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Abstract. Device pairing is a significant problem for a large class of increasingly
popular resource-constrained wireless protocols such as BlueTooth. The objective
of pairing is to establish a secure wireless communication channel between two
specific devices without a public-key infrastructure, a secure near-field communi-
cation channel, or electrical contact. We use a surprising user-device interaction
as a solution to this problem. By adding an accelerometer, a device can sense its
motion in a Cartesian space relative to the inertial space. The idea is to have two
devices in a fixed, relative position to each other. Then, the joint object is moved
randomly in 3D for several seconds. The unique motion generates approximately
the same distinct signal at the accelerometers. The difference between the signals
in the two inertially conjoined sensors should be relatively small under normal
motion induced manually. The objective is to derive a deterministic key at both
sides with maximized entropy that will be used as a private key for symmetric
encryption. Currently, our prototype produces between 10–15 bits of entropy per
second of usual manual motion using off-the-shelf components.

Keywords: device pairing, key exchange, fuzzy hashing, error correction.

1 INTRODUCTION

Establishing a secure session is one of the least efficiently resolved problems with mod-
ern low-cost wireless protocols such as BlueTooth [1]. The key challenge is that such
protocols do not assume the existence of a trusted authority that can certify public-keys;
hence one cannot build a standard public-key infrastructure (PKI) [2]. In a PKI, the pub-
lic key of the trusted authority would be hardwired into all devices. Each device or user
would have a single public-private key-pair along with a certificate that vouches the
authenticity of the public key. Key exchange using an underlying public-key cryptosys-
tem such as RSA [5], would involve authentication followed by generation of a common
secret, i.e., session key [6]. Using a system of certificates, the central authority could
manage the trust in the world-wide network [7]. Unfortunately, this class of solutions is
prohibitively expensive for most applications of mobile ad-hoc wireless protocols.

We introduce the first protocol that derives a common secret between two devices
based on kinetic user-device interaction. The idea is simple: two devices equipped with
3-axis accelerometers and moved along the same trajectory, should produce approxi-
mately similar output from each of the sensors. While similar ideas have been proposed
earlier for device notification (e.g., [3,4]), our protocol is the first to derive a common
secret from two fuzzy replicas of a common source. We show that in our scenario the
difficulty of the traditional fuzzy hashing problem can be successfully overcome as the



participants in the protocolcan communicatewhile deriving the common secret. Al-
though the replicas are only probabilistically equivalent to the source, our algorithm
uses error correcting codes to produce two equivalent keys on both devices with a cer-
tain probability of failure. In the protocol, Alice computes a syndrome based upon a
mutually agreed error correcting code and sends it to Bob. Based upon the syndrome,
Bob can correct the errors in his sensor readings, i.e., adjust them to equal Alice’s sen-
sor readings. The error corrected sensor readings are then used on both sides to set up
a private mutually-agreed session key. As high entropy of the session key stems only
from the random motion of the two devices, much like shaking a drink of Martini, we
have named our protocol The Martini Synch.
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Fig. 1. (top) Sensor output for two devices compared to the acceleration curve for the
reference motion. (bottom) Diagram of the basic steps of The Martini Synch protocol.

The Martini Synch is power-efficient as the amount of data exchanged between the
devices is actually lower compared to traditional key exchange protocols specified in
standards such as the IEEE P1363 [8]. Cost-wise 3D accelerometers should not in-
crease the device price by more than US$1 per axis [9,10], however, we stress that there
exist design proposals that could lower this price at least one order of magnitude. As
we impose only relative measurement consistency across different sensors, not their
absolute accuracy, we believe that such accelerometers can be built at low cost.

To evaluate the platform, we built two prototype devices based upon off-the-shelf
accelerometers and BlueTooth transceivers. The devices resulted in key generation rates
of 10–15 bits per second under normal manual motion.

