
© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 1 

Introduction to PIC Programming 

Midrange Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 4: Using Timer0 

 

 

The lessons until now have covered the essentials of midrange PIC microcontroller operation: controlling 

digital outputs, timed via programmed delays, with program flow responding to digital inputs.  That‟s 

enough to allow you to perform a great many tasks.  But PICs (and most other microcontrollers) offer a 

number of additional features that make many tasks much easier.  Possibly the most useful of all are timers; 

so useful that at least one is included in every current 8-bit PIC. 

A timer is simply a counter, which increments automatically.  It can be driven by the processor‟s instruction 

clock, in which case it is referred to as a timer, incrementing at some predefined, steady rate.  Or it can be 

driven by an external signal, where it acts as a counter, counting transitions on an input pin.  Either way, the 

timer continues to count, independently, while the PIC performs other tasks. 

And that is why timers are so very useful.  Most programs need to perform a number of concurrent tasks; 

even something as simple as monitoring a switch while flashing an LED.  The execution path taken within a 

program will generally depend on real-world inputs.  So it is very difficult in practice to use programmed 

delay loops, as in lesson 1, to accurately measure elapsed time.  But a timer will keep counting, steadily, 

while your program responds to inputs, performs calculations, or whatever. 

As we‟ll see in lesson 6, timers are commonly used to drive interrupts (routines which interrupt the normal 

program flow) to allow regularly timed “background” tasks to run.  However, before moving on to timer-

based interrupts, it‟s important to understand how timers operate.  And, as this lesson will demonstrate, 

timers can be very useful, even when not used with interrupts. 

This lesson revisits the material in baseline lesson 5, covering: 

 Introduction to the Timer0 module 

 Creating delays with Timer0 

 Debouncing via Timer0 

 Using Timer0 counter mode with an external clock 

(demonstrating the use of a crystal oscillator as a time reference) 

Timer0 Module 

Midrange PICs can have up to three timers; the simplest of these is referred to as Timer0.  The visible part is 

a single 8-bit register, TMR0, which holds the current value of the timer.  It is readable and writeable.  If you 

write a value to it, the timer is reset to that value and then starts incrementing from there. 

When it has reached 255, it rolls over to 0, sets an “overflow flag” (the T0IF bit in the INTCON register, 

triggering an interrupt if Timer0 interrupts are enabled) to indicate that the rollover happened, and then 

continues to increment. 

Note that this is different from the Timer0 module in the baseline architecture, which does not have an 

overflow flag. 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 2 

The configuration of Timer0 is set by a number of bits in the OPTION register: 

 

The clock source is selected by the T0CS bit: 

T0CS = 0 selects timer mode, where TMR0 is incremented at a fixed rate by the instruction clock. 

T0CS = 1 selects counter mode, where TMR0 is incremented by an external signal, on the T0CKI pin.  On 

the PIC12F629, this is physically the same pin as GP2. 

T0CKI is a Schmitt Trigger input, meaning that it can be driven by and will respond cleanly to a smoothly 

varying input voltage (e.g. a sine wave), even with a low level of superimposed noise; it doesn‟t have to be a 

sharply defined TTL-level signal, as required by the GP inputs. 

In counter mode, the T0SE bit selects whether Timer0 responds to rising or falling signals (“edges”) on 

T0CKI.  Clearing T0SE to „0‟ selects the rising edge; setting T0SE to „1‟ selects the falling edge. 

Prescaler 

By default, the timer increments by one for every instruction cycle (in timer mode) or transition on T0CKI 

(in counter mode).  If timer mode is selected, and the processor is clocked at 4 MHz, the timer will increment 

at the instruction cycle rate of 1 MHz.  That is, TMR0 will increment every 1 µs.  Thus, with a 4 MHz clock, 

the maximum period that Timer0 can measure directly, by default, is 255 µs. 

To measure longer periods, we need to use the prescaler. 

The prescaler sits between the clock source and the timer.  It is used to reduce the clock rate seen by the 

timer, by dividing it by a power of two: 2, 4, 8, 16, 32, 64, 128 or 256. 

To use the prescaler with Timer0, clear the PSA bit to „0‟
1
. 

When assigned to Timer0, the prescale ratio is set by the PS<2:0> bits, as shown in the following table: 

If PSA = 0 (assigning the prescaler to Timer0) and PS<2:0> = „111‟ 

(selecting a ratio of 1:256), TMR0 will increment every 256 instruction 

cycles in timer mode.  Given a 1 MHz instruction cycle rate, the timer 

would increment every 256 µs. 

Thus, when using the prescaler with a 4 MHz processor clock, the 

maximum period that Timer0 can measure directly is 255 × 256 µs = 

65.28ms. 

Note that the prescaler can also be used in counter mode, in which case 

it divides the external signal on T0CKI by the prescale ratio. 

If you don‟t want to use the prescaler with Timer0, for a 1:1 “prescale 

ratio”, set PSA to „1‟. 

