
Chapter 3

FORWARD KINEMATICS: THE

DENAVIT-HARTENBERG

CONVENTION

In this chapter we develop the forward or configuration kinematic equations for rigid
robots. The forward kinematics problem is concerned with the relationship between the
individual joints of the robot manipulator and the position and orientation of the tool
or end-effector. Stated more formally, the forward kinematics problem is to determine
the position and orientation of the end-effector, given the values for the joint variables of
the robot. The joint variables are the angles between the links in the case of revolute
or rotational joints, and the link extension in the case of prismatic or sliding joints. The
forward kinematics problem is to be contrasted with the inverse kinematics problem, which
will be studied in the next chapter, and which is concerned with determining values for the
joint variables that achieve a desired position and orientation for the end-effector of the
robot.

3.1 Kinematic Chains

As described in Chapter 1, a robot manipulator is composed of a set of links connected
together by various joints. The joints can either be very simple, such as a revolute joint
or a prismatic joint, or else they can be more complex, such as a ball and socket joint.
(Recall that a revolute joint is like a hinge and allows a relative rotation about a single
axis, and a prismatic joint permits a linear motion along a single axis, namely an extension
or retraction.) The difference between the two situations is that, in the first instance, the
joint has only a single degree-of-freedom of motion: the angle of rotation in the case of a
revolute joint, and the amount of linear displacement in the case of a prismatic joint. In
contrast, a ball and socket joint has two degrees-of-freedom. In this book it is assumed
throughout that all joints have only a single degree-of-freedom. Note that the assumption
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does not involve any real loss of generality, since joints such as a ball and socket joint (two
degrees-of-freedom) or a spherical wrist (three degrees-of-freedom) can always be thought
of as a succession of single degree-of-freedom joints with links of length zero in between.

With the assumption that each joint has a single degree-of-freedom, the action of each
joint can be described by a single real number: the angle of rotation in the case of a rev-
olute joint or the displacement in the case of a prismatic joint. The objective of forward
kinematic analysis is to determine the cumulative effect of the entire set of joint variables.
In this chapter we will develop a set of conventions that provide a systematic procedure for
performing this analysis. It is, of course, possible to carry out forward kinematics analysis
even without respecting these conventions, as we did for the two-link planar manipulator
example in Chapter 1. However, the kinematic analysis of an n-link manipulator can be
extremely complex and the conventions introduced below simplify the analysis consider-
ably. Moreover, they give rise to a universal language with which robot engineers can
communicate.

A robot manipulator with n joints will have n + 1 links, since each joint connects two
links. We number the joints from 1 to n, and we number the links from 0 to n, starting
from the base. By this convention, joint i connects link i − 1 to link i. We will consider
the location of joint i to be fixed with respect to link i− 1. When joint i is actuated, link
i moves. Therefore, link 0 (the first link) is fixed, and does not move when the joints are
actuated. Of course the robot manipulator could itself be mobile (e.g., it could be mounted
on a mobile platform or on an autonomous vehicle), but we will not consider this case in
the present chapter, since it can be handled easily by slightly extending the techniques
presented here.

With the ith joint, we associate a joint variable, denoted by qi. In the case of a rev-
olute joint, qi is the angle of rotation, and in the case of a prismatic joint, qi is the joint
displacement:

qi =

{

θi : joint i revolute
di : joint i prismatic

. (3.1)

To perform the kinematic analysis, we rigidly attach a coordinate frame to each link.
In particular, we attach oixiyizi to link i. This means that, whatever motion the robot
executes, the coordinates of each point on link i are constant when expressed in the ith

coordinate frame. Furthermore, when joint i is actuated, link i and its attached frame,
oixiyizi, experience a resulting motion. The frame o0x0y0z0, which is attached to the robot
base, is referred to as the inertial frame. Figure 3.1 illustrates the idea of attaching frames
rigidly to links in the case of an elbow manipulator.

Now suppose Ai is the homogeneous transformation matrix that expresses the position
and orientation of oixiyizi with respect to oi−1xi−1yi−1zi−1. The matrix Ai is not constant,
but varies as the configuration of the robot is changed. However, the assumption that all
joints are either revolute or prismatic means that Ai is a function of only a single joint
variable, namely qi. In other words,

Ai = Ai(qi). (3.2)
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Figure 3.1: Coordinate frames attached to elbow manipulator.

Now the homogeneous transformation matrix that expresses the position and orientation of
ojxjyjzj with respect to oixiyizi is called, by convention, a transformation matrix, and
is denoted by T i

j . From Chapter 2 we see that

T i

j = Ai+1Ai+2 . . . Aj−1Aj if i < j

T i

j = I if i = j (3.3)

T i

j = (T j

i )−1 if j > i.

By the manner in which we have rigidly attached the various frames to the corresponding
links, it follows that the position of any point on the end-effector, when expressed in frame
n, is a constant independent of the configuration of the robot. Denote the position and
orientation of the end-effector with respect to the inertial or base frame by a three-vector
o0

n (which gives the coordinates of the origin of the end-effector frame with respect to the
base frame) and the 3× 3 rotation matrix R0

n, and define the homogeneous transformation
matrix

H =

[

R0

n o0

n

0 1

]

. (3.4)

Then the position and orientation of the end-effector in the inertial frame are given by

H = T 0

n = A1(q1) · · ·An(qn). (3.5)

Each homogeneous transformation Ai is of the form

Ai =

[

Ri−1

i oi−1

i

0 1

]

. (3.6)

Hence

T i

j = Ai+1 · · ·Aj =

[

Ri
j oi

j

0 1

]

. (3.7)
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The matrix Ri
j expresses the orientation of ojxjyjzj relative to oixiyizi and is given by

the rotational parts of the A-matrices as

Ri

j = Ri

i+1
· · ·Rj−1

j . (3.8)

The coordinate vectors oi

j are given recursively by the formula

oi

j = oi

j−1 +Ri

j−1
oj−1

j , (3.9)

These expressions will be useful in Chapter 5 when we study Jacobian matrices.
In principle, that is all there is to forward kinematics! Determine the functions Ai(qi),

and multiply them together as needed. However, it is possible to achieve a considerable
amount of streamlining and simplification by introducing further conventions, such as the
Denavit-Hartenberg representation of a joint, and this is the objective of the remainder of
the chapter.