2 RELATED WORK

2.1 BlueTooth Security

BlueTooth uses the SAFER+ algorithm for authentication and key generation [11] and
the E0 stream cipher is used for encrypting packets [12,13,14]. Simultaneously, fre-



quency hopping makes eavesdropping on BlueTooth-enabled devices more difficult [1].
Still, there are a number of security concerns reported for BlueTooth. Some of the first
concerns were raised with respect to certain poor implementations [15] – the security
flaw would lead to disclosure of certain personal data. First reverse engineering of the
security PIN used for device pairing was revealed in [16]. The first worm program,
Cabir, that targeted BlueTooth devices was written in 2004 by a group of virus writers
known as 29a; it used the short-range wireless feature of Smart Phones that run the
Symbian OS to detect other Symbian phones and then transfer itself to the new host as
a package file. Since then both passive [17] and active attacks [18] have been realized.
The essence of the problem is in the fact that wireless communication occurs over a
public channel, therefore key exchange is prone to the man-in-the-middle attack [19].
Typically, inexpensive protocols do not assume a trusted authority, therefore it is diffi-
cult to build a PKI in the system. According to our research, the work proposed in this
paper is the first that relies on device motion, not traditional cryptography (asymmetric
or symmetric), to establish a shared secret between two devices.

2.2 Gesture-based Device Notification

Several gesture-based techniques have been proposed to date for device notification. In
this context, two devices use a gesture to signal demand for mutual communication.
Bumping devices as a gesture has been proposed by Hinckley for aligning multiple-
screen images [3]. Holmquist et al. have proposed shaking conjoined devices as means
of establishing communication. However, their system “Smart-Its Friends” does not in-
corporate a communication protocol to derive a shared secret [4]. In “Smart-Its Friends”
two devices exchange their sensed motion patterns in plain-text as a request for com-
munication. In their work, Lester et al. used motion sensors to identify that in a cloud
of mobile devices, two or more are worn by the same person by analyzing the stress
patterns due to walking and other activities [20]. Patel et al. proposed a gesture-based
communication initiation between a mobile device augmented with accelerometers and
a public terminal [21]. Finally, Castelluccia and Mutaf proposed shaking devices to-
gether in order to filter out the radio frequency noise stemming from the environment
while the relative signal energy between the two devices would stay the same [22]. With
the exception of the last technique, none of the previous efforts aimed at generating a
shared secret key between the communicating parties: the essential ingredient of pri-
vate communication. To that extent, our proposal is the first to establish such a secret in
accelerometer-equipped devices using a novel fuzzy hashing protocol.

2.3 Fuzzy Hashing

Hashing of fuzzy data has been addressed for several different types of sources: images
[23,24,25], audio [26,27,28], textual documents [29,30], biometrics [31], and graphics
and protein matching [32]. Relative to our application, in most of the related work,
hashing diverse similar structures is efficient if the resulting hashes are within a certain
minimal distance. In our application we have an additional relaxation that the encoder
and decoder can communicate while agreeing on a mutually equivalent secret. This



relaxation greatly simplifies this otherwise difficult task. For that reason we do not
review in detail the fuzzy hashing techniques deployed in the referenced previous work.

3 THE MARTINI SYNCH PROTOCOL

The steps of the proposed protocol are illustrated in Figure1. The hardware require-
ments include a 3-axis accelerometer in the participating devices and a reliable wireless
communication stack such as BlueTooth. Hardware platforms that contain a hard-drive
are typically equipped with accelerometers to detect shock or free fall for data protec-
tion – hence, a large class of existing devices already satisfies the hardware require-
ments. We review the protocol steps in more detail:

– Notification. In order to launch the protocol, the two participating devices are ini-
tially notified by their users that they should establish a session key. This can be
done in several ways including: a physicalpush-button(unless it already exists,
an action-specific push-button can be prohibitively expensive), aproximity testper-
formed by measuring the energy of a received radio beacon or by detecting a source
of near-field communication such as an RFID, or bybumping the devicesand de-
tecting the bumps in the accelerometers’ output [3].

– Synchronization of internal clocks.Upon initial discovery, the devices synchro-
nize their internal clocks. Since sensor output is typically sampled at rates lower
than 1kHz, millisecond accuracy is both sufficient and inexpensive to establish.

– The Martini shake. Next, the devices are mechanically confined to a single object
(i.e., held together) and then randomly moved in free-space. The motion is induced
manually. While moving, the devices internally estimate the resulting entropy of the
collected sensor measurements. When one or both of the devices reaches a desired
minimal entropy, they signal to each other the end of the data collection process.
Alternatively, the same process can also be stopped using a timer.