 

 

 

To make all this theory clearer (hopefully!), here are some practical examples… 

                                                      

1
 If PSA = 1, the prescaler is assigned to the watchdog timer – a topic covered in lesson 7. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OPTION_REG GPPU   INTEDG T0CS T0SE PSA PS2 PS1 PS0 

PS<2:0> 

bit value 

Timer0 

prescale ratio 

000 1 : 2 

001 1 : 4 

010 1 : 8 

011 1 : 16 

100 1 : 32 

101 1 : 64 

110 1 : 128 

111 1 : 256 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_7.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 3 

Timer Mode 

The examples in this section demonstrate the use 

of Timer0 in timer mode, to: 

 Measure elapsed time  

 Perform a regular task while responding 

to user input 

 Debounce a switch 

For each of these, we‟ll use the circuit shown on 

the right, which adds a LED to the circuit used in 

lesson 3.  A second LED has been added to GP2, 

although any of the unused pins would have been 

suitable. 

You may wish to make the two LEDs different 

colours, for example red on GP1 and green on GP2. 

Example 1: Reaction Timer 

To illustrate how Timer0 can be used to measure elapsed time, we‟ll implement a very simple reaction time 

“game”: light a LED to indicate „start‟, and then if the button is pressed within a predefined time (say 200 

ms) light the other LED to indicate „success‟.  If the user is too slow, leave the „success‟ LED unlit.  Then 

reset and repeat. 

We‟ll use the LED on GP2 as the „start‟ signal and the LED on GP1 to indicate „success‟. 

The program flow can be illustrated in pseudo-code as: 

do forever 

 clear both LEDs 

 delay 2 sec 

 indicate start 

clear timer 

 wait up to 1 sec for button press 

 if button pressed and elapsed time < 200ms 

  indicate success 

 delay 1 sec 

end 

 

A problem is immediately apparent: even with maximum prescaling, Timer0 can only measure up to 65 ms.  

To overcome this, we need to extend the range of the timer by adding a counter variable, which is 

incremented when the timer overflows.  That means monitoring the value in TMR0 and incrementing the 

counter variable when TMR0 reaches a certain value. 

This example utilises the (nominally) 4 MHz internal RC clock, giving an instruction cycle time of 

(approximately) 1 µs.  Using the prescaler, with a ratio of 1:32, means that the timer increments every 32 µs.  

If we clear TMR0 and then wait until TMR0 = 250, 8 ms (250 × 32 µs) will have elapsed.  If we then reset 

TMR0 and increment a counter variable, we‟ve implemented a counter which increments every 8 ms.  Since 

There are many enhancements we could add, to make this a better game.  For example, 

success/fail could be indicated by a bi-colour red/green LED.  The delay prior to the ‘start’ 

indication should be random, so that it’s difficult to cheat by predicting when it’s going to 

turn on.  The difficulty level could be made adjustable, and the measured reaction time in 

milliseconds could be displayed, using 7-segment displays.  You can probably think of more – 

but the intent of here is to keep it as simple as possible, while providing a real-world example 

of using Timer0 to measure elapsed time. 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 4 

25 × 8 ms = 200 ms, when the counter reaches 25, 200 ms will have elapsed; any counter value > 25 means 

that the allowed time has been exceeded.  And since 125 × 8 ms = 1 s, when the counter reaches 125, 1 s will 

have elapsed and we can stop waiting for the button press. 

The following code sets Timer0 to timer mode (internal clock, freeing GP2 to be used as an output), with the 

prescaler assigned to Timer0, with a 1:32 prescale ratio: 

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        banksel OPTION_REG      ;   -> increment TMR0 every 32us 

        movwf   OPTION_REG 

 

This code is setting bits 6 and 7 of OPTION_REG, even though these bits ( GPPU  and INTEDG) are not 

related to Timer0.  In the baseline architecture, there is no choice but to load the whole of the OPTION 

register at once, but for midrange PICs it is possible to use bit set/clear instructions to modify individual bits 

in OPTION_REG, or to use logical masking operations to update only some bit fields, leaving other bits 

unchanged.  For example, to preserve the contents of OPTION_REG<6:7>, you could write: 

        banksel OPTION_REG 

        movf    OPTION_REG,w    ; operate on OPTION_REG 

        andlw   b’11000000’     ;   while preserving bits 6-7 

        iorlw   b’00000100’ 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        movwf   OPTION_REG      ;   -> increment TMR0 every 32us 

 

The „andlw‟ and „iorlw‟ instructions respectively perform “logical and” and “inclusive-or” operations on 

the W register with the given literal (constant) value, placing the result in W – “and literal with W” and 

“inclusive-or literal with W”. 

However, given that, by default (after a power-on reset), every bit in OPTION_REG is set to „1‟, there is no 

real need to go to the trouble to use masks to preserve bits 6 and 7; we know that they were already set to „1‟.  

Nevertheless, in some cases you will want to update only part of a register, so it‟s worth taking the time to 

understand how these masking operations work.  There will be more examples in later lessons. 

 

Assuming a 4 MHz clock, such as the internal RC oscillator, TMR0 will begin incrementing every 32 µs. 