3.2 Denavit Hartenberg Representation

While it is possible to carry out all of the analysis in this chapter using an arbitrary frame
attached to each link, it is helpful to be systematic in the choice of these frames. A commonly
used convention for selecting frames of reference in robotic applications is the Denavit-
Hartenberg, or D-H convention. In this convention, each homogeneous transformation Ai

is represented as a product of four basic transformations

Ai = Rotz,θi
Transz,di

Transx,ai
Rotx,αi

(3.10)

=









cθi
−sθi

0 0
sθi

cθi
0 0

0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

















1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 cαi

−sαi
0

0 sαi
cαi

0
0 0 0 1









=









cθi
−sθi

cαi
sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di

0 0 0 1









where the four quantities θi, ai, di, αi are parameters associated with link i and joint i. The
four parameters ai, αi, di, and θi in (3.10) are generally given the names link length, link
twist, link offset, and joint angle, respectively. These names derive from specific aspects
of the geometric relationship between two coordinate frames, as will become apparent below.
Since the matrix Ai is a function of a single variable, it turns out that three of the above
four quantities are constant for a given link, while the fourth parameter, θi for a revolute
joint and di for a prismatic joint, is the joint variable.

From Chapter 2 one can see that an arbitrary homogeneous transformation matrix
can be characterized by six numbers, such as, for example, three numbers to specify the
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Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

fourth column of the matrix and three Euler angles to specify the upper left 3× 3 rotation
matrix. In the D-H representation, in contrast, there are only four parameters. How is this
possible? The answer is that, while frame i is required to be rigidly attached to link i, we
have considerable freedom in choosing the origin and the coordinate axes of the frame. For
example, it is not necessary that the origin, oi, of frame i be placed at the physical end of
link i. In fact, it is not even necessary that frame i be placed within the physical link; frame
i could lie in free space — so long as frame i is rigidly attached to link i. By a clever choice
of the origin and the coordinate axes, it is possible to cut down the number of parameters
needed from six to four (or even fewer in some cases). In Section 3.2.1 we will show why,
and under what conditions, this can be done, and in Section 3.2.2 we will show exactly how
to make the coordinate frame assignments.

3.2.1 Existence and uniqueness issues

Clearly it is not possible to represent any arbitrary homogeneous transformation using only
four parameters. Therefore, we begin by determining just which homogeneous transfor-
mations can be expressed in the form (3.10). Suppose we are given two frames, denoted
by frames 0 and 1, respectively. Then there exists a unique homogeneous transformation
matrix A that takes the coordinates from frame 1 into those of frame 0. Now suppose the
two frames have two additional features, namely:

(DH1) The axis x1 is perpendicular to the axis z0

(DH2) The axis x1 intersects the axis z0

as shown in Figure 3.2. Under these conditions, we claim that there exist unique numbers
a, d, θ, α such that

A = Rotz,θTransz,dTransx,aRotx,α. (3.11)
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Of course, since θ and α are angles, we really mean that they are unique to within a multiple
of 2π. To show that the matrix A can be written in this form, write A as

A =

[

R0

1
o0

1

0 1

]

(3.12)

and let ri denote the ith column of the rotation matrix R0

1
. We will now examine the

implications of the two DH constraints.
If (DH1) is satisfied, then x1 is perpendicular to z0 and we have x1 · z0 = 0. Expressing

this constraint with respect to o0x0y0z0, using the fact that r1 is the representation of the
unit vector x1 with respect to frame 0, we obtain

0 = x0

1 · z0

0 (3.13)

= [r11, r21, r31]
T · [0, 0, 1]T (3.14)

= r31. (3.15)

Since r31 = 0, we now need only show that there exist unique angles θ and α such that

R0

1
= Rx,θRx,α =





cθ −sθcα sθsα

sθ cθcα −cθsα

0 sα cα



 . (3.16)

The only information we have is that r31 = 0, but this is enough. First, since each row and
column of R0

1
must have unit length, r31 = 0 implies that

r211 + r221 = 1,

r232 + r233 = 1 (3.17)

Hence there exist unique θ, α such that

(r11, r21) = (cθ, sθ), (r33, r32) = (cα, sα). (3.18)

Once θ and α are found, it is routine to show that the remaining elements of R0

1
must have

the form shown in (3.16), using the fact that R0

1
is a rotation matrix.

Next, assumption (DH2) means that the displacement between o0 and o1 can be ex-
pressed as a linear combination of the vectors z0 and x1. This can be written as o1 =
o0 + dz0 + ax1. Again, we can express this relationship in the coordinates of o0x0y0z0, and
we obtain

o0

1 = o0

0 + dz0

0 + ax0

1 (3.19)

=





0
0
0



 + d





0
0
1



 + a





cθ
sθ

0



 (3.20)

=





acθ
asθ

d



 . (3.21)
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Combining the above results, we obtain (3.10) as claimed. Thus, we see that four param-
eters are sufficient to specify any homogeneous transformation that satisfies the constraints
(DH1) and (DH2).

Now that we have established that each homogeneous transformation matrix satisfying
conditions (DH1) and (DH2) above can be represented in the form (3.10), we can in fact
give a physical interpretation to each of the four quantities in (3.10). The parameter a is
the distance between the axes z0 and z1, and is measured along the axis x1. The angle α
is the angle between the axes z0 and z1, measured in a plane normal to x1. The positive
sense for α is determined from z0 to z1 by the right-hand rule as shown in Figure 3.3. The

xi

αi zi−1

xi

θi

zi−1

xi−1

zi

Figure 3.3: Positive sense for αi and θi.

parameter d is the distance between the origin o0 and the intersection of the x1 axis with z0
measured along the z0 axis. Finally, θ is the angle between x0 and x1 measured in a plane
normal to z0. These physical interpretations will prove useful in developing a procedure
for assigning coordinate frames that satisfy the constraints (DH1) and (DH2), and we now
turn our attention to developing such a procedure.

3.2.2 Assigning the coordinate frames

For a given robot manipulator, one can always choose the frames 0, . . . , n in such a way that
the above two conditions are satisfied. In certain circumstances, this will require placing
the origin oi of frame i in a location that may not be intuitively satisfying, but typically
this will not be the case. In reading the material below, it is important to keep in mind that
the choices of the various coordinate frames are not unique, even when constrained by the
requirements above. Thus, it is possible that different engineers will derive differing, but
equally correct, coordinate frame assignments for the links of the robot. It is very important
to note, however, that the end result (i.e., the matrix T 0

n) will be the same, regardless
of the assignment of intermediate link frames (assuming that the coordinate frames for
link n coincide). We will begin by deriving the general procedure. We will then discuss
various common special cases where it is possible to further simplify the homogeneous
transformation matrix.
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To start, note that the choice of zi is arbitrary. In particular, from (3.16), we see that
by choosing αi and θi appropriately, we can obtain any arbitrary direction for zi. Thus, for
our first step, we assign the axes z0, . . . , zn−1 in an intuitively pleasing fashion. Specifically,
we assign zi to be the axis of actuation for joint i+ 1. Thus, z0 is the axis of actuation for
joint 1, z1 is the axis of actuation for joint 2, etc. There are two cases to consider: (i) if
joint i+ 1 is revolute, zi is the axis of revolution of joint i+ 1; (ii) if joint i+ 1 is prismatic,
zi is the axis of translation of joint i+1. At first it may seem a bit confusing to associate zi
with joint i+ 1, but recall that this satisfies the convention that we established in Section
3.1, namely that joint i is fixed with respect to frame i, and that when joint i is actuated,
link i and its attached frame, oixiyizi, experience a resulting motion.