– Joint fuzzy hashing. If the entropy of the collected signals is sufficient on both
sides, the devices finalize the key generation phase by exchanging a set of messages
whose purpose is to perform the joint fuzzy hashing of the sensor outputs while
securing the integrity of the derived deterministic secret. The protocol for joint
fuzzy hashing is detailed in the subsequent section.

– Secret verification.Finally, the devices verify that they have derived the same key
by exchanging the ciphertext of a known plaintext. If the ciphertexts match, the
devices proceed with the secure session.

The key characteristic of the protocol is that it establishes a common secret on
two devices based upon an activity in the physical world. Thus, private keys are estab-
lished on both sides without the assistance from public-key cryptography. Assuming
a secure symmetric encryption scheme,1 the only remaining tool for the adversary is
video-taping the motion using high-speed cameras and then deploying 3D computer
vision techniques to estimate the motion [33]. Suspecting that, users can take certain
straightforward precautions in case they are concerned about this type of attack.

1 Unfortunately this is not the case with BlueTooth currently [12,13,14].
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Fig. 2. Block diagram of the Martini Synch protocol. An example of sensor measure-
ments taken from two devices during a 72.7 second Martini Synch at a sampling rate of
220Hz.

4 JOINT FUZZY HASHING

In this section we propose a solution to the joint fuzzy hashing problem. First Alice
and Bob convert their sensor measurements into a sequence of0’s and1’s which they
will largely agree upon, with possibly some errors. This sequence of0’s and1’s is the
“preliminary secret”. Then Alice and Bob communicate a small number of bits of infor-
mation about this preliminary secret, enough bits to figure out where the discrepancies
are, but without leaking too many bits about their preliminary secret to an eavesdrop-
per. This is the error correction phase. When Alice and Bob estimate that they have
enough entropy in their secrets which was not leaked during the error correction phase,
they then hash their corrected preliminary secrets down to a common secret key. The
Martini Synch protocol is illustrated in Figure2.

4.1 Preliminary Secret

After the signals are passed through a low-pass filter to reduce noise, Alice and Bob
quantize their respective signals by dividing by a quantization step sizeQ and rounding
the result to the nearest integer. Next Alice and Bob tell each other the parities of each
of these quantized values. If the quantization step sizeQ is large enough, and Alice and
Bob agree on the parity of the quantized value, then it is likely that they agree upon the
quantized value itself.

Figure3 shows one possible stream of quantized values that Alice and Bob might
measure, and the corresponding parity bits that they would then communicate to each
other. An eavesdropper can of course listen to these parity bits. Since the sampling
rate is relatively high (220 Hz) and the signals have gone through a low-pass filter, an
eavesdropper might reasonably infer that if the parity bits of either Alice or Bob have
not changed, then it is likely that the quantized values have not changed either (see e.g.
the first 4 measurements in Figure3). If a secret is made out of all the quantized values,
then the parity bits leak some partial information about this secret. Therefore we extract



a preliminary from the agreed-upon quantized values in a different manner, as described
in the caption of Figure3.

Alice measures:   5 5 5 5 4 4 3 2 2 5 4 5 6 6 7 8 5 5 5 3 2

Bob measures:   5 4 4 5 4 4 2 2 2 3 5 5 5 6 7 8 6 5 5 3 2

Alice transmits:   1 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0

Bob transmits:   1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0

Alice records:   

Bob records:   

    D     U    U U U  D   D

    D     D    U U U  D   D

Fig. 3. An example sequence of quantized measurements that Alice and Bob might
make, with the parity bits that they would communicate to each other. Shown in gray
are those times for which Alice and Bob agree on the parity, and for which the parity
is different than for the previous time that Alice and Bob agreed on the parity. At each
time shown in gray, Alice and Bob record an “up vs. down” bit which indicates whether
their quantized signals went up or down since the last time shown in gray. Since an
eavesdropper learns essentially nothing about the “up vs. down” bits from the parity
bits, and most of the time Alice and Bob agree on the “up vs. down” bits, we use they
bits to form the preliminary secret.

Devices with three accelerometers will produce three data streams, while it is only
necessary to produce one secret key, so we splice these three streams of “up vs. down”
bits into one preliminary secret.

