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Figure 3.9: ILDs extracted from the KEMAR data: 200 Hz – 1000 Hz.
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(f) 1.2 kHz. (g) 1.4 kHz.
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(h) 1.6 kHz. (i) 1.8 kHz.
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Figure 3.9 (continued): KEMAR ILDs: 1.2 kHz – 2.0 kHz.
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(k) 4.0 kHz. (l) 6.0 kHz.
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Figure 3.9 (continued): KEMAR ILDs: 4.0 kHz - 10.0 kHz. Note the
change in scale from parts (a) – (j).
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the expected dependence on both azimuth and distance. At and below 1.0 kHz,

the measured values exceed the predicted values at all azimuths and distances,

with the greatest deviation at the 0.25 m distance. This small discrepancy (less

than 3 dB) is most likely due to the KEMAR’s neck and torso, which add to

the acoustic shadow cast over the far ear. Some of the predicted ILD curves

are reproduced in Figure 3.10 to allow for easier comparison.

The measured ILDs begin to show greater deviations from the pre-

dictions above 1.0 kHz [see Figure 3.9 (f)–(j)]. The expected dip near the

interaural axis does develop as expected, but its center is shifted closer to

θ = 90 ◦, rather than θ = 80 ◦ as predicted by the model. The local maxima

surrounding the dip move from θ = 40 ◦ and 120 ◦ at 1.2 kHz to θ = 50 ◦ and

110 ◦ at 2.0 kHz in Figure 3.3 and from θ = 40 ◦ and 130 ◦ to θ = 60 ◦ and 120 ◦

in Figure 3.9. The peak ILDs from the model for frequencies from 1.2 kHz

to 2.0 kHz always appear when the source is toward the rear of the sphere,

near θ = 120 ◦. The peak in the measured data moves from θ ≈ 120 ◦ at 1.4

kHz to θ ≈ 50 ◦ at 1.6 and 1.8 kHz, then back to θ ≈ 120 ◦ at 2.0 kHz. The

exact reason for this movement of the peak is not known. The radius of the

head is approximately one quarter of a wavelength at 1.0 kHz (and one half of

a wavelength at 2.0 kHz), and thus the deviations of the head from a perfect

sphere begin to have an effect at these frequencies.

At 4.0 kHz and above, the measured ILDs differ significantly from the

predicted values. Since the wavelength associated with 4 kHz is approximately

equal to the radius of the head, the modeling assumption that the head is

spherical is inappropriate at higher frequencies. Features of the KEMAR, such
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(a) Predicted ILDs: 400 Hz. (b) Measured ILDs: 400 Hz.
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(c) Predicted ILDs: 1600 Hz. (d) Measured ILDs: 1600 Hz.
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(e) Predicted ILDs: 6000 Hz. (f) Measured ILDs: 6000 Hz.

Figure 3.10: Comparison of predicted and measured ILDs at 400, 1600, and
6000 Hz.
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Figure 3.11: Left and right HRTFs measured at 1.00 m for a source at 15 ◦

azimuth and 0 ◦ elevation. Note the pinna notch at 10.0 kHz in the right
HRTF, which leads to a negative ILD at this frequency. See text for details.

as the nose, are no longer small compared to the wavelength of the impinging

sound, and cause the ILDs to become less symmetric.

The 10.0 kHz curves in Figure 3.9 (n) are of particular interest because

of the negative ILDs which were found for θ = 15 ◦ at 1.00 m, θ = 25 ◦ at 0.50

m, and θ = 35 ◦ at 0.25 m. Since 0 ◦ ≤ θ ≤ 180 ◦ implies a source on the right

side of the KEMAR and the ILDs were all calculated as Ps,right/Ps,left [see

(3.1)], a negative ILD is counter-intuitive, as it implies a higher pressure at

the far side of the head. These values can actually be explained by the plots

of the monaural HRTFs in Figure 3.11. The maximum depth of the pinna

notch in the HRTF of the right ear is at 10.0 kHz, where the magnitude is

actually below that of the left HRTF, causing the negative ILD. It should be

noted here that the elevation-specific information provided by the pinna notch,

a monaural cue, is embodied in the interaural level difference, a binaural cue.