Once we have established the z-axes for the links, we establish the base frame. The
choice of a base frame is nearly arbitrary. We may choose the origin o0 of the base frame
to be any point on z0. We then choose x0, y0 in any convenient manner so long as the
resulting frame is right-handed. This sets up frame 0.

Once frame 0 has been established, we begin an iterative process in which we define frame
i using frame i− 1, beginning with frame 1. Figure 3.4 will be useful for understanding the
process that we now describe.

Figure 3.4: Denavit-Hartenberg frame assignment.

In order to set up frame i it is necessary to consider three cases: (i) the axes zi−1, zi
are not coplanar, (ii) the axes zi−1, zi intersect (iii) the axes zi−1, zi are parallel. Note that
in both cases (ii) and (iii) the axes zi−1 and zi are coplanar. This situation is in fact quite
common, as we will see in Section 3.3. We now consider each of these three cases.

(i) zi−1 and zi are not coplanar: If zi−l and zi are not coplanar, then there exists a
unique line segment perpendicular to both zi−1 and zi such that it connects both lines and
it has minimum length. The line containing this common normal to zi−1 and zi defines xi,
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and the point where this line intersects zi is the origin oi. By construction, both conditions
(DH1) and (DH2) are satisfied and the vector from oi−1 to oi is a linear combination of
zi−1 and xi. The specification of frame i is completed by choosing the axis yi to form
a right-hand frame. Since assumptions (DH1) and (DH2) are satisfied the homogeneous
transformation matrix Ai is of the form (3.10).

(ii) zi−1 is parallel to zi: If the axes zi−1 and zi are parallel, then there are infinitely
many common normals between them and condition (DH1) does not specify xi completely.
In this case we are free to choose the origin oi anywhere along zi. One often chooses oi

to simplify the resulting equations. The axis xi is then chosen either to be directed from
oi toward zi−1, along the common normal, or as the opposite of this vector. A common
method for choosing oi is to choose the normal that passes through oi−1 as the xi axis; oi

is then the point at which this normal intersects zi. In this case, di would be equal to zero.
Once xi is fixed, yi is determined, as usual by the right hand rule. Since the axes zi−1 and
zi are parallel, αi will be zero in this case.

(iii) zi−1 intersects zi: In this case xi is chosen normal to the plane formed by zi and
zi−1. The positive direction of xi is arbitrary. The most natural choice for the origin oi in
this case is at the point of intersection of zi and zi−1. However, any convenient point along
the axis zi suffices. Note that in this case the parameter ai equals 0.

This constructive procedure works for frames 0, . . . , n−l in an n-link robot. To complete
the construction, it is necessary to specify frame n. The final coordinate system onxnynzn
is commonly referred to as the end-effector or tool frame (see Figure 3.5). The origin

Note: currently rendering
a 3D gripper...

yn ≡ s

On

O0

z0

y0

x0

xn ≡ n

zn ≡ a

Figure 3.5: Tool frame assignment.

on is most often placed symmetrically between the fingers of the gripper. The unit vectors
along the xn, yn, and zn axes are labeled as n, s, and a, respectively. The terminology
arises from fact that the direction a is the approach direction, in the sense that the gripper
typically approaches an object along the a direction. Similarly the s direction is the sliding
direction, the direction along which the fingers of the gripper slide to open and close, and
n is the direction normal to the plane formed by a and s.
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In contemporary robots the final joint motion is a rotation of the end-effector by θn and
the final two joint axes, zn−1 and zn, coincide. In this case, the transformation between
the final two coordinate frames is a translation along zn−1 by a distance dn followed (or
preceded) by a rotation of θn radians about zn−1. This is an important observation that
will simplify the computation of the inverse kinematics in the next chapter.

Finally, note the following important fact. In all cases, whether the joint in question
is revolute or prismatic, the quantities ai and αi are always constant for all i and are
characteristic of the manipulator. If joint i is prismatic, then θi is also a constant, while di

is the ith joint variable. Similarly, if joint i is revolute, then di is constant and θi is the ith

joint variable.

3.2.3 Summary

We may summarize the above procedure based on the D-H convention in the following
algorithm for deriving the forward kinematics for any manipulator.

Step l: Locate and label the joint axes z0, . . . , zn−1.

Step 2: Establish the base frame. Set the origin anywhere on the z0-axis. The x0 and y0

axes are chosen conveniently to form a right-hand frame.

For i = 1, . . . , n− 1, perform Steps 3 to 5.

Step 3: Locate the origin oi where the common normal to zi and zi−1 intersects zi. If zi
intersects zi−1 locate oi at this intersection. If zi and zi−1 are parallel, locate oi in
any convenient position along zi.

Step 4: Establish xi along the common normal between zi−1 and zi through oi, or in the
direction normal to the zi−1 − zi plane if zi−1 and zi intersect.

Step 5: Establish yi to complete a right-hand frame.

Step 6: Establish the end-effector frame onxnynzn. Assuming the n-th joint is revolute,
set zn = a along the direction zn−1. Establish the origin on conveniently along zn,
preferably at the center of the gripper or at the tip of any tool that the manipulator
may be carrying. Set yn = s in the direction of the gripper closure and set xn = n

as s × a. If the tool is not a simple gripper set xn and yn conveniently to form a
right-hand frame.

Step 7: Create a table of link parameters ai, di, αi, θi.

ai = distance along xi from oi to the intersection of the xi and zi−1 axes.

di = distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes. di is
variable if joint i is prismatic.

αi = the angle between zi−1 and zi measured about xi (see Figure 3.3).
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θi = the angle between xi−1 and xi measured about zi−1 (see Figure 3.3). θi is variable
if joint i is revolute.

Step 8: Form the homogeneous transformation matrices Ai by substituting the above pa-
rameters into (3.10).

Step 9: Form T 0

n = A1 · · ·An. This then gives the position and orientation of the tool
frame expressed in base coordinates.