There are two issues with Alice and Bob’s preliminary secret. Due to inertia, the
bits within the secret are correlated with one another, so there are fewer bits of entropy
than the length of the preliminary secret would indicate. We will need to estimate the
entropy. A second issue is that unlessQ is rather large, Alice and Bob will disagree on
some fraction of the bits in their “common” preliminary secret — these bits are errors.
For practical purposes, if any bits are in error, then the mutual secret has no value.
But if Q is taken to be so large as to ensure that there are likely no errors, then this
significantly reduces the entropy of the mutual secret that Alice and Bob can obtain
from their measurements. We deal with this second issue first.

4.2 Error Correction

In the interest of increasing the bits of entropy per second of the Martini Synch, one
would like to sample the signals more frequently, and make the quantization intervals
correspondingly smaller. Reducing the quantization intervals will necessarily increase
the likelihood that the two devices measure a different value. We now describe how
Alice and Bob may correct the resulting discrepancies in their preliminary secrets.

The idea is for Alice and Bob to use a parity-check error-correcting code to correct
the errors in their measurements. This use of an error-correcting code is somewhat



unusual in that the encoding procedure is skipped, the participants only perform the
decoding part. To explain, we introduce some notation. Leta be a column vector of
sizen containing Alice’s preliminary secret, and letb be a column vector containing
Bob’s preliminary secret. Lete denote the column vector of errors —e = a ⊕ b. Let
H denote thek × n parity-check matrix of a binary error-correcting code.

In the normal use of an error-correcting code, a message ofm = n − k bits
is expanded into a vectorv of n bits satisfying the property thatHv = 0. Upon
transmittingv over a noisy channel, some of the bits are corrupted, so that the re-
ceived message isr = v + e, wheree denotes the errors. The receiver then computes
Hr = H(v ⊕ e) = He, and from this infers where the errors were, and corrects them.
Most decoders correct the errors using onlyHe, but sometimes the receiving device
outputs not justr but also a vector of reliability estimates that the decoder may make
use of when correcting errors [34].

In our application, Alice computesHa and sends the resultingk bits to Bob. Bob
computesHb and takes the exclusive-or of the result with what Alice sent —Hb ⊕
Ha = H(b⊕ a) = He. At this point Bob is in the same position as the receiver of an
encoded message that was corrupted by a noisy channel, and can determine which bits
of his measurementsb he needs to flip for them to agree with Alice’s measurementsa.

4.3 Progressive Error Correction

Rather than use an error correcting code with a fixed number of checksum bits, Alice
and Bob are at liberty to transmit checksum bits until they decide that they have cor-
rected all the errors. In the event that there is a small number of errors, they may stop
communicating checksum bits early so as to avoid leaking data to an eavesdropper. In
the event that there are many errors, Alice and Bob many continue to communicate
checksum bits until they are satisfied that all the errors have been corrected.

To illustrate this “progressive error correction”, where the number of checksum bits
depends on the errors that occur, it is instructive to consider a concrete example, such as
the scheme that we adopted. For our application we use BCH codes on blocks of length
63 bits [34,35]. The preliminary secret is partitioned into blocks of length 63 which
are corrected separately. In a BCH code, the bit positions are indexed by the non-zero
elements of a finite field, in our case the field isF64, represented as binary polynomials
in F2[x] modulox6 + x + 1. The elementx generates the multiplicative subgroup of
F64. So for integersp, Alice can transmitSA

p :=
∑63

i=1 aix
pi mod x6 + x + 1 in six

bits, whereupon Bob can computeSB
p :=

∑63
i=1 bix

pi mod x6 + x + 1 and determine

Sp := SA
p ⊕ SB

p =
63∑

i=1

eiα
pi mod x6 + x + 1.

In the event that there aret errors, knowingSp for the first t odd positive integers
p (S1, S3, . . . , S2t−1) is enough to determine the locations of thet errors using the
Berlekamp-Massey algorithm [34], which would allow Bob to change his copy of the
preliminary secret to agree with Alice’s. Of course Alice and Bob do not know before-
hand how many errors there will be. But if the firstt odd power-sumsS1, S3, . . . , S2t−1



