

Freescale Technology Forum

Design Innovation.

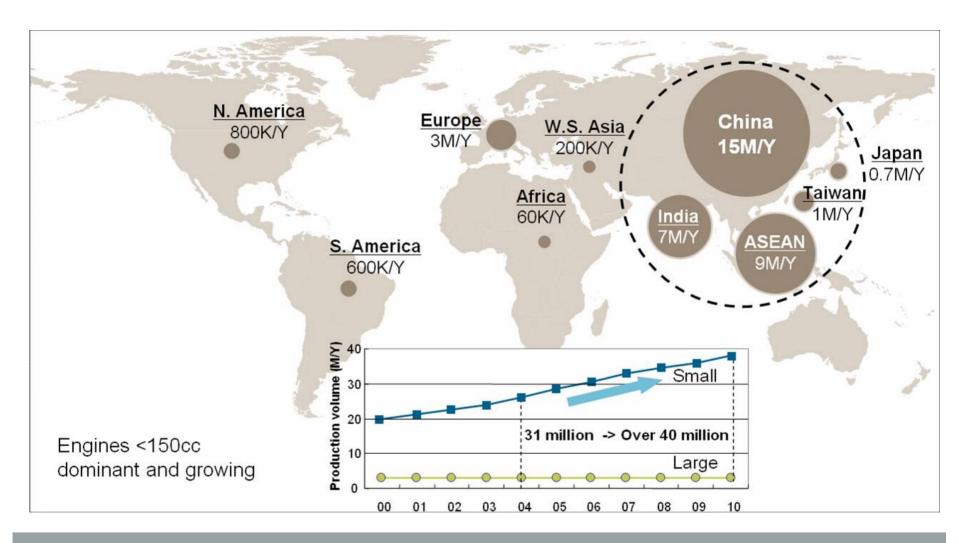
November 5th, 2008

Motorbikes: Entry-Level Automotive Powertrain Solutions for Emerging Markets and Emissions Reduction

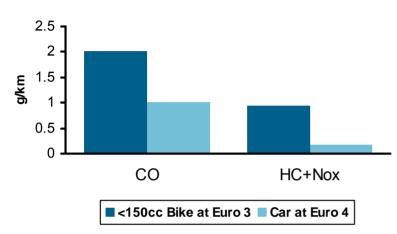
PA102

Bin Yang

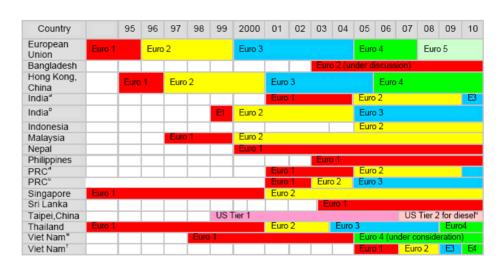
Asia Technical Marketing, Automotive


Market Dynamics Driving Small Engine Control

- ► The World's transportation needs are growing fast, driving demand for gas powered vehicles
- ► The demand is high for both Industrialized and Emerging (or Newly Industrialized) Markets
- ► Air pollution emissions remain a growing problem in these markets, as well fuel consumption
- ➤ World Governments are driving pollution control mandates to the smallest of internal combustion engines (Moped, gas power generators, personal watercraft etc.)
- Consumers also will expect everything to be environmentally friendly