3.3 Examples

In the D-H convention the only variable angle is θ, so we simplify notation by writing ci
for cos θi, etc. We also denote θ1 + θ2 by θ12, and cos(θ1 + θ2) by c12, and so on. In the
following examples it is important to remember that the D-H convention, while systematic,
still allows considerable freedom in the choice of some of the manipulator parameters. This
is particularly true in the case of parallel joint axes or when prismatic joints are involved.

Example 3.1 Planar Elbow Manipulator

Consider the two-link planar arm of Figure 3.6. The joint axes z0 and z1 are normal to

y0

x0

θ1

x1

x2

θ2

y1

y2

a1

a2

Figure 3.6: Two-link planar manipulator. The z-axes all point out of the page, and are not
shown in the figure.

the page. We establish the base frame o0x0y0z0 as shown. The origin is chosen at the point
of intersection of the z0 axis with the page and the direction of the x0 axis is completely
arbitrary. Once the base frame is established, the o1x1y1z1 frame is fixed as shown by the
D-H convention, where the origin o1 has been located at the intersection of z1 and the page.
The final frame o2x2y2z2 is fixed by choosing the origin o2 at the end of link 2 as shown.
The link parameters are shown in Table 3.1. The A-matrices are determined from (3.10) as
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Table 3.1: Link parameters for 2-link planar manipulator.

Link ai αi di θi

1 a1 0 0 θ∗1
2 a2 0 0 θ∗2

∗ variable

A1 =









c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1









. (3.22)

A2 =









c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1









(3.23)

The T -matrices are thus given by

T 0

1
= A1. (3.24)

T 0

2
= A1A2 =









c12 −s12 0 a1c1 + a2c12
s12 c12 0 a1s1 + a2s12
0 0 1 0
0 0 0 1









. (3.25)

Notice that the first two entries of the last column of T 0

2
are the x and y components of

the origin o2 in the base frame; that is,

x = a1c1 + a2c12 (3.26)

y = a1s1 + a2s12

are the coordinates of the end-effector in the base frame. The rotational part of T 0

2
gives the

orientation of the frame o2x2y2z2 relative to the base frame.
⋄

Example 3.2 Three-Link Cylindrical Robot
Consider now the three-link cylindrical robot represented symbolically by Figure 3.7. We

establish o0 as shown at joint 1. Note that the placement of the origin o0 along z0 as well
as the direction of the x0 axis are arbitrary. Our choice of o0 is the most natural, but o0
could just as well be placed at joint 2. The axis x0 is chosen normal to the page. Next, since
z0 and z1 coincide, the origin o1 is chosen at joint 1 as shown. The x1 axis is normal to
the page when θ1 = 0 but, of course its direction will change since θ1 is variable. Since z2
and z1 intersect, the origin o2 is placed at this intersection. The direction of x2 is chosen
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Figure 3.7: Three-link cylindrical manipulator.

Table 3.2: Link parameters for 3-link cylindrical manipulator.

Link ai αi di θi

1 0 0 d1 θ∗1
2 0 −90 d∗2 0
3 0 0 d∗3 0

∗ variable

parallel to x1 so that θ2 is zero. Finally, the third frame is chosen at the end of link 3 as
shown.

The link parameters are now shown in Table 3.2. The corresponding A and T matrices
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are

A1 =









c1 −s1 0 0
s1 c1 0 0
0 0 1 d1

0 0 0 1









(3.27)

A2 =









1 0 0 0
0 0 1 0
0 −1 0 d2

0 0 0 1









A3 =









1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1









T 0

3
= A1A2A3 =









c1 0 −s1 −s1d3

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1









. (3.28)

⋄

Example 3.3 Spherical Wrist

θ5

θ4

z5

x4

z4

θ6

To gripper

x5

z3,

Figure 3.8: The spherical wrist frame assignment.

The spherical wrist configuration is shown in Figure 3.8, in which the joint axes z3, z4,
z5 intersect at o. The Denavit-Hartenberg parameters are shown in Table 3.3. The Stanford
manipulator is an example of a manipulator that possesses a wrist of this type. In fact, the
following analysis applies to virtually all spherical wrists.

We show now that the final three joint variables, θ4, θ5, θ6 are the Euler angles φ, θ, ψ,
respectively, with respect to the coordinate frame o3x3y3z3. To see this we need only compute
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Table 3.3: DH parameters for spherical wrist.

Link ai αi di θi

4 0 −90 0 θ∗4
5 0 90 0 θ∗5
6 0 0 d6 θ∗6

∗ variable

the matrices A4, A5, and A6 using Table 3.3 and the expression (3.10). This gives

A4 =









c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1









(3.29)

A5 =









c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1









(3.30)

A6 =









c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1









. (3.31)

Multiplying these together yields

T 3

6
= A4A5A6 =

[

R3

6
o3

6

0 1

]

(3.32)

=









c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5s6 c5 c5d6

0 0 0 1









.

Comparing the rotational part R3

6
of T 3

6
with the Euler angle transformation (2.51) shows

that θ4, θ5, θ6 can indeed be identified as the Euler angles φ, θ and ψ with respect to the
coordinate frame o3x3y3z3.

⋄

Example 3.4 Cylindrical Manipulator with Spherical Wrist

Suppose that we now attach a spherical wrist to the cylindrical manipulator of Exam-
ple 3.3.2 as shown in Figure 3.9. Note that the axis of rotation of joint 4 is parallel to z2
and thus coincides with the axis z3 of Example 3.3.2. The implication of this is that we can
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d3

θ1

d2

θ5

θ4 θ6 n s

a

Figure 3.9: Cylindrical robot with spherical wrist.

immediately combine the two previous expression (3.28) and (3.32) to derive the forward
kinematics as

T 0

6
= T 0

3
T 3

6
(3.33)

with T 0

3
given by (3.28) and T 3

6
given by (3.32). Therefore the forward kinematics of this

manipulator is described by

T 0

6
=









c1 0 −s1 −s1d1

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1

















c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5c6 c5 c5d6

0 0 0 1









(3.34)

=









r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1
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where

r11 = c1c4c5c6 − c1s4s6 + s1s5c6

r21 = s1c4c5c6 − s1s4s6 − c1s5c6

r31 = −s4c5c6 − c4s6

r12 = −c1c4c5s6 − c1s4c6 − s1s5c6

r22 = −s1c4c5s6 − s1s4s6 + c1s5c6

r32 = s4c5c6 − c4c6

r13 = c1c4s5 − s1c5

r23 = s1c4s5 + c1c5

r33 = −s4s5
dx = c1c4s5d6 − s1c5d6 − s1d3

dy = s1c4s5d6 + c1c5d6 + c1d3

dz = −s4s5d6 + d1 + d2.