To generate an 8 ms delay, we can clear TMR0 and then wait until it reaches 250, as follows: 

        clrf    TMR0             

w_tmr0  movf    TMR0,w          ; wait for 8ms (250x32us) 

        xorlw   .250             

        btfss   STATUS,Z 

        goto    w_tmr0 

 

In itself, that‟s an elegant way to create a delay; it‟s much shorter and simpler than “busy loops”, such as the 

delay routines from lessons 1 and 2. 

But the real advantage of using a timer is that it keeps ticking over, at the same rate, while other instructions 

are executed.  That means that additional instructions can be inserted into this “timer wait” loop, without 

affecting the timing – within reason; if this extra code takes too long to run, the timer may increment more 

than once before it is checked at the end of the loop, and the loop may not finish when intended. 

However long the additional code is, it takes some time to run, so the timer increment will not be detected 

immediately.  This means that the overall delay will be a little longer than intended.  For that reason (and 

others), it is usually better to use timer-driven interrupts for tasks like this, as we will see in lesson 6. 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_2.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 5 

That‟s not a problem in this example, where exact timing is not important, so with 32 instruction cycles per 

timer increment, it‟s safe to insert a short piece of code to check whether the pushbutton has been checked. 

For example: 

w_tmr0   

        banksel GPIO 

        btfss   GPIO,GP3        ; check for button press (GP3 low) 

        goto    btn_dn 

        banksel TMR0 

        movf    TMR0,w 

        xorlw   .250            ; wait for 8ms (250x32us) 

        btfss   STATUS,Z 

        goto    w_tmr0 

 

This timer loop code can then be embedded into an outer loop which increments a variable used to count the 

number of 8 ms periods, as follows: 

        clrf    cnt8ms          ; clear 8ms counter 

wait1s   

        banksel TMR0            ; clear timer0  

        clrf    TMR0                     

w_tmr0   

        banksel GPIO 

        btfss   GPIO,GP3        ; check for button press (GP3 low) 

        goto    btn_dn 

        banksel TMR0 

        movf    TMR0,w 

        xorlw   .250            ; wait for 8ms (250x32us) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        incf    cnt8ms,f        ; increment 8ms counter 

        movlw   .125            ; continue to wait for 1s (125x8ms) 

        xorwf   cnt8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

 

The test at the end of the outer loop (cnt8ms = 125) ensures that the loop completes when 1 s has elapsed, 

in case the button has not been pressed. 

 

Finally, we need to check whether the user has pressed the button quickly enough (if at all).  That means 

comparing the elapsed time, as measured by the 8 ms counter, with some threshold value – in this case 25, 

corresponding to a reaction time of 200 ms.  The user has been successful if the 8 ms count is less than 25. 

The easiest way to compare the magnitude of two values (is one larger or smaller than the other?) is to 

subtract them, and see if a borrow results. 

If A ≥ B, A − B is positive or zero and no borrow is needed. 

If A < B, A − B is negative, requiring a borrow. 

Midrange PICs have two subtraction instructions: 

„subwf f,d‟ – “subtract W from file register”, where „f‟ is the register and, „d‟ is the destination; 

„,f‟ to write the result back to the register: f = f – W 

„,w‟ to place the result in W:  W = f – W 

and: 

„sublw k‟ – “subtract W from literal”, where „k‟ is the literal value to subtract W from; 

the result is placed in W: W = k - W 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 6 

Note that there is no instruction which subtracts a literal from W.  Or is there? 

Recall that the expression „W – k‟ is equivalent to „W + (−k)‟, i.e. adding a negative value is equivalent to 

subtracting a positive value. 

We saw in baseline lesson 10 that when negative values are represented in two’s complement format, the 

normal binary integer addition and subtraction operations continue to work, in a consistent way, with both 

positive and negative numbers. 

The „addlw‟ instruction is used to add a literal to W. 

The „-‟ operator is used by the MPASM assembler to specify a two‟s complement value, so to subtract a 

literal from W, we can simply write: 

„addlw –k‟, which performs the operation: W = W - k 

 

Whichever way the subtraction is performed, the result is reflected in the Z (zero) and C (carry) bits in the 

STATUS register: 

The Z bit is set if and only if the result is zero (so subtraction is another way to test for equality). 

Although the C bit is called “carry”, in a subtraction it acts as a “not borrow”.  That is, it is set to „1‟ only if a 

borrow did not occur. 

The table at the right shows the possible status flag 

outcomes from the subtraction A − B: 

 

 

 

We can make use of this to test whether the elapsed time is less than 200 ms (cnt8ms < 25) as follows: 

        movlw   .25             ; if time < 200ms (25 x 8ms) 

        subwf   cnt8ms,w        ; (cnt8ms < 25) 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

The subtraction performed here is cnt8ms − 25, so C = 0 only if cnt8ms < 25 (see the table above). 

If C = 1, the elapsed time must be greater than the allowed 200 ms, and the instruction to turn on the success 

LED is skipped. 

Note that the „banksel GPIO‟ directive is placed above the „btfss‟ instruction.  This is important.  If we 

had instead written this as: 

        btfss   STATUS,C 

        banksel GPIO 

        bsf     GPIO,GP1        ;   turn on success LED 

 

the instruction generated by banksel
2
 is skipped if C is set, instead of the bcf instruction. 