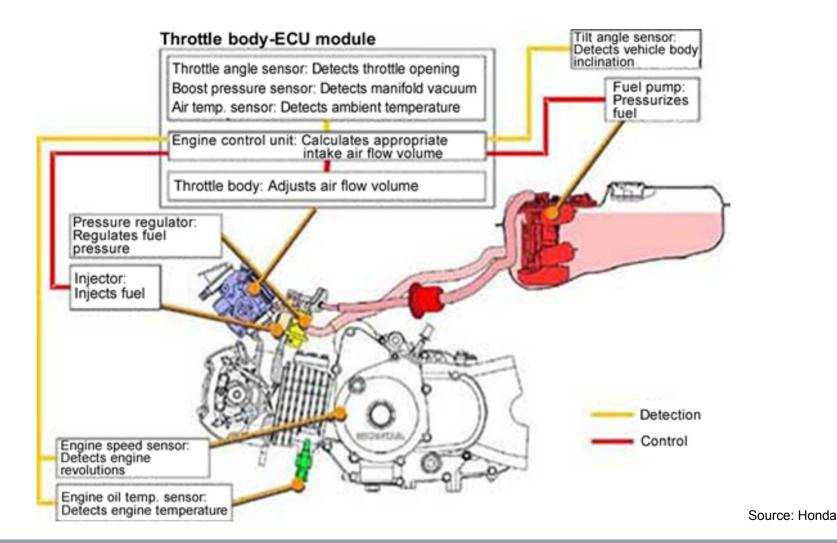

WW Small Engine Motorcycle/Scooter Sales

Emissions Standards

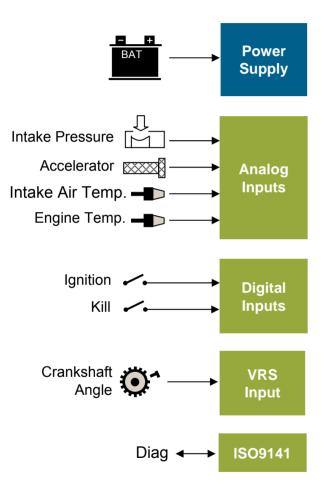

2006 Snapshot of EU Emissions

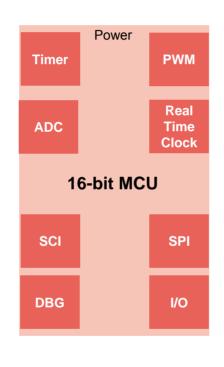
► Rationale for Legislation:

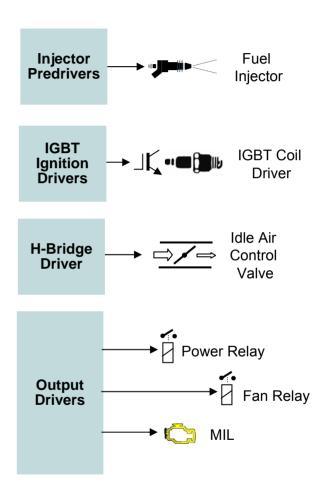
- Differing just 1 level in Euro standard, <150cc Motorbike is allowed to produce twice the emissions of a typical car
- Multiple emerging markets are moving to Euro 3 by 2009 for Motorbikes
- In order to achieve Euro 3, electronic control and EFI is required


Emission Standards for New Vehicles (Light Duty)

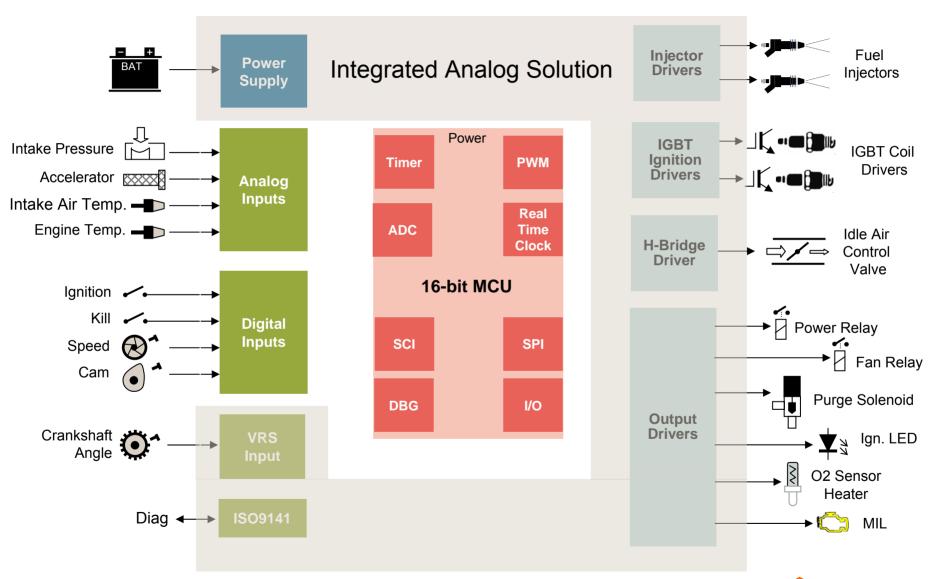
Trend from automobiles shows that emerging markets follow the precedents set by Europe

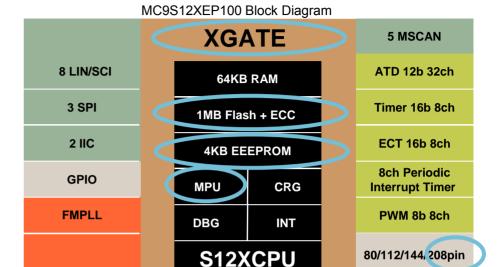



FI System for 1-cyl. Motorcycle Example



Typical 1-cylinder Motorcyle Engine Application




Typical 2-cylinder Motorcyle Engine Application

S12XE Family

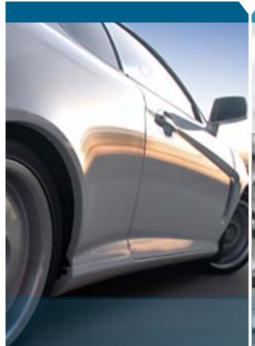
Introducing S12XE Family

- Next generation of S12XD-Family
- Higher system integrity
- ► Higher memory sizes & new package options
- Higher performance / functionality
 - Max speed 50MHz,
 - 12bit ATD, More peripherals, More I/Os
- Enhanced XGate allows one level of interruptability
- New Emulated EEPROM
- Applications:
- Central body + some chassis & low-end
 Powertrain