Notice how most of the complexity of the forward kinematics for this manipulator results
from the orientation of the end-effector while the expression for the arm position from (3.28)
is fairly simple. The spherical wrist assumption not only simplifies the derivation of the
forward kinematics here, but will also greatly simplify the inverse kinematics problem in the
next chapter.
⋄

Example 3.5 Stanford Manipulator
Consider now the Stanford Manipulator shown in Figure 3.10. This manipulator is an

z1
θ2

θ1

z0

a

θ4

d3

z2

θ5

θ6 n s

x0, x1

Note: the shoulder (prismatic joint) is mounted wrong.

Figure 3.10: DH coordinate frame assignment for the Stanford manipulator.

example of a spherical (RRP) manipulator with a spherical wrist. This manipulator has an
offset in the shoulder joint that slightly complicates both the forward and inverse kinematics
problems.
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Table 3.4: DH parameters for Stanford Manipulator.

Link di ai αi θi

1 0 0 −90 ⋆
2 d2 0 +90 ⋆
3 ⋆ 0 0 0
4 0 0 −90 ⋆
5 0 0 +90 ⋆
6 d6 0 0 ⋆

∗ joint variable

We first establish the joint coordinate frames using the D-H convention as shown. The
link parameters are shown in the Table 3.4.

It is straightforward to compute the matrices Ai as

A1 =









c1 0 −s1 0
s1 0 c1 0
0 −1 0 0
0 0 0 1









(3.35)

A2 =









c2 0 s2 0
s2 0 −c2 0
0 1 0 d2

0 0 0 1









(3.36)

A3 =









1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1









(3.37)

A4 =









c4 0 −s4 0
s4 0 c4 0
0 −1 0 0
0 0 0 1









(3.38)

A5 =









c5 0 s5 0
s5 0 −c5 0
0 −1 0 0
0 0 0 1









(3.39)

A6 =









c6 −s6 0 0
s6 c6 0 0
0 0 1 d6

0 0 0 1









(3.40)



3.3. EXAMPLES 79

T 0

6
is then given as

T 0

6
= A1 · · ·A6 (3.41)

=









r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1









(3.42)

where

r11 = c1[c2(c4c5c6 − s4s6) − s2s5c6] − d2(s4c5c6 + c4s6)

r21 = s1[c2(c4c5c6 − s4s6) − s2s5c6] + c1(s4c5c6 + c4s6)

r31 = −s2(c4c5c6 − s4s6) − c2s5c6

r12 = c1[−c2(c4c5s6 + s4c6) + s2s5s6] − s1(−s4c5s6 + c4c6)

r22 = −s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6)

r32 = s2(c4c5s6 + s4c6) + c2s5s6 (3.43)

r13 = c1(c2c4s5 + s2c5) − s1s4s5

r23 = s1(c2c4s5 + s2c5) + c1s4s5

r33 = −s2c4s5 + c2c5

dx = c1s2d3 − s1d2 + +d6(c1c2c4s5 + c1c5s2 − s1s4s5)

dy = s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2)

dz = c2d3 + d6(c2c5 − c4s2s5). (3.44)

⋄

Example 3.6 SCARA Manipulator

As another example of the general procedure, consider the SCARA manipulator of Fig-
ure 3.11. This manipulator, which is an abstraction of the AdeptOne robot of Figure 1.11,
consists of an RRP arm and a one degree-of-freedom wrist, whose motion is a roll about the
vertical axis. The first step is to locate and label the joint axes as shown. Since all joint axes
are parallel we have some freedom in the placement of the origins. The origins are placed
as shown for convenience. We establish the x0 axis in the plane of the page as shown. This
is completely arbitrary and only affects the zero configuration of the manipulator, that is,
the position of the manipulator when θ1 = 0.

The joint parameters are given in Table 3.5, and the A-matrices are as follows.
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z0

z1

d3

θ4

x2

y2

x0

y0

θ1

θ2

x1

y1

y3

y4

x3

x4

z2

z3, z4

Figure 3.11: DH coordinate frame assignment for the SCARA manipulator.

Table 3.5: Joint parameters for SCARA.

Link ai αi di θi

1 a1 0 0 ⋆
2 a2 180 0 ⋆
3 0 0 ⋆ 0
4 0 0 d4 ⋆

∗ joint variable

A1 =









c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1









(3.45)

A2 =









c2 s2 0 a2c2
s2 −c2 0 a2s2
0 0 −1 0
0 0 0 1









(3.46)

A3 =









1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1









(3.47)

A4 =









c4 −s4 0 0
s4 c4 0 0
0 0 1 d4

0 0 0 1









. (3.48)
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The forward kinematic equations are therefore given by

T 0

4
= A1 · · ·A4 =









c12c4 + s12s4 −c12s4 + s12c4 0 a1c1 + a2c12
s12c4 − c12s4 −s12s4 − c12c4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1









. (3.49)

⋄
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Chapter 4

INVERSE KINEMATICS

In the previous chapter we showed how to determine the end-effector position and orien-
tation in terms of the joint variables. This chapter is concerned with the inverse problem
of finding the joint variables in terms of the end-effector position and orientation. This is
the problem of inverse kinematics, and it is, in general, more difficult than the forward
kinematics problem.

In this chapter, we begin by formulating the general inverse kinematics problem. Fol-
lowing this, we describe the principle of kinematic decoupling and how it can be used to
simplify the inverse kinematics of most modern manipulators. Using kinematic decoupling,
we can consider the position and orientation problems independently. We describe a ge-
ometric approach for solving the positioning problem, while we exploit the Euler angle
parameterization to solve the orientation problem.

4.1 The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given a 4× 4 homoge-
neous transformation

H =

[

R o
0 1

]

∈ SE(3) (4.1)

with R ∈ SO(3), find (one or all) solutions of the equation

T 0

n(q1, . . . , qn) = H (4.2)

where

T 0

n(q1, . . . , qn) = A1(q1) · · ·An(qn). (4.3)

Here, H represents the desired position and orientation of the end-effector, and our task is
to find the values for the joint variables q1, . . . , qn so that T 0

n(q1, . . . , qn) = H.
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Equation (4.2) results in twelve nonlinear equations in n unknown variables, which can
be written as

Tij(q1, . . . , qn) = hij , i = 1, 2, 3, j = 1, . . . , 4 (4.4)

where Tij , hij refer to the twelve nontrivial entries of T 0

n and H, respectively. (Since the
bottom row of both T 0

n and H are (0,0,0,1), four of the sixteen equations represented by
(4.2) are trivial.)