Figure 3.11 only shows the HRTFs specific to the negative ILD at 1.00 m
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(a) Distance = 0.25 m. (b) Distance = 0.50 m.
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(c) Distance = 0.75 m. (d) Distance = 1.00 m.

Figure 3.12: Smoothed KEMAR ILD surfaces at −10 ◦ elevation.

mentioned above.

Despite the deviations of the measured ILDs from the predicted ILDs, it

is clear from both that the ILD has a strong dependence on range. Particularly

at low frequency, the ILD increases in magnitude at all azimuths as the source

distance decreases. Since ILDs are, for the most part, independent of the

source spectrum, they may be the most salient, absolute auditory cue to source

distance.

The ILDs shown in Figure 3.9 are all taken from the data measured at
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(e) Distance = 0.25 m. (f) Distance = 0.50 m.
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(g) Distance = 0.75 m. (h) Distance = 1.00 m.

Figure 3.12 (continued): Smoothed KEMAR ILD surfaces at 30 ◦ elevation.
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(i) Distance = 0.25 m. (j) Distance = 0.50 m.
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(k) Distance = 0.75 m. (l) Distance = 1.00 m.

Figure 3.12 (continued): Smoothed KEMAR ILD surfaces at 60 ◦ elevation.
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0 ◦ elevation to allow for direct comparison with the sphere model predictions.

A detailed discussion of the features of the ILD at numerous frequencies for

all fourteen elevations used in our measurements is impractical for this thesis.

Duda [9] provides an excellent discussion of the dependence of the ILD on

elevation (albeit in a different coordinate system). It is important, however,

to note that the distance dependence of the ILD exists at all elevations. Figure

3.12 contains three-dimensional plots of the ILD surface (0 ◦ ≤ θ ≤ 180 ◦, 100

Hz ≤ f ≤ 16000 Hz) at numerous elevations and all distances.12 The increase

in magnitude with decreasing distance is apparent at each elevation shown.

12The data in Figure 3.12 have been smoothed with a Gaussian kernel to make the distance
trends more clear.



Chapter 4

Three-Dimensional Localization Model

This chapter summarizes our efforts to create a three-dimensional localization

model for close-range acoustic sources. Section 4.1 presents a number of previ-

ous localization models. Section 4.2 describes our model, a three-dimensional

extension of the one used by Duda [9] and Lim and Duda [21] which employs

a nearest-neighbor estimation procedure. The results we obtained using our

measured KEMAR data with the model are given in Section 4.3.

4.1 Previous Localization Models

4.1.1 One-Dimensional Models

Numerous attempts have been made to create a model which can accurately

estimate the location of an unknown acoustic source. The most common of

these are “one-dimensional” and focus on lateralization, the ability to localize

only the azimuth of the source position.1 A few are described below.

Jeffress [18] proposed a lateralization model with a simple neural net-

work which responds to an interaural time difference. Other cross-correlation-

1It is common in the literature to refer to each component of the source position (azimuth,
elevation, range) as a “dimension,” despite the fact that changes in azimuth or elevation
alone can bring about changes in more than one dimension of space.
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based algorithms, e.g., those described by Blauert and Cobben [2], Lindemann

[22], and Gaik [11], have also been used in lateralization models, some of

which exploit ILDs as well as ITDs. One of the few one-dimensional local-

ization models concerned with range is given by Hirsch [17]. He presents an

equation (4.1) which uses the interaural time difference, the interaural inten-

sity difference, and the average of the intensities found at the two ear drums

to find the distance from a listener to a sound source at long range.2

r =
2c∆t

∆I/Iavg

(4.1)