                                                      

2
 On midrange PICs with four register banks, banksel generates two instructions; only the first will be skipped. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS IRP RP1 RP0 TO   PD   Z DC C 

 Z C 

A > B 0 1 

A = B 1 1 

A < B 0 0 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 7 

That is not at all what was intended; keep in mind that the „banksel‟ directive generates instructions which 

are inserted into your code, so sometimes (as in this example) you need to be careful where you place it, to 

avoid unexpected side-effects. 

Note also that there is never any need to use banksel before accessing the STATUS register, because it is 

mapped at the same address in every bank. 

 

Alternatively, we could use the sublw instruction to perform the comparison: 

btn_dn  movf    cnt8ms,w        ; if time < 200ms (25 x 8ms) 

        sublw   .24             ; (cnt8ms <= 24) 

        banksel GPIO 

        btfsc   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

Note that the sense of the subtraction performed here (24 − cnt8ms) is reversed from the one above.  

According to the truth table on the previous page, we now have to test for C = 1 instead of C = 0 and the 

comparison becomes „≤‟ instead of „<‟, meaning that the comparison has to be with 24 instead of 25. 

 

Or, we could even use addlw for the subtraction (comparison): 

        movf    cnt8ms,w        ; if time < 200ms (25 x 8ms) 

        addlw   -.25            ; (cnt8ms < 25) 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

 

Complete program 

Here‟s the complete code for the reaction timer, using the „subwf‟-based comparison routine: 

;************************************************************************ 

;   Description:    Lesson 4, example 1a                                *     

;                   Reaction Timer game.                                * 

;                                                                       * 

;   Demonstrates use of timer0 to time real-world events                * 

;                                                                       * 

;   User must attempt to press button within 200ms of "start" LED       * 

;   lighting.  If and only if successful, "success" LED is lit.         * 

;                                                                       * 

;       Starts with both LEDs unlit.                                    * 

;       2 sec delay before lighting "start"                             * 

;       Waits up to 1 sec for button press                              * 

;       (only) on button press, lights "success"                        * 

;       1 sec delay before repeating from start                         * 

;                                                                       * 

;   (version using subwf instruction in comparison routine)             * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 - success LED                                               * 

;       GP2 - start LED                                                 * 

;       GP3 - pushbutton                                                * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 8 

    errorlevel  -302    ; no "register not in bank 0" warnings  

    errorlevel  -312    ; no "page or bank selection not needed" messages 

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** EXTERNAL LABELS 

    EXTERN      delay10         ; W x 10ms delay 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

cnt8ms  res 1                   ; 8ms counter (incremented every 8ms) 

 

 

;********************************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   then update OSCCAL  

        movwf   OSCCAL 

 

;***** Initialisation 

        ; configure port  

        movlw   ~(1<<GP1|1<<GP2)    ; configure GP1 and GP2 (only) as outputs  

        banksel TRISIO     

        movwf   TRISIO 

        ; configure timer            

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        banksel OPTION_REG      ;   -> increment TMR0 every 32us 

        movwf   OPTION_REG 

 

;***** Main loop 

loop    ; start with all LEDs off 

        banksel GPIO             

        clrf    GPIO 

        ; delay 2s 

        movlw   .200 

        pagesel delay10          

        call    delay10         ; 200 x 10 ms delay 

        pagesel $ 

        ; turn on start LED 

        banksel GPIO 

        bsf     GPIO,GP2         

        ; wait for button press 

        clrf    cnt8ms          ; clear 8ms counter 

wait1s   

        banksel TMR0            ; clear timer0  

        clrf    TMR0                     

w_tmr0   

        banksel GPIO 

        btfss   GPIO,GP3        ; check for button press (GP3 low) 

        goto    btn_dn 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 9 

        banksel TMR0 

        movf    TMR0,w 

        xorlw   .250            ; wait for 8ms (250 x 32us) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        incf    cnt8ms,f        ; increment 8ms counter 

        movlw   .125            ; continue to wait for 1s (125 x 8ms) 

        xorwf   cnt8ms,w 

        btfss   STATUS,Z 

        goto    wait1s 

        ; check elapsed time        

btn_dn  movlw   .25             ; if time < 200ms (25 x 8ms) 

        subwf   cnt8ms,w        ; (cnt8ms < 25) 

        banksel GPIO 

        btfss   STATUS,C 

        bsf     GPIO,GP1        ;   turn on success LED 

        ; delay 1s 

        movlw   .100            

        pagesel delay10 

        call    delay10         ; 100 x 10 ms delay      

        pagesel $ 

 

        ; repeat forever 

        goto    loop            

 

        END 

 

Example 2: Flash LED while responding to input 

As discussed above, timers can be used to maintain the accurate timing of regular (“background”) events, 

while performing other actions in response to input signals.  To illustrate this, we‟ll flash the LED on GP2 at 

1 Hz (similar to the second example in lesson 1), while lighting the LED on GP1 whenever the pushbutton 

on GP3 is pressed (as was done in lesson 3). 