are consistent with there being significantly fewer thant errors, then Bob can infer that
there are in fact fewer thant errors, and that it is not necessary for Alice to transmit ad-
ditional checksum bits. Whent is large, in the event that there are more thant errors, it
becomes increasingly likely that the decoding procedure will detect this. Thus for large
t there is less need for Alice to send Bob extra checksum bits for Bob to be confident
that there are not extra errors. To better take advantage of the fact that the decoding
procedure can often detect the presence of too many (random) errors, and to offset the
fact that errors are frequently clumped together (not randomly located), we picked and
fixed a random permutation on 63 items, and permuted the input bits according to this
permutation before doing the error correction. To run the protocol we need to specify a
functionf(t) ≤ t such that, whenS1, . . . , S2t−1 are consistent with≤ f(t) errors, Bob
is satisfied that he knows Alice’s preliminary secret. We used the function:

f(t) =





t− 2 t ≤ 4
t− 1 5 ≤ t ≤ 10
t t ≥ 11.

An eavesdropper listening to Bob’s communications will learn about the number of
discrepancies between the two preliminary secrets, but Bob’s communications do not
reveal anything about Alice’s version of the preliminary secret, which is the one that
will be hashed to form a secret key. Each time that Alice sends aSA

p she reveals at most
six bits about her preliminary secret. It turns out that sendingSA

1 , SA
3 , . . . , SA

2t−1 will
in general reveal fewer than6t bits about the preliminary secret, since there are some
linear relations between the transmitted bits. The number of bits revealed is the rank of
the associated checksum matrix, and is fairly well understood [35, Chapt. 9, sec. 3 & 4].
For the BCH code overF64 we summarize the number of leaked bits in Table1.

Table 1.Number of bits leaked whent syndrome packets are sent from Alice to Bob.

t: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16–31 32–63
# leaked bits: 6 12 18 24 27 33 39 45 45 45 47 53 53 56 56 62 63

4.4 Dealing with Information Leakage

When Alice transmits thek bits of Ha to Bob, an outside observer gains some infor-
mation about Alice’s measurementsa, so Alice and Bob would not want to simply use
a itself as their common secret. This problem is easy enough to deal with when all2n

possible values ofa are equally likely. In this case Alice and Bob can simply agree
beforehand upon a maximal rank submatrixA of H, and discard the bits ofa whose
positions correspond to the columns ofA. Let us assume thatH has rankk, since oth-
erwise the bits ofHa corresponding to dependent rows ofH give no extra information
to either Bob or the outside observer. Regardless of the values of the remainingn − k
bits that Alice and Bob keep, since thek discarded bits are uniformly random, and since



their positions correspond to a full-rank submatrix ofH, the messageHa is uniformly
random, and thus contains no information about then−k bits that Alice and Bob keep.

When the measured valuesa are not completely independent of one another, more
care is needed to ensure thatHa does not leak much information about the secret that
Alice and Bob derive froma. We shall assume that for somer < 1, no set of measure-
mentsa occurs with probability greater thanrn. Under these circumstances we might
hope to extractn log2 r−1 − k −O(1) nearly uniformly random bits froma which are
nearly independent ofHa, since conditional on the transmitted syndrome, no measure-
ment occurs with probability more than2krn. Alice and Bob can do this making use of
a random hash function which may be public and known to the outside observer. Let
M be as × n uniformly random matrix of0’s and1’s which may be public, where
s = n log2 r−1 − k −O(1). The common secret of Alice and Bob isMa.

The probability that two different measured valuesa1 anda2 get hashed to to the
same secretMa1 = Ma2 is precisely2−s. Conditional upon the values ofHa, no
value ofa occurs with probability greater than2krn. It can be shown using the second-
moment method, that even after an observer has learnedHa, the expected total variation
distance between the secretMa and uniformly random set ofs bits, is no more than
2k+srn (e.g., see [36] for further explanation). Whens is chosen to ben log r − k −
O(1), the outside observer learns essentially nothing about Alice and Bob’s common
secretMa.

4.5 Entropy Estimate

Empirically estimating the entropy of a process is generally difficult, but we need es-
timates of the entropy to judge the strength of the common secret that Alice and Bob
distill from their measurements. As mentioned above, the length of the preliminary se-
cret consisting of “up vs. down” bits is a poor estimate of the entropy, since there tend
to be alternating strings of 1’s and 0’s whose length is longer than what one would find
in a uniformly random string. To better estimate the entropy, for each of the three data
streams from the three coordinate axes, we letri denote the number of runs of 0’s and
1’s there are of lengthri, and estimate the entropy for a given data stream to be:

∑

i

ri log2

∑
i ri

ri
.