External Bus Interface

																	Max	
									SCI								Speed	
Device	Flash	ROM	RAM	EE	XGATE	MPU	EBI	CAN	(LIN)	SPI	IIC	ECT	TIM	PIT	PWM	ATD	(MHz)	Package
9S12XEP100	1Mb		64	4	1	1	у	5	8	3	2	16b8ch	16b8ch	8ch	8b8c	32	50	112 LQFP 144QFP 208PBGA
9S12XEP768	768		48	4	1	1	у	5	8	3	2	16b8ch	16b8ch	8ch	8b8c	32	50	112 LQFP 144QFP 208PBGA
9S12XEQ512			32	4	1	1	у	4	6	3	2	16b8ch	-	4ch	8b8c	24	50	112 LQFP 144QFP 208PBGA
9S12XEQ384	384		20	4	1	1	У	4	4	3	1	16b8ch	-	4ch	8b8c	24	50	80QFP 112LQFP 144LQFP
9S12XET256	256		16	4	1	1	у	3	4	3	1	16b8ch	-	4ch	8b8c	24	50	80QFP 112LQFP 144LQFP
9S12XEG128	128		12	2	1	1	у	2	2	2	1	16b8ch	-	2ch	8b8c	16	50	80QFP 112LQFP

S12XS Family


Introducing S12XS Family

- Cost reduced version of S12XE
- Removed XGATE, MPU
- Slimmed down peripheral set
- Available down to 64QFP
- Pin for Pin compatible with S12XE family in 80pin/112pin package
- ► Applications:
- Single CAN central body, some chassis,
 Safety, Low end Powertrain

									SCI								Max Speed	
Device	Flash	ROM	RAM	EE	XGATE	MPU	ЕВ	CAN	(LIN)	SPI	IIC	ECT	TIM	PIT	PWM	ATD	(MHz)	Package
9S12XS256	256		12	8k DataFlash				1	2	1			16b8ch	4ch	8b8c	16	40	80QFP 112LQFP
3S12XS256		256	12	-				1	2	1			16b8ch	4ch	8b8c	16	40	80QFP 112LQFP
9S12XS128	128		8	8k DataFlash				1	2	1			16b8ch	4ch	8b8c	16	40	64LQFP 80QFP 112LQFP
3S12XS128		128	8	-				1	2	1			16b8ch	4ch	8b8c	8	40	64LQFP 80QFP
9S12XS64	64		4	4k DataFlash				1	2	1			16b8ch	4ch	8b8c	16	40	64LQFP 80QFP 112LQFP
3S12XS64		64	4	-				1	2	1			16b8ch	4ch	8b8c	8	40	64LQFP 80QFP

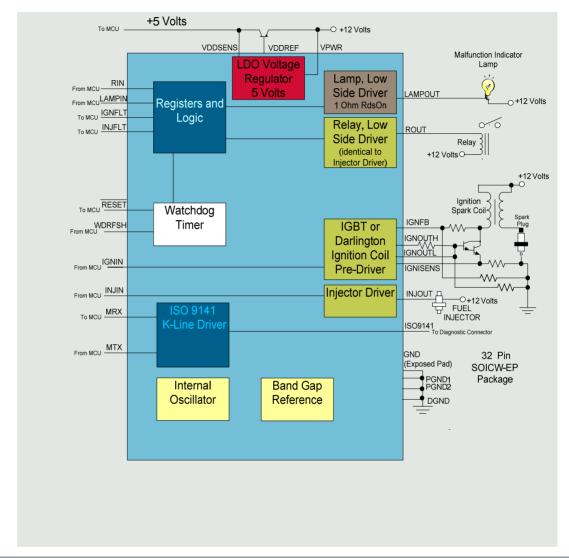
Freescale Technology Forum

Design Innovation.