When creating an application which performs a number of tasks, it is best, if practical, to implement and test 

each of those tasks separately.  In other words, build the application a piece at a time, adding each new part 

to base that is known to be working.  So we‟ll start by simply flashing the LED. 

The delay needs to written in such a way that button scanning code can be added within it later.  Calling a 

delay subroutine, as was done in lesson 2, wouldn‟t be appropriate; if the button press was only checked at 

the start and/or end of the delay, the button would seem unresponsive (a 0.5 s delay is very noticeable). 

Since the maximum delay that Timer0 can produce directly from a 1 MHz instruction clock is 65 ms, we 

have to extend the timer by adding a counter variable, as was done in example 1. 

To produce a given delay, various combinations of prescaler value, maximum timer count and number of 

repetitions will be possible.  But noting that 125 × 125 × 32 µs = 500 ms, a delay of exactly 500 ms can be 

generated by: 

 Using a 4 MHz processor clock, giving a 1 MHz instruction clock and a 1 µs instruction cycle 

 Assigning a 1:32 prescaler to the instruction clock, incrementing Timer0 every 32 µs 

 Resetting Timer0 to zero, as soon as it reaches 125 (i.e. every 125 × 32 µs = 4 ms) 

 Repeating 125 times, creating a delay of 125 × 4 ms = 500 ms. 

We’ll see in lesson 6 that timer-driven interrupts are ideally suited to performing regular 

background tasks.  This example is only included here for completeness; it’s not how you 

would implement this, on a midrange PIC, in practice. 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_2.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 10 

The following code implements the above steps: 

;***** Initialisation 

        ; configure port  

        movlw   ~(1<<GP1|1<<GP2)    ; configure GP1 and GP2 as outputs  

        banksel TRISIO              ; (GP3 is an input) 

        movwf   TRISIO 

        ; configure timer            

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        banksel OPTION_REG      ;   -> increment TMR0 every 32 us 

        movwf   OPTION_REG 

        ; initialise port 

        banksel GPIO 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow 

 

;***** Main loop 

loop    ; delay 500ms 

        movlw   .125            ; repeat 125 times 

        movwf   dlycnt          ; (125 x 4ms = 500ms)   

dly500  ; (begin 500ms delay loop) 

        banksel TMR0            ; clear timer0   

        clrf    TMR0 

w_tmr0      ; check timer0 until 4ms elapsed 

        movf    TMR0,w 

        xorlw   .125            ; (4ms = 125 x 32us) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        ; (end 500ms delay loop) 

        decfsz  dlycnt,f        

        goto    dly500 

 

        ; toggle LED        

        movf    sGPIO,w 

        xorlw   1<<GP2          ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

        banksel GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    loop            

 

Note that, strictly speaking, the „banksel‟ directives within the main loop are not needed, because the only 

registers accessed within the loop, TMR0 and GPIO, are in the same bank.  Nevertheless, it‟s good practice 

to include these directives, as shown, in case you later insert some code which changes the bank selection.  

That‟s not difficult to deal with, but it‟s easy to miss a situation where banksel is needed, ending up with a 

difficult-to-find bug.  If you use banksel liberally, even when not strictly needed, your code will be a little 

longer, but much more easily maintained. 

 

Here‟s the code developed in lesson 3, for turning on a LED when the pushbutton is pressed: 

        clrf    sGPIO           ; assume button up -> LED off 

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 11 

It‟s quite straightforward to place some code similar to this (replacing the clrf with a bcf instruction, to 

avoid affecting any other bits in the shadow register) within the timer wait loop – since the timer increments 

every 32 instructions, there are plenty of cycles available to accommodate these additional instructions, 

without risk that the “TMR0 = 125” condition will be skipped (see discussion in example 1). 

Here‟s how: 

w_tmr0      ; check and respond to button press   

        banksel GPIO 

        bcf     sGPIO,GP1       ; assume button up -> LED off 

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

            ; check timer0 until 4ms elapsed 

        banksel TMR0            

        movf    TMR0,w 

        xorlw   .125            ; (4ms = 125 x 32us) 

        btfss   STATUS,Z 

        goto    w_tmr0 

 

Complete program 

Here‟s the complete code for the flash + pushbutton demo. 

Note that, because GPIO is being updated from the shadow copy, every “spin” of the timer wait loop, there 

is no need to update GPIO when the LED on GP2 is toggled; the change will be picked up next time 

through the loop. 

