

NTE108 and NTE108-1 Silicon NPN Transistor High Frequency Amplifier

Description:

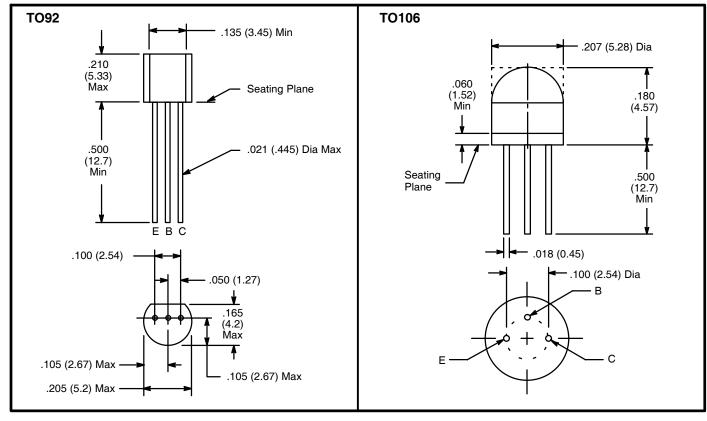
The NTE108 (TO92) and NTE108–1 (TO106) are silicon NPN transistors designed for low–noise, high–frequency amplifiers, 1GHz local oscillatore, non–neutralized IF amplifiers, and non–saturating circuits with rise and fall times less than 2.5ns.

Absolute Maximum Ratings:

Collector–Emitter Voltage, V _{CEO}	15V
Collector–Base Voltage, V _{CBO}	30V
Emitter-Base Voltage, V _{EBO}	3V
Continuous Collector Current, I _C	50mA
Total Device Dissipation ($T_A = +25^{\circ}C$), P_D	
Operating Junction Temperature Range, T _J	55° to +150°C
Storage Temperature Range, T _{stg} 5	55° to +150°C
Thermal Resistance, Junction-to-Case, R _{thJC}	+83.3°C/W
Thermal Resistance, Junction-to-Ambient (Note 1), R _{thJA}	+200°C/W

Note 1. $R_{\Theta JA}$ is measured with the device soldered into a typical printed circuit board.

Electrical Characteristics: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
OFF Characteristics									
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	$I_C = 3mA$, $I_B = 0$, Note 2	15	_	_	V			
Collector-Base Breakdown Voltage	V _{(BR)CBO}	$I_C = 1\mu A, I_E = 0$	30	_	_	V			
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	$I_E = 10\mu A, I_C = 0$	3	_	_	V			
Collector Cutoff Current	I _{CBO}	$V_{CB} = 15V, I_{E} = 0$	-	_	10	nA			

Note 2. Pulse Test: Pulse Width $< 300\mu s$, Duty Cycle < 1%.

Electrical Characteristics (Cont'd): (T_A = +25°C unless otherwise specified) Reserved Symbol Test Conditions Min Tyn Max Unit

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
ON Characteristics			•	•		
DC Current Gain	h _{FE}	$I_C = 3mA$, $V_{CE} = 1V$, Note 2	20	_	_	
		I _C = 8mA, V _{CE} = 10V, Note 2	20	_	200	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 10\text{mA}$, $I_B = 1\text{mA}$	-	_	0.4	V
Base-Emitter Saturation Voltage	V _{BE(sat)}	$I_C = 10\text{mA}$, $I_B = 1\text{mA}$	_	_	1.0	V
Small-Signal Characteristics						
Current Gain-Bandwidth Product	f _T	I _C = 4mA, V _{CE} = 10V, f = 100MHz, Note 2	600	_	_	MHz
Output Capacitance	C _{obo}	$V_{CB} = 0V, I_E = 0, f = 140kHz$	_	_	3.0	pF
		$V_{CB} = 10V$, $I_E = 0$, $f = 140kHz$	_	_	1.7	pF
Input Capacitance	C _{ibo}	$V_{EB} = 0.5V, I_{C} = 0, f = 140kHz$	_	_	2.0	pF
Noise Figure	NF	I_C = 1mA, V_{CE} = 6V, R_S = 400 Ω , f = 60MHz	_	_	6	dB
Functional Test			•	•		•
Common–Emitter Amplifier Power Gain	G _{pe}	$I_{C} = 6mA, V_{CB} = 12V,$ f = 200MHz (G _{fd} + G _{re} < -20dB)	15	_	-	dB
Power Output	P _{out}	I _C = 8mA, V _{CB} = 15V, f = 500MHz	30	-	-	mW
Oscillator Collector Efficiency	η	I_C = 8mA, V_{CB} = 15V, P_{out} = 30mW, f = 500MHz	25	-	-	%

Note 2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 1%.