c = speed of sound in air

∆t = interaural time difference

∆I = interaural intensity difference

Iavg = average intensity at the two ears

4.1.2 Multi-Dimensional Models

The literature also contains many two-dimensional models which attempt to

estimate the azimuth and elevation of an unknown source. Zakarauskas and

Cynader [45] describe one of the few models which exploits only monaural

spectral cues. Given a source whose spectrum has a locally constant slope,

they apply first- and second-order difference transforms to the spectrum. The

source azimuth and elevation are estimated by comparing the results from the

transforms to results from the transforms applied to HRTFs from known po-

sitions. Wightman et al. [43] create interaural spectral templates for known

2Greene [14] later showed that the expected uncertainty dr/r in using this equation can
be as high as 45%.
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source locations, and use a pattern-recognition scheme to find a best match

between ILDs from an unknown source position and one of the templates.

Martin [25] generates a spatial likelihood map for an unknown source position

from interaural time, level, and phase differences (based on their probability

distributions) and uses the global maximum of the map to estimate the az-

imuth and elevation. Lim and Duda [21] employ a nearest-neighbor approach

to localize a source in both azimuth and elevation using ITDs and ILDs. Their

model is described in more detail in Section 4.2 below, and is the basis of our

three-dimensional model.

At the time of writing, we know of no other model which attempts to

estimate the azimuth, elevation, and range of a sound source at an unknown

location.

4.2 A Three-Dimensional Localization Model Using Bin-
aural Cues

As is mentioned above, the localization model we implemented is based on

the two-dimensional model described in [9] and [21] but has been extended

to include range as a third dimension. For the two-dimensional case using

only ILDs, Duda presents the following statistical estimation method. He first

defines the true interaural level difference A(ω, θ, φ) as the log ratio of the right

and left HRTFs measured for azimuth θ and elevation φ, and the measured

interaural level difference for an unknown source, Am(ω). The two are related

by the expression

Am(ω) = A(ω, θ, φ) + N (4.2)
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where N is a normally distributed noise term representing noise at the ears

not related to the source in question. By Bayes’ rule

p[θ, φ|Am(ω)] =
p(Am|θ, φ)p(θ, φ)∫ ∞

−∞

∫ ∞

−∞
p(Am|θ, φ)p(θ, φ)dθdφ

(4.3)

and the probability that the source is at the location given by the pair (θ, φ)

given its measured interaural spectrum is maximized when the difference be-

tween Am and A is minimized. To implement this concept, the model is given

a set of vectors, each of the form

A(ω1, · · · , ωn, θi, φj) = [I(ω1) I(ω2) · · · I(ωn)] (4.4)

for p known azimuths θ1, · · · , θp and q known elevations φ1, · · · , φq. I(ωk)

is the log-magnitude ILD measured at frequency ωk. When presented with

Am(ω1, · · · , ωn) [of the same form as (4.4)] for an unknown source, the model

compares the data from the unknown source with the data from each known

position in the set using

δ(θi, φj) =

√√√√
n∑

a=0

[Am(ωa)− A(ωa, θi, φj)]
2 (4.5)

Finding the pair (θi, φj) which minimizes δ yields the estimated location of the

source.

This model is easily extended to include the ITD as well as the ILD

(see [21]). The vector A for each known source position can be made of the

form

A(ω1, · · · , ωn, θi, φj) = [τi,j I(ω1) I(ω2) · · · I(ωn)] (4.6)
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where τi,j is the measured ITD for a source at position (θi, φj).
3 (4.5) is still

valid, and δ(θi, φj) contains the difference in ITD, as well as the difference in

ILD, between the unknown source and a source at (θi, φj).