;************************************************************************ 

;   Description:    Lesson 4 example 2                                  * 

;                                                                       * 

;   Demonstrates use of Timer0 to maintain timing of background tasks   * 

;   while performing other actions in response to changing inputs       * 

;                                                                       * 

;   One LED simply flashes at 1 Hz (50% duty cycle).                    * 

;   The other LED is only lit when the pushbutton is pressed            * 

;                                                                       * 

;************************************************************************ 

;   Pin assignments:                                                    * 

;       GP1 - "button pressed" indicator LED                            * 

;       GP2 - flashing LED                                              * 

;       GP3 - pushbutton                                                * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 12 

sGPIO   res 1                   ; shadow copy of GPIO 

dlycnt  res 1                   ; delay counter 

 

;************************************************************************ 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   then update OSCCAL  

        movwf   OSCCAL 

 

;***** Initialisation 

        ; configure port  

        movlw   ~(1<<GP1|1<<GP2)    ; configure GP1 and GP2 as outputs  

        banksel TRISIO              ; (GP3 is an input) 

        movwf   TRISIO 

        ; configure timer            

        movlw   b'11000100'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----100          prescale = 32 (PS = 100)  

        banksel OPTION_REG      ;   -> increment TMR0 every 32 us 

        movwf   OPTION_REG 

        ; initialise port 

        banksel GPIO 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow 

 

;***** Main loop 

loop    ; delay 500ms 

        movlw   .125            ; repeat 125 times 

        movwf   dlycnt          ; (125 x 4ms = 500ms)   

dly500  ; (begin 500ms delay loop) 

        banksel TMR0            ; clear timer0   

        clrf    TMR0 

w_tmr0      ; check and respond to button press   

        banksel GPIO 

        bcf     sGPIO,GP1       ; assume button up -> LED off 

        btfss   GPIO,GP3        ; if button pressed (GP3 low) 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        movwf   GPIO 

            ; check timer0 until 4ms elapsed 

        banksel TMR0            

        movf    TMR0,w 

        xorlw   .125            ; (4ms = 125 x 32us) 

        btfss   STATUS,Z 

        goto    w_tmr0 

        ; (end 500ms delay loop) 

        decfsz  dlycnt,f        

        goto    dly500 

 

        ; toggle LED        

        movf    sGPIO,w 

        xorlw   1<<GP2          ; toggle LED on GP2 

        movwf   sGPIO           ;   using shadow register 

 

        ; repeat forever 

        goto    loop  

           

        END 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 13 

Example 3: Switch debouncing 

Lesson 3 explored the topic of switch bounce, and described a counting algorithm to address it, which was 

expressed as: 

count = 0 

while count < max_samples 

 delay sample_time 

 if input = required_state 

  count = count + 1 

 else 

  count = 0 

end 

 

The switch is deemed to have changed when it has been continuously in the new state for some minimum 

period, for example 10 ms.  This is determined by continuing to increment a count while checking the state 

of the switch.  “Continuing to increment a count” while something else occurs, such as checking a switch, is 

exactly what a timer does.  Since a timer increments automatically, using a timer can simplify the logic, as 

follows: 

reset timer 

while timer < debounce time 

 if input ≠ required_state 

  reset timer 

end 

 

On completion, the input will have been in the required state (changed) for the minimum debounce time. 

Assuming a 1 Mhz instruction clock and a 1:64 prescaler, a 10 ms debounce time will be reached when the 

timer reaches 10 ms ÷ 64 µs = 156.3; taking the next highest integer gives 157. 

The following code demonstrates how Timer0 can be used to debounce a “button down” event: 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,GP3        ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157=10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 

That‟s shorter than the equivalent routine presented in lesson 3, and it avoids the need to use two data 

registers as counters.  But – it uses Timer0.  Although midrange PICs have more than one timer, they are still 

a scarce resource.  You must be careful, as you build a library of routines that use Timer0, that if you use 

more than one routine which uses Timer0 in a single program, that the way they use or setup Timer0 doesn‟t 

clash.  As we‟ll see in lesson 6, it can be better to use a regular timer-driven interrupt for switch debouncing, 

allowing a single timer (driving the interrupt) to be used for a number of tasks. 

But if you‟re not using Timer0 for anything else, using it for switch debouncing is perfectly reasonable. 

Complete program 

The following program is equivalent to that presented in lesson 3: 

;************************************************************************ 

;   Description:    Lesson 4, example 3                                 * 

;                                                                       * 

;   Demonstrates use of Timer0 to implement debounce counting algorithm * 

;                                                                       * 

;   Toggles LED on GP1                                                  * 

;   when pushbutton on GP3 is pressed (low) then released (high)        * 

;                                                                       * 

;************************************************************************ 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 14 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 - indicator LED                                             * 

;       GP3 - pushbutton                                                * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; int reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

 

;************************************************************************ 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   then update OSCCAL  

        movwf   OSCCAL 

 

;***** Initialisation 

        ; configure port  

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO          ;   (GP3 is input only) 

        movwf   TRISIO 

        ; configure timer            

        movlw   b'11000101'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----101          prescale = 64 (PS = 101)  

        banksel OPTION_REG      ;   -> increment TMR0 every 64 us 

        movwf   OPTION_REG 

        ; initialise port 

        banksel GPIO 

        clrf    GPIO            ; start with all LEDs off 

        clrf    sGPIO           ;   update shadow 

 

;***** Main loop 

loop 

        ; wait until button pressed, debounce using timer0: 

        banksel TMR0 

wait_dn clrf    TMR0            ; reset timer 

chk_dn  btfsc   GPIO,GP3        ; check for button press (GP3 low) 

        goto    wait_dn         ;   continue to reset timer until button down 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157=10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_dn 