Example 4.1

Recall the Stanford manipulator of Example 3.3.5. Suppose that the desired position and
orientation of the final frame are given by

H =









r11 r12 r13 ox

r21 r22 r23 oy

r31 r32 r33 oz

0 0 0 1









. (4.5)

To find the corresponding joint variables θ1, θ2, d3, θ4, θ5, and θ6 we must solve the following
simultaneous set of nonlinear trigonometric equations (cf. (3.43) and (3.44)):

c1[c2(c4c5c6 − s4s6) − s2s5c6] − s1(s4c5c6 + c4s6) = r11

s1[c2(c4c5c6 − s4s6) − s2s5c6] + c1(s4c5c6 + c4s6) = r21

−s2(c4c5c6 − s4s6) − c2s5s6 = r31

c1[−c2(c4c5s6 + s4c6) + s2s5s6] − s1(−s4c5s6 + c4c6) = r12

s1[−c2(c4c5s6 + s4c6) + s2s5s6] + c1(−s4c5s6 + c4c6) = r22

s2(c4c5s6 + s4c6) + c2s5s6 = r32

c1(c2c4s5 + s2c5) − s1s4s5 = r13

s1(c2c4s5 + s2c5) + c1s4s5 = r23

−s2c4s5 + c2c5 = r33

c1s2d3 − s1d2 + d6(c1c2c4s5 + c1c5s2 − s1s4s5) = ox

s1s2d3 + c1d2 + d6(c1s4s5 + c2c4s1s5 + c5s1s2) = oy

c2d3 + d6(c2c5 − c4s2s5) = oz.

⋄
The equations in the preceding example are, of course, much too difficult to solve di-

rectly in closed form. This is the case for most robot arms. Therefore, we need to develop
efficient and systematic techniques that exploit the particular kinematic structure of the
manipulator. Whereas the forward kinematics problem always has a unique solution that
can be obtained simply by evaluating the forward equations, the inverse kinematics problem
may or may not have a solution. Even if a solution exists, it may or may not be unique.
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Furthermore, because these forward kinematic equations are in general complicated nonlin-
ear functions of the joint variables, the solutions may be difficult to obtain even when they
exist.

In solving the inverse kinematics problem we are most interested in finding a closed form
solution of the equations rather than a numerical solution. Finding a closed form solution
means finding an explicit relationship:

qk = fk(h11, . . . , h34), k = 1, . . . , n. (4.6)

Closed form solutions are preferable for two reasons. First, in certain applications, such as
tracking a welding seam whose location is provided by a vision system, the inverse kinematic
equations must be solved at a rapid rate, say every 20 milliseconds, and having closed form
expressions rather than an iterative search is a practical necessity. Second, the kinematic
equations in general have multiple solutions. Having closed form solutions allows one to
develop rules for choosing a particular solution among several.

The practical question of the existence of solutions to the inverse kinematics problem
depends on engineering as well as mathematical considerations. For example, the motion of
the revolute joints may be restricted to less than a full 360 degrees of rotation so that not all
mathematical solutions of the kinematic equations will correspond to physically realizable
configurations of the manipulator. We will assume that the given position and orientation
is such that at least one solution of (4.2) exists. Once a solution to the mathematical
equations is identified, it must be further checked to see whether or not it satisfies all
constraints on the ranges of possible joint motions. For our purposes here we henceforth
assume that the given homogeneous matrix H in (4.2) corresponds to a configuration within
the manipulator’s workspace with an attainable orientation. This then guarantees that the
mathematical solutions obtained correspond to achievable configurations.

4.2 Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns out that for
manipulators having six joints, with the last three joints intersecting at a point (such as
the Stanford Manipulator above), it is possible to decouple the inverse kinematics problem
into two simpler problems, known respectively, as inverse position kinematics, and
inverse orientation kinematics. To put it another way, for a six-DOF manipulator
with a spherical wrist, the inverse kinematics problem may be separated into two simpler
problems, namely first finding the position of the intersection of the wrist axes, hereafter
called the wrist center, and then finding the orientation of the wrist.

For concreteness let us suppose that there are exactly six degrees-of-freedom and that
the last three joint axes intersect at a point oc. We express (4.2) as two sets of equations
representing the rotational and positional equations

R0

6
(q1, . . . , q6) = R (4.7)

o0

6(q1, . . . , q6) = o (4.8)
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where o and R are the desired position and orientation of the tool frame, expressed with
respect to the world coordinate system. Thus, we are given o and R, and the inverse
kinematics problem is to solve for q1, . . . , q6.

The assumption of a spherical wrist means that the axes z3, z4, and z5 intersect at
oc and hence the origins o4 and o5 assigned by the DH-convention will always be at the
wrist center oc. Often o3 will also be at oc, but this is not necessary for our subsequent
development. The important point of this assumption for the inverse kinematics is that
motion of the final three links about these axes will not change the position of oc, and thus,
the position of the wrist center is thus a function of only the first three joint variables.

The origin of the tool frame (whose desired coordinates are given by o) is simply obtained
by a translation of distance d6 along z5 from oc (see Table 3.3). In our case, z5 and z6 are
the same axis, and the third column of R expresses the direction of z6 with respect to the
base frame. Therefore, we have

o = o0

c + d6R





0
0
1



 . (4.9)

Thus in order to have the end-effector of the robot at the point with coordinates given by o
and with the orientation of the end-effector given by R = (rij), it is necessary and sufficient
that the wrist center oc have coordinates given by

o0

c = o − d6R





0
0
1



 . (4.10)

and that the orientation of the frame o6x6y6z6 with respect to the base be given by R. If
the components of the end-effector position o are denoted ox, oy, oz and the components of
the wrist center o0

c are denoted xc, yc, zc then (4.10) gives the relationship




xc

yc

zc



 =





ox − d6r13
oy − d6r23
oz − d6r33



 . (4.11)

Using Equation (4.11) we may find the values of the first three joint variables. This
determines the orientation transformation R0

3
which depends only on these first three joint

variables. We can now determine the orientation of the end-effector relative to the frame
o3x3y3z3 from the expression

R = R0

3
R3

6
(4.12)

as

R3

6
= (R0

3
)−1R = (R0

3
)TR. (4.13)

As we shall see in Section 4.4, the final three joint angles can then be found as a set
of Euler angles corresponding to R3

6
. Note that the right hand side of (4.13) is completely

known since R is given and R0

3
can be calculated once the first three joint variables are

known. The idea of kinematic decoupling is illustrated in Figure 4.1.
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d6Rk

dc
0

d6
0

Figure 4.1: Kinematic decoupling.