The extension of the model from two to three dimensions does not

require any changes to the algorithm itself. As is discussed in Section 3.4.2,

the ILD has a strong dependence on range. Specifically, the ILD generated

by a source at a given position has been shown to increase monotonically as

source distance decreases, particularly at lower frequencies. An example can

be seen in Figure 4.1. As the source distance decreases from 1.00 m to 0.25 m,

the shape of the ILD remains roughly constant while the magnitude increases

across the frequency spectrum shown. This indicates that, given estimates of

azimuth and elevation, it should be possible to determine the range of a source

based on the magnitude of the ILD spectrum. Since the model described above

has been shown to accurately estimate azimuth and elevation, and the vector of

interaural differences contains ILD magnitudes which allow for discrimination

between sources at two distinct positions differing only in distance, it is logical

to assume that the model can localize distance as well. Thus, given a set of

vectors each of the form

A(ω1, · · · , ωn, θi, φj, rk) = [τi,j,k I(ω1) I(ω2) · · · I(ωn)] (4.7)

describing source positions which vary in azimuth, elevation, and distance,

and a similar vector describing a source at an unknown location, we can use

the above model to estimate all three components of the source position.

3Since the ITD shows little dependence on frequency, only one value (τi,j) is needed for
the source position (θi, φj).
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Figure 4.1: ILDs at θ = 90 ◦, φ = 0 ◦ for four distances. Note the monotonic
increase in ILD with decreasing source distance.

Our implementation of the model utilizes the close-range HRTF mea-

surements described in Chapter 2. We measured 2656 HRTFs, 102 of which

are unusable in the model because they correspond to positions in the me-

dian plane (θ = 0 ◦, 180 ◦) where the interaural differences are necessarily zero.

This leaves 1227 pairs of HRTFs corresponding to 1227 positions in the right

hemisphere around the head. At this point, it is convenient to introduce the

terminology used by Duda to describe the sets of vectors, those for known

source positions and of unknown positions, used with the model. The vectors

associated with known source positions will be referred to as the training set,

and those associated with unknown positions the test set.4 The two sets were

created as follows. Starting with the 0 ◦ azimuth position at each elevation and

each distance, we chose every other measurement position. For each chosen po-

4This terminology comes from the literature pertaining to neural networks. The model
is effectively “trained” with data from known source locations, and “tested” with data from
unknown locations.
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sition, a vector was added to the training set with the following values: the ITD

τi,j,k taken from the smoothed ITD values (see Section 3.4.1); the ILD values

at 21 logarithmically spaced frequencies from 200 Hz to 4.0 kHz extracted from

the log-magnitude ratio of the right and left HRTFs measured at (θi, φj, rk).

For the points not chosen in this process, data were added to the training set

by averaging the vectors of the left and right neighbors of that position. For

example, the vector representing θ = 5 ◦, φ = 0 ◦, r = 0.50 m contains ITD and

ILD values which are averages of the values from θ = 0 ◦, φ = 0 ◦, r = 0.50 m

and θ = 10 ◦, φ = 0 ◦, r = 0.50 m. The training set contains a total of 1227 vec-

tors. The test set is made up of vectors containing the measured ITD and ILD

values for the positions represented by average values in the training set. For

example, the vector representing θ = 5 ◦, φ = 0 ◦, r = 0.50 m in the training set

contains average values as described above, while the vector representing that

same position in the test set contains measured ITD and ILD values extracted

from the appropriate HRTFs. The test set contains 612 vectors. The positions

in the two sets can be seen in Figure 4.2. An ‘x’ on the sphere represents a

point for which the corresponding vector in the training set contains measured

ITD and ILD values. An ‘o’ on the sphere represents a point for which the

corresponding vector in the training set contains ITD and ILD values found

by averaging its left and right neighbors, and also represents a point in the

test set.

Results were generated by using all 612 test set vectors as input to the

model, one at a time.5 For each vector, the model calculated δ for all 1277

5Since the interaural cues used in the vectors in the test set are extracted from the ratio
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0°
90°

270°
180°

Figure 4.2: Spatial positions used in the localization model, as seen from
θ = 90 ◦, φ = 0 ◦. See text for details. This figure shows only the points at one
distance; the pattern of x’s and o’s is the same for all distances.