 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 15 

        ; toggle LED on GP1 

        banksel GPIO 

        movf    sGPIO,w 

        xorlw   1<<GP1          ; toggle shadow register 

        movwf   sGPIO  

        movwf   GPIO            ; write to port   

 

        ; wait until button released, debounce using timer0: 

        banksel TMR0 

wait_up clrf    TMR0            ; reset timer 

chk_up  btfss   GPIO,GP3        ; check for button release (GP3 high) 

        goto    wait_up         ;   continue to reset timer until button up 

        movf    TMR0,w          ; has 10ms debounce time elapsed? 

        xorlw   .157            ;   (157=10ms/64us) 

        btfss   STATUS,Z        ; if not, continue checking button 

        goto    chk_up 

 

        ; repeat forever 

        goto    loop         

 

 

        END 

     

Counter Mode 

As mentioned above, Timer0 can also be used to count transitions (rising or falling) on the T0CKI input. 

This is useful in a number of ways, such as performing an action after some number of events, or measuring 

the frequency of an input signal, for example from a sensor triggered by the rotation of an axle.  The 

frequency in Hertz of the signal is simply the number of transitions counted in one second. 

However, it‟s not really practical to build a frequency counter, using only the techniques (and 

microcontrollers) we‟ve covered so far!   

To illustrate the use of Timer0 as a counter, we‟ll go back to LED flashing, but driving the counter with a 

crystal-based external clock, providing a much more accurate time base. 

The circuit used for this is shown on 

the right. 

An oscillator based on a 32.768 kHz 

“watch crystal” and a CMOS inverter 

was presented in baseline lesson 5.  It 

is used again here to generate a 

32.768 kHz clock signal, which drives 

the 12F629‟s T0CKI input, via an 

inverting buffer. 

If you build the 32.768 kHz clock 

module on a prototype board and are 

using the Low Pin Count Demo 

Board, the output of the buffer can be 

connected to T0CKI via the 14-pin 

header on the demo board (GP2 is 

brought out as pin 9 on the header, 

while power and ground, which can be used to power the clock module, are on pins 13 and 14). 

We‟ll use this clock input to generate the timing needed to flash the LED on GP1 at almost exactly 1 Hz (the 

accuracy being set by the accuracy of the crystal oscillator, which can be expected to be much better than 

that of the PIC‟s internal RC oscillator). 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 16 

Those familiar with binary numbers will have noticed that 32768 = 2
15

, making it very straightforward to 

divide the 32768 Hz input down to 1 Hz. 

Since 32768 = 128 × 256, if we apply a 1:128 prescale ratio to the 32768 Hz signal on T0CKI, TMR0 will be 

incremented 256 times per second.   The most significant bit of TMR0 (TMR0<7>) will therefore be cycling 

at a rate of exactly 1 Hz; it will be „0‟ for 0.5 s, followed by „1‟ for 0.5 s. 

So if we clock TMR0 with the 32768 Hz signal on T0CKI, prescaled by 128, the task is simply to light the 

LED (GP1 high) when TMR0<7> = 1, and turn off the LED (GP1 low) when TMR0<7> = 0. 

To configure Timer0 for counter mode (external clock on T0CKI) with a 1:128 prescale ratio, set the T0CS 

bit to „1‟, PSA to „0‟ and PS<2:0> to „110‟: 

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        banksel OPTION_REG      ;   -> increment at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

 

Note that the value of T0SE bit is irrelevant; we don‟t care if the counter increments on the rising or falling 

edge of the signal on T0CKI – only the frequency is important.  Either edge will do. 

 

Next we need to continually set GP1 high whenever TMR0<7> = 1, and low whenever TMR0<7> = 0. 

In other words, continually update GP1 with the current value or TMR0<7>. 

Unfortunately, there is no simple “copy a single bit” instruction in midrange PIC assembler! 

If you‟re not using a shadow register for GPIO, the following “direct approach” is effective, if a little 

inelegant: 

loop    ; transfer TMR0<7> to GP1 

        banksel TMR0 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     GPIO,GP1        ;   set GP1 

        btfss   TMR0,7          ; if TMR0<7>=0 

        bcf     GPIO,GP1        ;   clear GP1 

 

        ; repeat forever 

        goto    loop            

 

As we saw in lesson 3, if you are using a shadow register (generally a good idea), this can be implemented 

as: 

loop    ; transfer TMR0<7> to GP1 

        clrf    sGPIO           ; assume TMR0<7>=0 -> LED off 

        banksel TMR0 

        btfsc   TMR0,7          ; if TMR0<7>=1 

        bsf     sGPIO,GP1       ;   turn on LED 

 

        movf    sGPIO,w         ; copy shadow to GPIO 

        banksel GPIO 

        movwf   GPIO 

 

        ; repeat forever 

        goto    loop          

 

But since this is actually an instruction longer, it‟s only really simpler if you were going to use a shadow 

register anyway. 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 17 

And note that the use of a single „banksel‟ directive at the start of the first routine, but two „banksel‟s in 

the second.  This is because, in a real program, where a shadow register is being used, it is likely to be 

updated a number of times before being copied to GPIO at the end of the loop; additional code within the 

loop may alter the bank selection. 