Summary

For this class of manipulators the determination of the inverse kinematics can be summarized
by the following algorithm.

Step 1: Find q1, q2, q3 such that the wrist center oc has coordinates given by

o0

c = o − d6R





0
0
1



 . (4.14)

Step 2: Using the joint variables determined in Step 1, evaluate R0

3
.

Step 3: Find a set of Euler angles corresponding to the rotation matrix

R3

6
= (R0

3
)−1R = (R0

3
)TR. (4.15)

4.3 Inverse Position: A Geometric Approach

For the common kinematic arrangements that we consider, we can use a geometric approach
to find the variables, q1, q2, q3 corresponding to o0

c given by (4.10). We restrict our treatment
to the geometric approach for two reasons. First, as we have said, most present manipulator
designs are kinematically simple, usually consisting of one of the five basic configurations
of Chapter 1 with a spherical wrist. Indeed, it is partly due to the difficulty of the general
inverse kinematics problem that manipulator designs have evolved to their present state.
Second, there are few techniques that can handle the general inverse kinematics problem for
arbitrary configurations. Since the reader is most likely to encounter robot configurations
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of the type considered here, the added difficulty involved in treating the general case seems
unjustified. The reader is directed to the references at the end of the chapter for treatment
of the general case.

In general the complexity of the inverse kinematics problem increases with the number
of nonzero link parameters. For most manipulators, many of the ai, di are zero, the αi are
0 or ±π/2, etc. In these cases especially, a geometric approach is the simplest and most
natural. We will illustrate this with several important examples.

Articulated Configuration

Consider the elbow manipulator shown in Figure 4.2, with the components of o0

c denoted
by xc, yc, zc. We project oc onto the x0 − y0 plane as shown in Figure 4.3.

θ1

θ2

z0

y0

x0

r

d1

yc

xc

zc

s

θ3

Figure 4.2: Elbow manipulator.

We see from this projection that

θ1 = A tan(xc, yc), (4.16)

in which A tan(x, y) denotes the two argument arctangent function. A tan(x, y) is defined
for all (x, y) 6= (0, 0) and equals the unique angle θ such that

cos θ =
x

(x2 + y2)
1

2

, sin θ =
y

(x2 + y2)
1

2

. (4.17)

For example, A tan(1,−1) = −π
4
, while A tan(−1, 1) = +3π

4
.

Note that a second valid solution for θ1 is

θ1 = π +A tan(xc, yc). (4.18)
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θ1

x0xc

yc

y0

r

Figure 4.3: Projection of the wrist center onto x0 − y0 plane.

Of course this will, in turn, lead to different solutions for θ2 and θ3, as we will see below.
These solutions for θ1, are valid unless xc = yc = 0. In this case (4.16) is undefined and

the manipulator is in a singular configuration, shown in Figure 4.4. In this position the

z0

Figure 4.4: Singular configuration.

wrist center oc intersects z0; hence any value of θ1 leaves oc fixed. There are thus infinitely
many solutions for θ1 when oc intersects z0.

If there is an offset d 6= 0 as shown in Figure 4.5 then the wrist center cannot intersect
z0. In this case, depending on how the DH parameters have been assigned, we will have
d2 = d or d3 = d. In this case, there will, in general, be only two solutions for θ1. These
correspond to the so-called left arm and right arm configurations as shown in Figures 4.6
and 4.7. Figure 4.6 shows the left arm configuration. From this figure, we see geometrically
that

θ1 = φ− α (4.19)
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d

Figure 4.5: Elbow manipulator with shoulder offset.

where

φ = A tan(xc, yc) (4.20)

α = A tan
(

√

r2 − d2, d
)

(4.21)

= A tan
(

√

x2
c + y2

c − d2, d
)

.

The second solution, given by the right arm configuration shown in Figure 4.7 is given by

θ1 = A tan(xc, yc) +A tan
(

−
√

r2 − d2,−d
)

. (4.22)

To see this, note that

θ1 = α+ β (4.23)

α = A tan(xc, yc) (4.24)

β = γ + π (4.25)

γ = A tan(
√

r2 − d2, d) (4.26)

(4.27)

which together imply that

β = A tan
(

−
√

r2 − d2,−d
)

(4.28)

since cos(θ + π) = − cos(θ) and sin(θ + π) = − sin(θ).
To find the angles θ2, θ3 for the elbow manipulator, given θ1, we consider the plane

formed by the second and third links as shown in Figure 4.8. Since the motion of links
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θ1

α

yc

y0

xc
x0

r

φd

Figure 4.6: Left arm configuration.

two and three is planar, the solution is analogous to that of the two-link manipulator of
Chapter 1. As in our previous derivation (cf. (1.8) and (1.9)) we can apply the law of cosines
to obtain

cos θ3 =
r2 + s2 − a2

2 − a2
3

2a2a3

(4.29)

=
x2

c + y2
c − d2 + z2

c − a2
2 − a2

3

2a2a3

:= D,

since r2 = x2
c + y2

c − d2 and s = zc. Hence, θ3 is given by

θ3 = A tan
(

D,±
√

1 −D2

)

. (4.30)

Similarly θ2 is given as

θ2 = A tan(r, s) −A tan(a2 + a3c3, a3s3) (4.31)

= A tan
(

√

x2
c + y2

c − d2, zc

)

−A tan(a2 + a3c3, a3s3).

The two solutions for θ3 correspond to the elbow-up position and elbow-down position,
respectively.

An example of an elbow manipulator with offsets is the PUMA shown in Figure 4.9.
There are four solutions to the inverse position kinematics as shown. These correspond
to the situations left arm-elbow up, left arm–elbow down, right arm–elbow up and right
arm–elbow down. We will see that there are two solutions for the wrist orientation thus
giving a total of eight solutions of the inverse kinematics for the PUMA manipulator.
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d
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β

rγ

yc

x0

y0

Figure 4.7: Right arm configuration.

Spherical Configuration

We next solve the inverse position kinematics for a three degree of freedom spherical manip-
ulator shown in Figure 4.10. As in the case of the elbow manipulator the first joint variable
is the base rotation and a solution is given as

θ1 = A tan(xc, yc) (4.32)

provided xc and yc are not both zero. If both xc and yc are zero, the configuration is singular
as before and θ1 may take on any value.