Sea Breeze

New Analog Product for Small Engine Control

Ralph Ferrara **Product Definition Engineer**



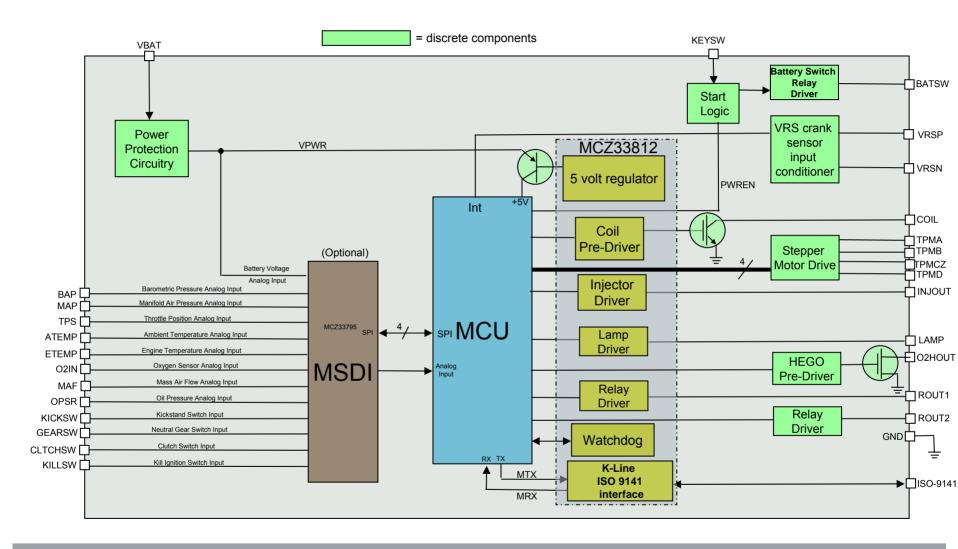
Small Engine Analog Circuit Road Map

- ►MCZ33812 Due to be sampled 4th Quarter 2008
 - ASSP targeted at single cylinder fuel injected gas engines
 - Reduces number of discretes in the Engine Control Unit (ECU)
 - Allows reduction of size and cost of ECU PC Board
 - Increases reliability by reducing complexity.
 - First part in a family of circuits targeted at small engine control
 - Provides drivers for injector, relay, lamp, pre-driver for ignition,
 - Contains programmable watchdog, power supply, ISO9141
- ►MCZ33813 In planning
 - Add-on to MCZ33812 to further reduce number of discretes
 - Can be used alone or with MCZ33812 for 1 and/or 2 cylinder applications.
 - Includes most needed functions for small engine control
 - Provides dual H-Bridge, drivers for relays or injector, pre-drivers for HEGO and ignition, and VRS conditioning for crankshaft sensor.

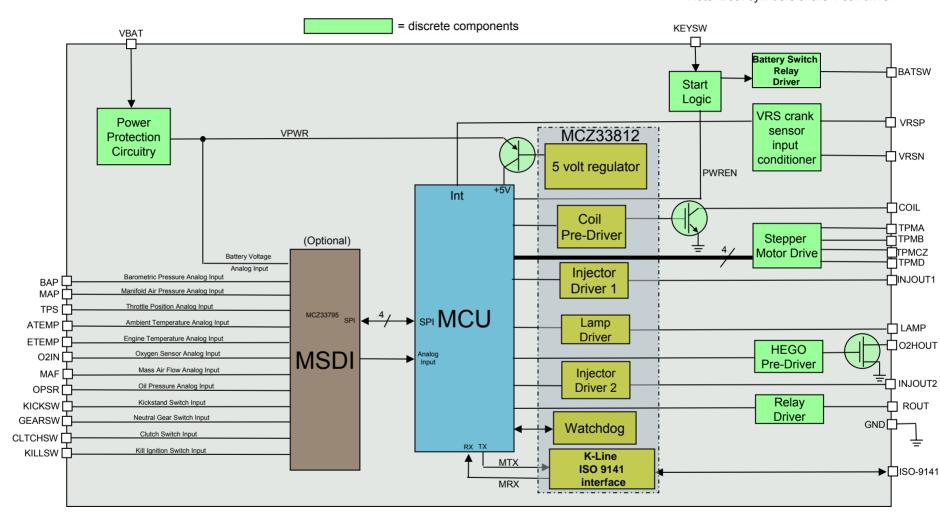
MCZ33812 - 1 or 2 Cylinder

MCZ33812 - 1 or 2 Cylinder, 2 Chip Solution

MCZ33812


MCU

64 Pin Package


- •1 Cylinder solution
- Replaces many discrete components
- Reduces PC Board area
- Lowers System Cost

1 Cylinder ECU Using MCZ33812

2 Cylinder ECU Using MCZ33812

Note: Both cylinders share 1 coil driver

MCZ33813: Alternate 1 Cylinder, 2 Chip Solution

MCZ33813

32 Pin Package

64 Pin Package

- •1 Cylinder solution
- Replaces many discrete components
- Reduces PC Board area
- Lowers System Cost

MCZ33812 and MCZ33813: 1 or 2 Cylinder, 3 Chip Solution

MCZ33813 32 Pin 32 Pin Package Package

MCZ33812

MCU

64 Pin Package

- 1 or 2 Cylinder solution
- Less PC Board area
- Lowers System Cost
- Flexible solution
- Replaces more discrete components