positions in the training set using (4.5), and returned the position (θi, φj, rk)

corresponding to the minimum δ. Three points about the execution of the

model should be noted here. First, since each position represented in the

test set is also represented in the training set, it is possible for the model

to localize each position with zero error. Second, any localization error is

necessarily quantized to the increments used in the HRTF measurements (see

Chapter 2). Third, the evaluation of (4.5) requires that all of the components

of Am(ω) and A(ω, θi, φj, rk) have the same units to allow for valid distance

calculations. This was accomplished by multiplying the ITD values (τi,j,k) by

a weighting factor b = 1dB
50µs

, also known as a ‘time-intensity trading ratio,’

of the right and left HRTFs at each point, and the HRTFs are found by applying a Fourier
transform to the HRIR, the test source is implicitly assumed to be an impulse.
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to convert from microseconds to decibels. The value for b was obtained from

results of studies which investigated the ILD value necessary to counteract a

perceived lateralization due to a specific ITD. See [5] and [30] for details.

4.3 Results

4.3.1 Performance of the Model

The results from our localization model are quite good. Only 45 out of the 612

source positions in the test set were incorrectly localized, for a success rate of

nearly 93 percent. The mislocated points are shown in Figure 4.3.

The literature on sound-localization models contains numerous meth-

ods for quantifying localization error. Some authors choose to report the

average angular error for each dimension (azimuth, elevation) separately (e.g.,

see [21]). Others report the angle subtended by the great circle which includes

the actual and estimated position (e.g., see [45]). Unfortunately, most of the

methods are difficult to apply to the results of a localization model which in-

cludes range. An angular error ε at a distance r = 0.50 m represents a smaller

separation between the actual and estimated positions than does the same

error at a distance r = 1.00 m. Great circle arcs cannot be found between

points on spheres of different radii. In addition, given our coordinate system,

an angular error ε at an elevation φ = 80 ◦ represents a smaller separation

between the actual and estimated positions than does the same error at an

elevation φ = 0 ◦.

Because of these difficulties, we have chosen to report three types of

localization error:
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(a) Front view (θ = 0 ◦, φ = 0 ◦). (b) Side view (θ = 90 ◦, φ = 0 ◦).

(c) Top view (θ = 0 ◦, φ = 90 ◦).

Figure 4.3: Source positions incorrectly localized by the model. For each case,
a line connects the actual source position, marked with an ‘o’, to the estimated
position, marked with an ‘x’. The sphere in the center represents the listener’s
head, and the concentric circles represent the four measurement distances.
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1. εL: the linear distance between the actual and estimated source positions

divided by the linear distance from the center of the listener’s head to

the actual source position (r);

2. εI : the number of measurement increments (azimuth, elevation, and

range) between the actual and estimated source positions;6

3. εA: the angle subtended by the great circle arc which includes the actual

and estimated position, only for cases when the ranges of the actual and

estimated source positions are equal.

εL provides an error value as a percentage of the actual source distance. εI

can be calculated for each dimension (notated εI,θ, εI,φ, and εI,r) to separately

examine errors in azimuth, elevation, and range. εA can (and should) be

calculated for each measurement distance to see if the model’s accuracy is a

function of distance. Error measurements of each type can be found in Table

4.1. Averages were taken over all 612 unknown locations tested.

An examination of the data in Table 4.1 reveals two particularly ob-

vious points. First, the model made significantly more and larger errors in

azimuth than in elevation or range. This is most likely due to the fact that the

increments in azimuth are generally smaller than those in elevation or range.

Second, the model made significantly fewer errors for sources at r = 1.00 m

(3) than for sources at r = 0.25, 0.50, or 0.75 m (8,6, and 10 errors, respec-

tively). Because we used a constant angular spacing rather than a constant arc

6See Table 2.1 for the azimuth increments. One elevation increment equals 10 ◦. One
range increment equals 0.25 m.
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Error Type Number Average Units
εL 45 2.22 percent

εI,θ (azimuth) 28 0.14 increments
εI,φ (elevation) 13 0.03 ”

εI,r (range) 18 0.04 ”

εA, r = 0.25 m 8 0.43 degrees
εA, r = 0.50 m 6 0.43 ”
εA, r = 0.75 m 10 0.70 ”
εA, r = 1.00 m 3 0.13 ”

Table 4.1: Average localization errors.

length at the four measurement distances, the distance between measurement

positions increases as the distance increases. Thus, since adjacent positions

at r = 1.00 m are farther apart than adjacent positions at r = 0.25 m (for

example), the interaural cues are more distinct for adjacent positions at larger

distances and the model is less prone to error at larger distances.