When the sum of the three entropy estimates, minus the number of leaked bits,
exceeds a specific security requirement, e.g., 60 bits, Alice and Bob determine that
they have enough entropy in the corrected preliminary secret to hash down to form a
common secret key.

4.6 Additional Remarks

Since a crucial part of the Martini Synch protocol occurs in the physical world, it is
important to stress the constraints related to this process. The difference inx andy is
influenced by two components:

i noise in the sensors stemming from calibration and other physical influences, and



ii the actual difference in the motion vectors for the two fixed points in the relative
Cartesian space where device accelerometers are positioned.

In order to reduce the latter noise, the devices must be designed so that the ac-
celerometers are positioned as closely as possible during the protocol. In our experi-
ments, motion induced using typical manual kinetics caused negligible additional noise
compared to the noise collected when both devices are still (e.g., noise typei). In the
tests, the accelerometers were positioned at a distance of approximately one inch.

4.7 Parameters

We have found the following parameters to generally work well for the Martini Synch.
For the noise filtering, we removed the DC component of the signal (to reduce the
need for calibration) and convolved the signal with a binomial distribution of order 256
(whose characteristic width is around 16–32). The sensors we used generated 10-bit
measurements, and for the quantization parameterQ we foundQ = 40 to work satis-
factory. The performance of the protocol depends in part on how vigorously the user
accelerates the devices, but with these parameters 16000 measurements (corresponding
to 72.7 seconds) generally produces a preliminary secret of aboutn =800-1400 bits
(per coordinate axis), containing aboutn/3 blocks of0’s and1’s, and aboutn/10 er-
rors. After correcting the errors one can expect to have about 400 bits of entropy for
each of the three coordinate axes.
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Fig. 4. (left) Photo of the encased prototype devices used in the experiments. (right)
Block diagram showing two portable devices and an intermediate PC for processing.

5 EMPIRICAL EVALUATION

The prototypes produced for this research consist of two handheld battery operated
devices, each equipped with a 3-axis accelerometer and a BlueTooth radio. The exper-
imental testbed is illustrated in Figure4. For the prototype, the information exchanged



was mediated by an intermediate BlueTooth-enabled PC. In a real-world scenario, the
two devices would process the information locally as well as communicate with each
other via their radios. The WiTilt 3-axis accelerometer with BlueTooth radio was pur-
chased from Sparkfun [37]. The accelerometers are model 7260 from Freescale Semi-
conductors [38]. They are MEMS (micro-electromechanical systems) 3-axis accelerom-
eters with a 1.5-6g acceleration range, 0.5mA operating current with a detection range
greater than 1kHz.

5.1 Evaluation of The Martini Synch

In this subsection we quantify the key performance features of the Martini Synch pro-
tocol. We collected data for thirteen 3-axis sensor vectors of length 16K samples from
a group of 5 users. The sensor vectors were sampled at 220Hz. We did not specifically
calibrate the sensors prior to the experiments. The usage of the platform is sufficiently
simple so that no other guidelines were issued to the users except that they should ran-
domly move the joined objects.
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Fig. 5. Distribution of timings required to obtain a shared secret of estimated minimal
60 bits.

We show the first set of results in Figure5. We illustrate the distribution of timings
required to obtain a shared secret of estimated minimal 60 bits. The subjects followed
usual manual motion for 11 and severe shaking for 2 out of the 13 benchmarks. As
a result, the mean and the median results are 5.9 and 4.7 seconds respectively over
the acquired set of sensor measurements. Here we report results forQ = 60 and a
binomial(128,0.5) filter. It is important to stress that overly energetic shaking of the
devices resulted in acceleration that could not be captured accurately with our devices
– hence, in these cases users required longer times (> 10 seconds) to generate a strong
secret.