MCZ33814: (Proposed) 2 Chip, 2 Cylinder Solution

MCZ33814

+

64 Pin Package

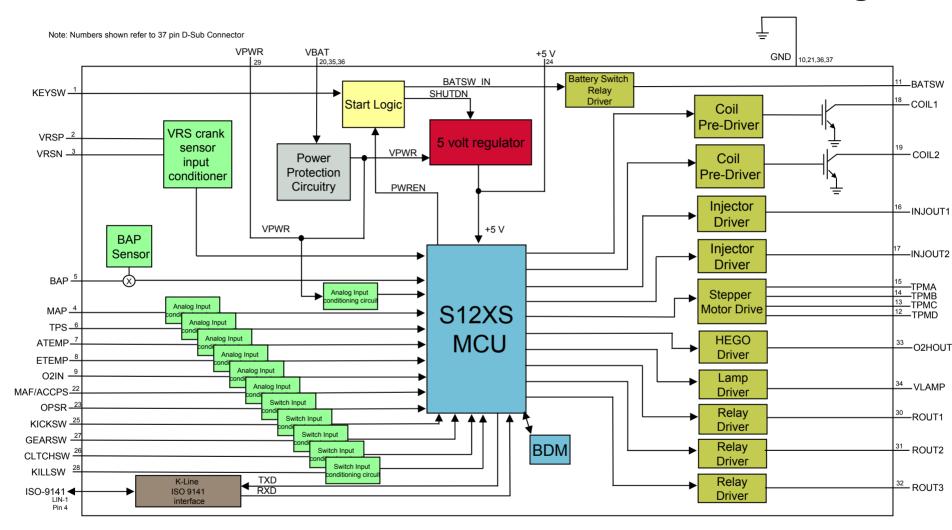
MCU

- •High End 2 Cylinder solution
- Replaces many discrete components
- Reduces PC Board area
- Lowers System Cost

Seabreeze Emulator Demo Engine Control Application Hardware Overview

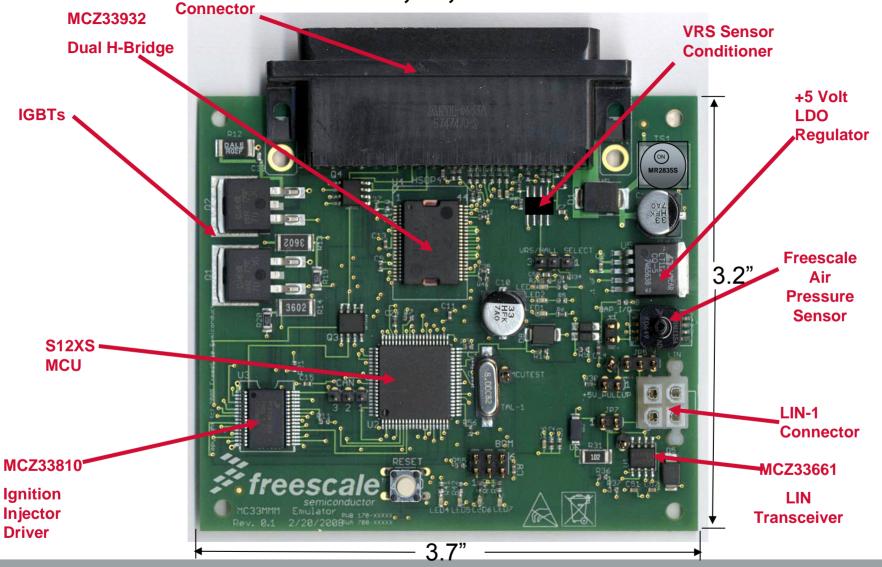
Jesse Beeker

Senior Field Application Engineer


Sea Breeze Emulator Description

▶ To assist customers in developing small engine ECUs:

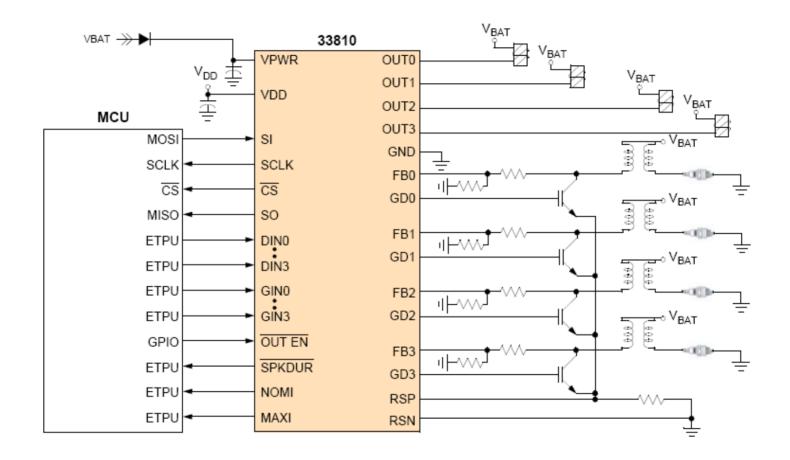
- Emulator board provides a way to evaluate the Sea Breeze products prior to actual silicon being available
- Contains an S12XS MCU plus all of the functionality of the high end Sea Breeze product.
- Drives 2 Injectors, 2 Spark Coils, Throttle Stepper Motor, 3 Relays, 1 Lamp, 1 HEGO, etc.
- Provides a +5 Volt Regulator, with start logic
- Conditions Crankshaft VRS sensor, 8 Analog Inputs and 5 Switches.
- Contains ISO 9141 K-Line interface for Diagnostics.
- Communicates with MCU via parallel and SPI interface.
- Comes with example software and documentation to run an actual engine
- Allows customer to develop calibration tables and other software using device drivers provided.