Distributions of each single-dimension increment error are shown in

Figure 4.4. A negative error indicates the estimated source dimension is less

than the actual dimension; a positive error indicates the estimated source

dimension is greater than the actual dimension. For example, comparison of

an estimated position of θ = 5 ◦, φ = 0 ◦, r = 0.50 m, with an actual position of

θ = 0 ◦, φ = 30 ◦, r = 1.00 m yields a positive azimuth error (1 increment), and

negative elevation and distance errors (-3 and -2 increments, respectively).

4.3.2 Comparison with Human Localization Abilities

Direct comparison of the model’s performance with measured human localiza-

tion abilities is somewhat difficult due to the variability in localization exper-
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(c) Distance error.

Figure 4.4: Distributions of single-dimension increment errors.
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iments. Because human localization accuracy is a function of source position

and spectral content, experiments are often limited to small sections of au-

ditory space or to sources with particular spectral properties. For example,

localization of azimuth is often measured only for sources restricted to the hor-

izontal plane, while localization of elevation is often measured only for sources

restricted to the median plane. Source spectra vary from single frequencies to

broadband noise.

Despite the disparity in experimental conditions, four major trends in

human localization are easily identified. First, localization performance is

best for broadband signals and degrades with decreasing bandwidth. Second,

accuracy is best for frontal sources near the intersection of the median and

horizontal planes, and decreases as the source moves toward the interaural

axis and/or toward the extremes of elevation. Third, estimates of azimuth

are more accurate than estimates of elevation. Fourth, estimation is the least

accurate for range, with source distance generally underestimated [1, 5, 29, 44].

Given ideal conditions, human localization accuracy is on the order of 1 ◦ in

azimuth and 10 ◦ in elevation. Accuracy in distance estimation, particularly

for close-range sources, is not well documented. Given the azimuth increment

of 5 ◦ in the horizontal plane, the 10 ◦ elevation increment, and the 0.25 m

distance increment used in our measurements, the incremental errors εI,θ, εI,φ,

and εI,r shown in Table 4.1 correspond to average measured errors of 0.7 ◦ in

azimuth, 0.3 ◦ in elevation, and .01 m in range, respectively.



Chapter 5

Summary and Conclusions

This thesis was undertaken with three goals in mind: to measure the head-

related transfer function at close range; to analyze the distance dependence of

interaural localization cues extracted from the HRTF measurements; and to

create a computer-based model capable of accurate, three-dimensional localiza-

tion of a close-range sound source. The remainder of this chapter summarizes

the results and conclusions drawn from the work done toward these goals.

5.1 Measurements

As is discussed in chapter 2, we have collected a set of 2656 close-range head-

related transfer functions. The HRTFs were measured in the right ear of a

KEMAR manikin at distances of 0.25, 0.50, 0.75, and 1.00 m. The measure-

ments cover a full 360 ◦ of azimuth at elevations from −40 ◦ to 90 ◦ in 10 ◦

increments. The measurement process was adapted from the work of Gardner

and Martin [12], and uses a maximum length sequence as a broad band noise

source. In order to avoid source location ambiguities in the measurements, we

used a loudspeaker with a concentric woofer and tweeter which served effec-

tively as a point source at short distances.

81
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Two problems with the measurements became clear during the anal-

ysis phase. First, the delay intrinsic to the computer-based data-acquisition

system used to measure the HRTFs varied, causing difficulties in the anal-

ysis of interaural time differences (see Sections 3.1.2, 3.4.1, and 5.2). It is

still not clear whether this was solely the result of not disabling interrupts

within the acquisition software, or whether the DAQ card used was somehow

defective. Since similar measurements have been made by others without this

problem being reported, it is clear that this problem can be and should have

been avoided. Second, the proximity of the loudspeaker to the manikin at the

closer measurement distances combined with the relatively long time scale of

the MLS resulted in standing waves between the speaker and the KEMAR.