In the second set of experiments we evaluate the probability of a false negative and
false positive (i.e., produced entropy per second). The left diagram shows a color-coded
plot of the probability of a false negativeεFN for various quantization step values and
binomial(x, 0.5) filters. One can observe that in a large part of the region of interest we
haveεFN < 0.02. For example, this type of performance corresponds to the false nega-
tives produced while typing a textual password. Similarly on the right side we present in



Binomial(x,0.5)

Q
u

an
tiz

at
io

n 
st

e
p 

Q

Bits per second

 

 

2048 1024 512 256 128 64 32 16 8

30

50

70

90

110

130

150 2

4

6

8

10

12

Binomial(x,0.5)

Q
u

an
tiz

a
tio

n 
st

e
p 

Q

Probability of false negative

 

 

2048 1024 512 256 128 64 32 16 8

30

50

70

90

110

130

150

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fig. 6. (left) Color-coded plot of the probability of a false negativeεFN . (right) Color-
coded diagram of the entropy per second for correctly resolved shared secrets.

a color-coded diagram the achieved entropy per second for correctly resolved shared se-
crets. We computed the entropy according to the algorithm presented in Subsection4.5.
One can observe that a relatively large area in the tested parameter set, corresponded
to bit-rates in excess of 12 bits per second. Thus, we point to a particular parameter
selectionQ = 50 and a binomial(128,0.5) filter as a good design solution for the ex-
perimental platform we developed. For the selected design parameters, individual five
second Martini Synch’s produced entropies commonly in the range between 10 to 15
bits per second.

6 A User-Study

The simplicity of the proposed user-device interface points to a few unknowns with
respect to user acceptance of the Martini Synch. During a demonstration fair we asked
47 persons, most of them with technical background, about the convenience of using
the Martini Synch. We conducted the following survey:

1 Is shaking a pair of devices convenient for generating a shared secret?
2 For a given device, no other mechanism is available for generating a shared secret.

Would you perform the Martini Synch to accomplish this task or you would deem
the device unusable?

3 In your opinion, how many seconds of shaking devices results in a good balance
between usability and security?

4 Are you likely to hide the device motion for fear of computer vision attacks?
5 Do you prefer bumping devices vs. software initiation of the key generation proto-

col?
6 Which mechanical feature is the most effective to lock two devices in place?
7 Is usage of the Martini Synch self-explanatory?
8 In your opinion, is the user-device interface appealing to the following individual

age groups?



Table 2.Results of a small user study. In total, 47 persons were surveyed.

Question Answers
1 (yes) 39 (no) 8
2 (yes) 45 (no) 2
3 < 2s 2-3s 3-4s 4-5s > 5s

3 3 18 17 3
4 (yes) 2 (no) 45
5 (yes) 36 (no) 11
6 magnetvelcro joints hi-friction surf.

25 2 1 19
7 (yes) 45 (no) 2
8 10-20 21-40 41-60 61+

(yes) 43 35 20 45

Responses to the survey are tabulated in Table2. In summary, the technology was
well accepted. All but two participants acknowledged that they would use the technol-
ogy if available on a low-cost device. A majority recognized the need for shaking the
device over a longer period – most of them targeting the 3-5 second period as conve-
nient. Similarly most participants preferred bumping devices to initiate a key generation
session as opposed to a point-and-click software-only user interface. Almost all users
found the protocol easy to comprehend. Finally, the survey participants estimated that
the 40-60 age group is least likely to accept the new user-device interface while its
appeal is the strongest to the youngest and elderly. We conclude the report on this infor-
mal and simple user study with a disclaimer that the sample of users was not statistically
large as well as broad in terms of technical background and acceptance of modern tech-
nology. To that extent, we point to a likely discrepancy of the presented results with
respect to ground truth.

7 SUMMARY

The Martini Synch protocol establishes a secure wireless communication channel be-
tween two specific devices without a public-key infrastructure, a secure near-field com-
munication channel, or electrical contact. It relies on a surprising user-device interac-
tion to achieve its objective. Using an accelerometer, a device can sense its motion in
a Cartesian space relative to inertial space. The idea is to have two devices in a fixed,
relative position to each other. The joint object is moved randomly in 3D for several
seconds. The unique motion generates approximately the same distinct signal at corre-
sponding devices’ accelerometers. The protocol uses a novel distributed fuzzy hashing
algorithm based upon exchanging error correction syndromes that derives probabilis-
tically the same secret key in both devices based upon the observed joint motion. We
developed a prototype platform using off-the-shelf components to show that even in a
simple implementation, The Martini Synch protocol can generate between 10 and 15
bits of entropy per second of manual motion.
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