Sea Breeze Emulator Block Diagram

37 Pin MCZ33812,13,14 Emulator PC Board Picture

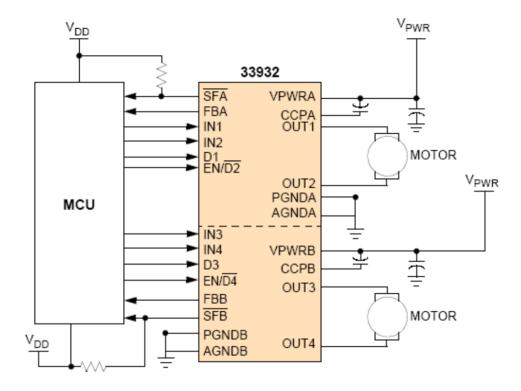
MC33810 – Automotive Engine IC


▶ Features:

- Designed to operate over the range of 4.5V ≤ VPWR ≤ 36V
- Quad ignition IGBT or MOSFET gate pre-driver with Parallel/SPI and/or PWM control
- Quad injector driver with Parallel/SPI control
- Interfaces directly to MCU using 3.3V / 5.0V SPI protocol
- Injector driver current limit 4.5A max.
- Independent fault protection and diagnostics
- VPWR standby current 10µA max.
- Pb-free packaging designated by suffix code EK

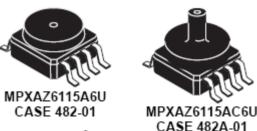
MC33810 Simplified Application Diagram

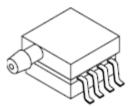
MC33932 - 5.0 A Throttle Control H-Bridge


▶ Features:

- 8.0V to 28V continuous operation (transient operation from 5.0V to 40V)
- 225mΩ maximum RDS(ON) @ 150°C (each H-Bridge MOSFET)
- 3.0V and 5.0V TTL / CMOS logic compatible inputs
- Over-current limiting (regulation) via internal constantoff-time PWM
- Output short-circuit protection (short to VPWR or GND)
- Temperature-dependant current-limit threshold reduction
- All inputs have an internal source/sink to define the default (floating input) states
- Sleep Mode with current draw < 50µA (each half with inputs floating or set to match default logic states)

MC33932 - Simplified Application Diagram




MPXHZ6115A – BAP Sensors

▶ Features:

- Resistant to High Humidity and Common Automotive Media
- Improved Accuracy at High Temperature
- 1.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to +125°C
- Durable Thermoplastic (PPS) Surface Mount Package

SMALL OUTLINE PACKAGE

MPXAZ6115AP CASE 1369-01

SUPER SMALL OUTLINE PACKAGE

MPXHZ6115AC6U CASE 1317A-03

► Typical Applications

- Aviation Altimeters
- Industrial Controls
- Engine Control/Manifold Absolute Pressure (MAP)
- Weather Station and Weather Reporting Devices

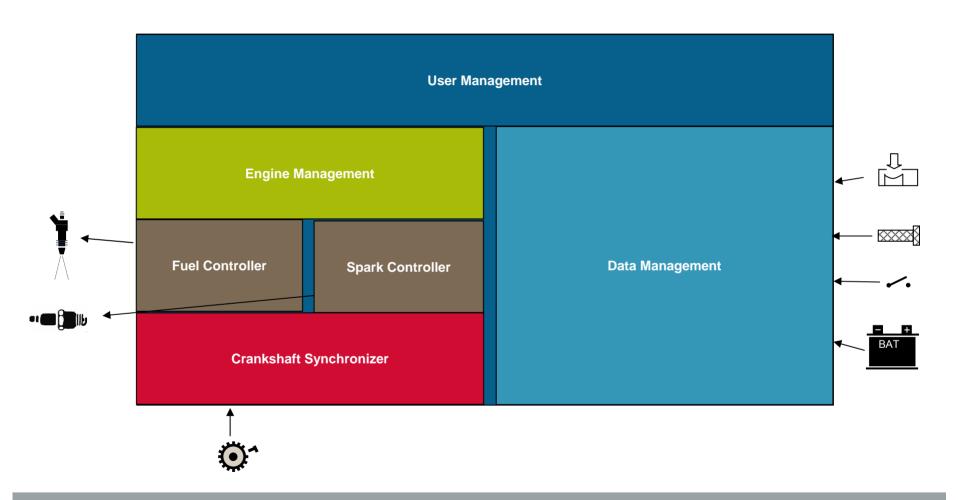
Emulator Inputs and Outputs Can be used for 1 or 2 Cylinder MCZ33812,13,14 Emulation