These standing waves caused a comb filter-like effect in the HRTFs which can

be seen as periodic peaks and notches in the high-frequency region. Since the

interaural level differences used in our model are generally lower in frequency

than the comb filtering, this seems to have caused no adverse effects on the

localization performance of the model. Brungart [3] describes a measurement

system which is immune to this problem due to a smaller sound source, and

thus may be more suitable for close-range HRTF measurements.

We did hope that the HRTF measurements would be useful in future

localization research, and could be used in perception experiments with human

listeners. At this point it is not clear whether either is possible because of the

problems described above.
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5.2 Analysis

Chapter 3 describes the extraction of interaural time and level differences from

the HRTF measurements, a comparison of these cues to predicted values, and

an analysis of the distance dependence of these cues. ITDs were calculated by

finding the slope of the unwrapped phase of the interaural transfer function;

ILDs were calculated as the log-magnitude of the interaural transfer function.

The measured ITDs are in relatively good agreement with those predicted by a

spherical head model, and show only a weak distance dependence. This depen-

dence is most likely due to the increase in curvature of a spherically spreading

wave with decreasing distance from the sound source. The measured ILDs are

generally larger than the predicted values, but the predicted dependence on

azimuth is quite clear in the measured data, particularly at frequencies below

2 kHz. Disagreement at higher frequencies was not unexpected; modeling the

head as a rigid sphere is only valid for low frequencies whose wavelengths are

larger than the radius of the head. The measured ILDs show a strong dis-

tance dependence at close range: a monotonic decrease in distance results in

a monotonic increase in ILD.

5.3 Modeling

The localization model described in Chapter 4 is an extension of the one de-

scribed by Duda in [9] and Lim and Duda in [21]. It uses a nearest-neighbor

estimation procedure to localize an unknown source in azimuth, elevation,

and range. Given a vector containing a single ITD and ILD values for 21

logarithmically spaced frequencies from 200 Hz to 4 kHz for a source at an un-
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known location, the model finds the difference between this vector and similar

vectors from known source locations. The estimated azimuth, elevation, and

range correspond to the vector of known position with the minimum difference.

The model was provided with 1277 vectors from known locations in the right

hemisphere at distances of 0.25, 0.50, 0.75, and 1.00 m. It was tested with

612 unknown source locations, also in the right hemisphere and at the same

distances, and correctly localized nearly 93 percent of them. The average error

in localization, found by dividing the linear distance between the actual and

estimated positions by the distance of the actual position from the head was

2.2 percent. It is clear from this that there is enough information in the ITD

and low-frequency ILD to accurately localize a source in three dimensions.

5.4 Future Work

The most obvious demand for future work that arises from this thesis comes

from the fact that our localization model does not compare well with human

abilities. Our model localizes more accurately than does the average human,

particularly in range. It does not seem to suffer the front-back confusions

that are reported in many studies of human listeners. Part of this is clearly

due to the fact that the modeled source locations (both known and unknown)

are restricted to a quantized set of positions, while natural sources can be

located anywhere. Also, the model assumes an anechoic listening environment

and a single, stationary, impulsive source, all of which are ideal conditions for

localization. While the human cochlea must process spectral information in

bands, our model exploits single-frequency interaural level differences. The

human head and torso are also significantly more asymmetric than the KE-
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MAR. Many of these factors can and should be incorporated into the model

to help understand human localization in three-dimensional space.

Despite the problems described in Section 5.2 above, it would be worth-

while to test our measured HRTFs on human listeners. It is possible that the

jitter in the ITD will not have an adverse effect on three-dimensional audio

generated with our HRTFs and delivered over headphones. If this is the case,

the measurements could be valuable for use in the virtual simulation of small

environments such as automobiles or airplane cockpits.
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