 

 

Another approach is to use the PIC‟s rotate instructions.  These instructions move every bit in a register to 

the left or right, as illustrated: 

„rlf f,d‟ – “rotate left file register through carry” 

 

 

„rrf f,d‟ – “rotate right file register through carry” 

 

 

In both cases, the bit being rotated out of bit 7 (for rlf) or bit 0 (for rrf) is copied into the carry bit in the 

STATUS register, and the previous value of carry is rotated into bit 0 (for rlf) or bit 7 (for rrf). 

As usual, „f‟ is the register being rotated, and „d‟ is the destination: „,f‟ to write the result back to the 

register, or „,w‟ to place the result in W. 

The ability to place the result in W is useful, since it means that we can “left rotate” TMR0, to copy the 

current value to TMR0<7> into C, without affecting the value in TMR0. 

In the midrange architecture, only the special-function and general purpose registers can be rotated; there are 

no instructions for rotating W.  That‟s a pity, since such an instruction would be useful here. 

Instead, we must rotate the bit copied from TMR0<7> into bit 0 of a temporary register, then another rotate 

to move the copied bit into bit 1, and then copy the result to GPIO, as follows: 

        rlf     TMR0,w          ; copy TMR0<7> to C 

        clrf    temp 

        rlf     temp,f          ; rotate C into temp 

        rlf     temp,w          ; rotate once more into W (-> W<1> = TMR0<7>) 

        movwf   GPIO            ; update GPIO with result (-> GP1 = TMR0<7>) 

 

Note that „temp‟ is cleared before being used.  That‟s not strictly necessary in this example; since the only 

output is GP1, it doesn‟t matter what the other bits in GPIO are set to.  Of course, if any other bits in GPIO 

were being used as outputs, you couldn‟t use this method, since this code will clear every bit other than 

GP1!  In that case, you‟re better off using the bit test and set/clear instructions, which are generally the most 

practical way to “copy a bit”.  But it‟s worth remembering that the rotate instructions are also available, and 

using them may lead to shorter code. 

Complete program 

Here‟s the complete “flash an LED at 1 Hz using a crystal oscillator” program, using the “copy a bit via 

rotation” method: 

;************************************************************************ 

;   Description:    Lesson 4, example 4b                                * 

;                                                                       * 

;   Demonstrates use of Timer0 in counter mode                          * 

;                                                                       * 

;   LED flashes at 1 Hz (50% duty cycle),                               * 

;   with timing derived from 32.768 kHz input on T0CKI                  * 

;                                                                       * 

;   Uses rotate instructions to copy MSB from Timer0 to GP1             * 

register bits 

C 7 6 5 4 3 2 1 0 

register bits 

C 7 6 5 4 3 2 1 0 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 18 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 - flashing LED                                              * 

;       T0CKI - 32.768 kHz signal                                       * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629    

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no "register not in bank 0" warnings  

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

temp    res 1                   ; temp register used for rotates 

 

 

;************************************************************************ 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   then update OSCCAL  

        movwf   OSCCAL 

 

;***** Initialisation 

        ; configure port  

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO          ;   (GP3 is input only) 

        movwf   TRISIO 

        ; configure timer            

        movlw   b'11110110'     ; configure Timer0: 

                ; --1-----          counter mode (T0CS = 1) 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----110          prescale = 128 (PS = 110)  

        banksel OPTION_REG      ;   -> increment at 256 Hz with 32.768 kHz input 

        movwf   OPTION_REG 

 

;***** Main loop 

loop    ; TMR0<7> cycles at 1Hz 

        ; so continually copy to GP1 

        banksel TMR0 

        rlf     TMR0,w          ; copy TMR0<7> to C 

        clrf    temp 

        rlf     temp,f          ; rotate C into temp 

        rlf     temp,w          ; rotate once more into W (-> W<1> = TMR0<7>) 

        movwf   GPIO            ; update GPIO with result (-> GP1 = TMR0<7>) 

 

        ; repeat forever 

        goto    loop            

 

 

        END 



© Gooligum Electronics 2008  www.gooligum.com.au 

Midrange PIC Assembler, Lesson 4: Using Timer0 Page 19 

Hopefully the examples in this lesson have given you an idea of the flexibility and usefulness of the Timer0 

peripheral.  But, as mentioned a few times now, one of the most useful applications of timers is to drive 

interrupts – easily the most significant enhancement in the midrange architecture, and the topic of lesson 6. 

But first, in the next lesson we‟ll take a quick look at some of the features of the MPASM assembler, which 

can make your code easier to maintain. 

 

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_5.pdf

	Introduction to PIC Programming
	Midrange Architecture and Assembly Language
	Lesson 4: Using Timer0
	Timer0 Module
	Prescaler

	/Timer Mode
	Example 1: Reaction Timer
	Complete program

	Example 2: Flash LED while responding to input
	Complete program

	Example 3: Switch debouncing
	Complete program


	Counter Mode
	Complete program