Pin#	<u>Name</u>	MCU Name(PIN)	<u>Voltage</u>	I/O or Supply	Comment
1	KEYSW	KEYSW_F (39)	0 to VBAT	INPUT	Level Shifted and filtered KEYSW_F
2	VRSP	VRSOUT (13/14)	mV to 200V	INPUT	Conditioned to become CONDITIONED_VRS the selected VRSOUT
3	VRSN	VRSOUT (13/14)	mV to 200V	INPUT	Conditioned to become CONDITIONED_VRS the selected VRSOUT
4	MAP	MAP_F (54)	0 to 5 V	ANALOG INPUT	Manifold Air Pressure Sensor Input Level Shifted and filtered MAP_F
5	BAP	BAP_F (58)	0 to 5 V	ANALOG INPUT	Barometric Air Pressure Sensor Input Level Shifted and filtered BAP_F
6	TPS	TPS_F (52)	0 to 5 V	ANALOG INPUT	Throttle Plate Position Sensor Input Level Shifted and filtered TPS_F
7	ATEMP	ATEMP_F (56)	0 to 5 V	ANALOG INPUT	Ambient Temperature Sensor Input Level Shifted and filtered ATEMP_F
8	ETEMP	ETEMP_F (53)	0 to 5 V	ANALOG INPUT	Engine Coolant Temperature Sensor Input Level Shifted and filtered ETEMP_F
9	O2IN	O2IN_F(55)	0 to 5 V	ANALOG INPUT	Exhaust Gas Oxygen Sensor Input Level Shifted and filtered O2IN_F
10	GND	10, 28, 32, 50, 61,62, 67, 76	0	SUPPLY	Ground
11	BATSW	BATSWIN (48)	0 to VBAT	OUTPUT	Power Relay Output Driver controlled by MCU output BATSWIN
12	TPMD	H2INB (65)	0 to VBAT	OUTPUT	Throttle Position Motor "D" winding driver controlled by MCU output H2INB
13	TPMCZ	H2INA (66)	0 to VBAT	OUTPUT	Throttle Position Motor "C" winding driver controlled by MCU output H2INA
14	TPMB	H1INB (47)	0 to VBAT	OUTPUT	Throttle Position Motor "B" winding driver controlled by MCU output H1INB
15	TPMA	H1INA (46)	0 to VBAT	OUTPUT	Throttle Position Motor "A" winding driver controlled by MCU output H1INA
16	INJOUT1	INJIN1 (5)	0 to VBAT	OUTPUT	Fuel Injector Solenoid 1 driver controlled by MCU output INJIN1

Emulator Inputs and Outputs (con't)

PIN#	NAME MCU Name (PIN)) VOLTAGE	I/O or SUPPLY	COMMENT		
17	INJOUT2	INJIN2 (6)	0 to VBAT	OUTPUT	Fuel Injector S	Solenoid 2 driver controlled by MCU output INJIN2
18	COIL1 IGNIN1 (7)	0 to VBAT	OUTPUT	Ignition Spark	Coil 1 driver co	ontrolled by MCU output IGNIN1
19	COIL2 IGNIN2 (8)	0 to VBAT	OUTPUT	Ignition Spark	Coil 2 driver co	ontrolled by MCU output IGNIN2
20	VBAT N/A	VBAT	SUPPLY	Battery Voltag	je	·
21	GND 10, 28, 32, 50, 61	1,62, 67, 76 0	SUPPLY	Ground		
22	MAF/ACCPS MAF_F	(57) 0 to 5 V	ANALOG IN	Mass Air Flow Se	ensor OR Accelera	ator Position Sensor Input Level Shifted and filtered MAF_F
23	OPSR OPSR_F (16)	0 to VBAT	INPUT	Oil Pressure S	Sensor Input Le	evel Shifted and filtered OPSR_F
24	+5V 29, 31, 77	+5V	SUPPLY	+5 Volt supply	output provide	ed to analog sensors
25	KICKSW	KICKSW_F (8	30)	0 to VBAT	INPUT	Kickstand Switch Input Level Shifted and filtered
	KICKSW_F					
26	CLTCHSW	CLTCHSW_F	(79)	0 to VBAT	INPUT	Clutch Engaged Switch Input Level Shifted and
	filtered CLTCHSW_F					
27	NGEARSW	NGEARSW_F	- (78)	0 to VBAT	INPUT	Neutral Gear Switch Input Level Shifted and filtered
	NGEARSW_F					
28	KILLSW	KILLSW_F (6	9)	0 to VBAT	INPUT	Ignition Kill Switch Input Level Shifted and filtered
	KILLSW_F					
29	VPWR VPWR_F (51)) VBAT7	SUPPLY	VPWR supply	Output Also V	/PWR Measurement Input Shifted and filtered
	VPWR_F					
30	ROUT1 RIN1 (25)	0 to VBAT	OUTPUT	•		ICU output RIN1
31	ROUT2 RIN2 (1)	0 to VBAT	OUTPUT	,		ICU output RIN2
32	ROUT3 RIN3 (2)	0 to VBAT	OUTPUT			ICU output RIN3
33	O2HOUT	O2HIN (41)	0 to VBAT	OUTPUT	Oxygen Sense	or Heater Output Driver controlled by MCU output
	O2HIN					
34	VLAMP VLAMPIN (26	•	OUTPUT	•		CU output VLAMPIN
35	VBAT N/A	VBAT	SUPPLY	Battery Voltag	•	
36	VBAT N/A	VBAT	SUPPLY	Battery Voltag	<i>.</i>	
37	GND 10, 28, 32, 50	, 61,62, 67, 76	0	SUPPLY	Ground	