The angle θ2 is given from Figure 4.10 as

θ2 = A tan(r, s) +
π

2
(4.33)

where r2 = x2
c + y2

c , s = zc − d1. As in the case of the elbow manipulator a second solution
for θ1 is given by

θ1 = π +A tan(xc, yc); (4.34)

The linear distance d3 is found as

d3 =
√

r2 + s2 =
√

x2
c + y2

c + (zc − d1)2. (4.35)

The negative square root solution for d3 is disregarded and thus in this case we obtain
two solutions to the inverse position kinematics as long as the wrist center does not intersect
z0. If there is an offset then there will be left and right arm configurations as in the case of
the elbow manipulator (Problem 4-12).
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Figure 4.8: Projecting onto the plane formed by links 2 and 3.

4.4 Inverse Orientation

In the previous section we used a geometric approach to solve the inverse position problem.
This gives the values of the first three joint variables corresponding to a given position of
the wrist origin. The inverse orientation problem is now one of finding the values of the
final three joint variables corresponding to a given orientation with respect to the frame
o3x3y3z3. For a spherical wrist, this can be interpreted as the problem of finding a set
of Euler angles corresponding to a given rotation matrix R. Recall that equation (3.32)
shows that the rotation matrix obtained for the spherical wrist has the same form as the
rotation matrix for the Euler transformation, given in (2.52). Therefore, we can use the
method developed in Section 2.5.1 to solve for the three joint angles of the spherical wrist.
In particular, we solve for the three Euler angles, φ, θ, ψ, using Equations (2.54) – (2.59),
and then use the mapping

θ4 = φ,

θ5 = θ,

θ6 = ψ.

Example 4.2 Articulated Manipulator with Spherical Wrist

The DH parameters for the frame assignment shown in Figure 4.2 are summarized in
Table 4.1. Multiplying the corresponding Ai matrices gives the matrix R0

3
for the articulated

or elbow manipulator as

R0

3
=





c1c23 −c1s23 s1
s1c23 −s1s23 −c1
s23 c23 0



 . (4.36)
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Figure 4.9: Four solutions of the inverse position kinematics for the PUMA manipulator.

Table 4.1: Link parameters for the articulated manipulator of Figure 4.2.

Link ai αi di θi

1 0 90 d1 θ∗1
2 a2 0 0 θ∗2
3 a3 0 0 θ∗3

∗ variable
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Figure 4.10: Spherical manipulator.

The matrix R3

6
= A4A5A6 is given as

R3

6
=





c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5

−s5c6 s5s6 c5



 . (4.37)

The equation to be solved now for the final three variables is therefore

R3

6
= (R0

3
)TR (4.38)

and the Euler angle solution can be applied to this equation. For example, the three equations
given by the third column in the above matrix equation are given by

c4s5 = c1c23r13 + s1c23r23 + s23r33 (4.39)

s4s5 = −c1s23r13 − s1s23r23 + c23r33 (4.40)

c5 = s1r13 − c1r23. (4.41)

Hence, if not both of the expressions (4.39), (4.40) are zero, then we obtain θ5 from (2.54)
and (2.55) as

θ5 = A tan
(

s1r13 − c1r23,±
√

1 − (s1r13 − c1r23)2
)

. (4.42)

If the positive square root is chosen in (4.42), then θ4 and θ6 are given by (2.56) and (2.57),
respectively, as

θ4 = A tan(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (4.43)

θ6 = A tan(−s1r11 + c1r21, s1r12 − c1r22). (4.44)
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The other solutions are obtained analogously. If s5 = 0, then joint axes z3 and z5 are
collinear. This is a singular configuration and only the sum θ4 + θ6 can be determined. One
solution is to choose θ4 arbitrarily and then determine θ6 using (2.62) or (2.64).
⋄

Example 4.3 Summary of Elbow Manipulator Solution
To summarize the preceding development we write down one solution to the inverse

kinematics of the six degree-of-freedom elbow manipulator shown in Figure 4.2 which has
no joint offsets and a spherical wrist.

Given

o =





ox

oy

oz



 ; R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (4.45)

then with

xc = ox − d6r13 (4.46)

yc = oy − d6r23 (4.47)

zc = oz − d6r33 (4.48)

a set of D-H joint variables is given by

θ1 = A tan(xc, yc) (4.49)

θ2 = A tan
(

√

x2
c + y2

c − d2, zc

)

−A tan(a2 + a3c3, a3s3) (4.50)

θ3 = A tan
(

D,±
√

1 −D2

)

,

where D =
x2

c + y2
c − d2 + z2

c − a2
2 − a2

3

2a2a3

(4.51)

θ4 = A tan(c1c23r13 + s1c23r23 + s23r33,

−c1s23r13 − s1s23r23 + c23r33) (4.52)

θ5 = A tan
(

s1r13 − c1r23,±
√

1 − (s1r13 − c1r23)2
)

. (4.53)

θ6 = A tan(−s1r11 + c1r21, s1r12 − c1r22). (4.54)

The other possible solutions are left as an exercise (Problem 4-11). ⋄

Example 4.4 SCARA Manipulator
As another example, we consider the SCARA manipulator whose forward kinematics is

defined by T 0

4
from (3.49). The inverse kinematics is then given as the set of solutions of

the equation








c12c4 + s12s4 s12c4 − c12s4 0 a1c1 + a2c12
s12c4 − c12s4 −c12c4 − s12s4 0 a1s1 + a2s12

0 0 −1 −d3 − d4

0 0 0 1









=

[

R o
0 1

]

. (4.55)



4.4. INVERSE ORIENTATION 97

We first note that, since the SCARA has only four degrees-of-freedom, not every possible
H from SE(3) allows a solution of (4.55). In fact we can easily see that there is no solution
of (4.55) unless R is of the form

R =





cα sα 0
sα −cα 0
0 0 −1



 (4.56)

and if this is the case, the sum θ1 + θ2 − θ4 is determined by

θ1 + θ2 − θ4 = α = A tan(r11, r12). (4.57)

Projecting the manipulator configuration onto the x0 − y0 plane immediately yields the
situation of Figure 4.11.

z0

y0

x0

yc

xc

d1

r
zc

θ1

Figure 4.11: SCARA manipulator.

We see from this that

θ2 = A tan
(

c2,±
√

1 − c2
)

(4.58)

where

c2 =
o2x + o2y − a2

1 − a2
2

2a1a2

(4.59)

θ1 = A tan(ox, oy) −A tan(a1 + a2c2, a2s2). (4.60)

We may then determine θ4 from (4.57) as

θ4 = θ1 + θ2 − α (4.61)

= θ1 + θ2 −A tan(r11, r12).

Finally d3 is given as

d3 = oz + d4. (4.62)

⋄
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