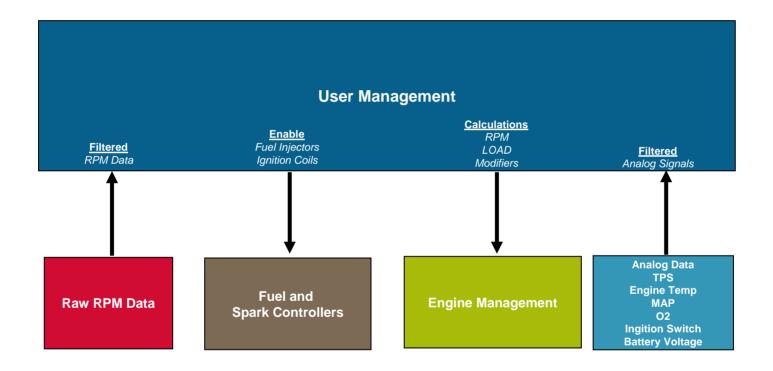
Seabreeze Emulator Demo Engine Control Application Software Overview



Jesse Beeker

Senior Field Application Engineer

Engine Application Software Layers



User Management

- ► Main system control for the engine
- ► Process engine operation data
- ▶ Determine system level control of the engine
 - Engine state
 - Load value
 - RPM value
 - Engine control modifier values
 - Operational Safety

User Management

Data Management

- ▶ Periodically collect signal input data to the module
- ► Variable rates of data collection for each signal based on response time
- Fill data buffers with raw data
- Filter data as buffers are filled

Data Management

Engine Management

- Use RPM and LOAD values to determine base spark and fuel values via table look up
- Calculate final values of fuel and spark based on system adders adjusted by User Management
- ► Modify Next fuel and spark event values

Engine Management

Fuel Controller

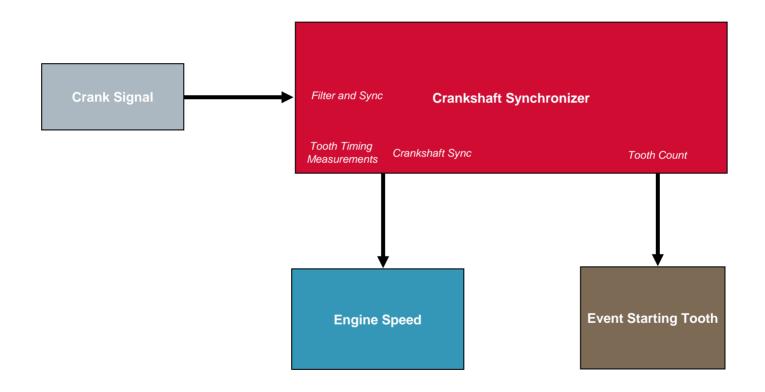
- Schedule fuel start event on the tooth before the start of the event
- Schedule end of fuel event after the fuel event has started
- ► Update values for the next fuel event

Fuel Controller

Spark Controller

- Schedule spark dwell start event on the tooth before the start of the event
- Schedule spark event after the dwell event has started
- ▶ Update values for the next spark event

Spark Controller

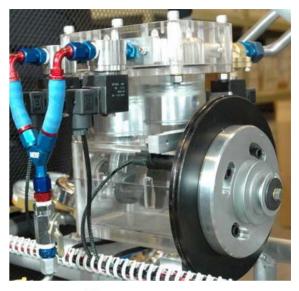


Crankshaft Synchronizer

- ► Respond to crankshaft toothed-wheel edges
- ► Filter tooth data based on system parameters
- Synchronize to the toothed-wheel
- ► Feed the fuel and spark controller when an event tooth is reached
- Record tooth data for RPM

Crankshaft Synchronizer

Motorcycle Demo Overview


Proposal:

- RefDes EVB operating air engine (for indoor demo)
- RefDes installed on operating small motorcycle (Yamaha C3 50cc) cannot be run indoors, scooter as display only.

Purpose:

- Demonstrate FSL product capability for engine control of small engines esp. motorbikes
- Showcases solutions from MSG and AMPD
- Demonstrate FSL expertise in emissions control
- Highlights available low level software drivers and complete FSL solution.

http://youtube.com/watch?v=taeVNc7-RaU

Motorcycle Chipset Suitcase Demo

Proposal:

 RefDes installed in a suitcase with Sea breeze emulator board and real injector, ignition loads.

Purpose:

- Demonstrate Sea breeze emulator board functionality
- Showcases solutions from MSG and AMPD
- Demonstrate FSL expertise in emissions control
- Highlights available low level software drivers and complete FSL solution.

Related Session Resources

Session Location – Online Literature Library

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=052577903644CB

Sessions

Session ID	Title
PA108	Entry-Level Powertrain MCU Solutions
PA111	S08/S12/S12X: 8- and 16-bit Automotive Solutions

Demos

Pedestal ID	Demo Title
А3	Motorcycle EFI Solutions

