
© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 1

Introduction to PIC Programming

Programming Midrange PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 8: Analog-to-Digital Conversion and Simple Filtering

Midrange lesson 13 explained how to use the 10-bit analog-to-digital converter (ADC) module available on

midrange PICs, such as the PIC16F684, using assembly language. This lesson demonstrates how to use C to

control and access the ADC, re-implementing the examples using the free HI-TECH C
1
 (in “Lite” mode) and

PICC-Lite compilers.

It then shows how a simple moving-average filter, as described in midrange lesson 14, can be implemented

in C. The final example implements a simple light meter, with the light level smoothed, scaled and shown as

two decimal digits, using 7-segment LED displays.

In summary, this lesson covers:

 Using the ADC module to read analog inputs

 ADC operation in sleep mode

 ADC interrupts

 Hexadecimal output on 7-segment displays

 Working with arrays

 Calculating a moving average to implement a simple filter

with examples for HI-TECH C and PICC-Lite.

Analog-to-Digital Converter

As explained in more detail in midrange lesson 13, the analog-to-digital converter (ADC) module on

midrange PICs allows analog input voltages to be measured, with a resolution of ten bits: 0 corresponds to

VSS, and 1023 corresponds to either VDD or a reference voltage on the VREF pin.

The ADC module on the 16F684 has eight external inputs, or channels: AN0 to AN7. But, since there is

only a single ADC module, only one channel can be selected at one time, meaning that only one input can be

read (or converted) at once.

A simple example in midrange lesson 13 demonstrated basic ADC operation, using the circuit on the next

page – similar to that used in the previous lesson on comparators, but using four LEDs connected to RC0 –

RC3 (labeled „DS1‟ – „DS4‟ if you are using the Low Pin Count Demo Board).

1
 PICC-Lite was bundled with versions of MPLAB up to 8.10. HI-TECH C (earlier known as “HI-TECH C PRO”) was

bundled with MPLAB 8.15 and later, although you should download the latest version from www.htsoft.com.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_5.pdf
http://www.htsoft.com/

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 2

The LDR/resistor voltage divider presents a

voltage on AN0 which increases with light

level. This voltage is continually sampled,

with the most significant four bits of the

result being displayed on the LEDs, forming

a 4-bit binary display indicating (in a crude

way) the light level.

The analog inputs share pins with RA0-2,

RA4 and RC0-3. By default (after a power-

on reset), the analog inputs are enabled. To

use a pin for digital I/O, any analog function

on that pin must first be disabled.

Whether a pin is configured for analog input is controlled by the corresponding bit in the ANSEL register;

setting a bit in ANSEL places the corresponding analog input into analog mode, while clearing it makes the

corresponding pin available for digital I/O.

You can also see that a quick way to disable all of the analog inputs is to clear ANSEL, although, as we saw

in midrange lesson 12, you must also disable the comparators, by selecting comparator mode 7, to be able to

use the comparator input pins (RA0, RA1, RC0 and RC1 on the 16F684) for digital I/O.

So to make all pins available for digital I/O, we have (for HI-TECH C):

 // enable all digital inputs

 CMCON0 = 7; // disable comparators (CM = 7 -> both comparators off)

 ANSEL = 0; // deselect all analog inputs

But in this example, we will be using AN0 (only) as an analog input, so we should set ANSEL<0> and leave

the rest of ANSEL clear.

Having configured one or more pins as analog inputs, you must select which of those input channels to read,

or sample, using the CHS<2:0> bits in the ADCON0 register:

In this example, AN0 has to be selected as the ADC channel, specified by CHS<2:0> = „000‟.

An appropriate ADC conversion clock must be selected, so that the bit conversion period, TAD, is at least 1.6

µs – as explained in midrange lesson 13.

CHS<2:0> ADC channel CHS<2:0> ADC channel

000 AN0 100 AN4

001 AN1 101 AN5

010 AN2 110 AN6

011 AN3 111 AN7

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 3

The conversion clock is selected by the

ADCS<2:0> bits in ADCON1, as shown in the

table on the right.

Given the default 4 MHz processor clock rate,

the FOSC/8 option (ADCS<2:0> = „001‟) is best,

giving TAD = 2.0 µs.

The ADC‟s internal RC clock option, FRC

(ADCS<2:0> = „001‟), is typically only used

when the ADC needs to operate in sleep mode, as

we‟ll see later.

The 10-bit result is presented in the ADRESL and ADRESH registers, and the ADFM bit in ADCON0

selects either of two ways to split the 10-bit value between these two 8-bit registers:

If ADFM = 0, the result is left-justified, with the most significant eight bits of the result in ADRESH, and the

least significant two bits of the result in the upper two bits of ADRESL.

If ADFM = 1, the result is right-justified, with the least significant eight bits of the result in ADRESL, and

the most significant two bits of the result in the lower two bits of ADRESH.

Since we want to use only the top four bits of the result in this example, it is easier to work with them if they

are all in the same register, so it‟s best to select the left-justified result format (ADFM = 0); the top four bits

of the 10-bit result will be held in the high nybble (top four bits) of ADRESH.

The positive reference voltage is selected by the VCFG bit
2
 in ADCON0:

VCFG = 0 selects VREF = VDD

VCFG = 1 means that VREF is taken from the VREF pin (shared with RA1)

Finally, the ADC module is turned on, by setting the ADON bit (in ADCON0) to „1‟.

In the first example in midrange lesson 13, the ADC was configured with the above options using:

 movlw b'00010000'

 ; -001---- Tad = 8*Tosc (ADCS = 001)

 banksel ADCON1 ; -> Tad = 2.0 us (with Fosc = 4 MHz)

 movwf ADCON1

 movlw b'00000001'

 ; 0------- MSB of result in ADRESH<7> (ADFM = 0)

 ; -0------ voltage reference is Vdd (VCFG = 0)

 ; ---000-- select channel AN0 (CHS = 000)

 ; -------1 turn ADC on (ADON = 1)

 banksel ADCON0

 movwf ADCON0

2
 On newer midrange PICs, such as the 16F887, the ADC‟s negative reference is also selectable, between VSS and an

external voltage input, using a second VCFG bit.

ADCS<2:0> conversion clock TAD

000 FOSC / 2 TCY / 2

001 FOSC / 8 TCY × 2

010 FOSC / 32 TCY × 8

011 FRC 1.6 µs – 9 µs

100 FOSC / 4 TCY

101 FOSC / 16 TCY × 4

110 FOSC / 64 TCY × 16

111 FRC 1.6 µs – 9 µs

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 4

Before beginning a conversion, the ADC holding capacitor must be given enough time (TACQ – known as

the acquisition or sampling time) to charge.

The device data sheets include formulas you can use to calculate the minimum TACQ – one of the main

variables is the source impedance of the input being sampled, although temperature also plays a role.

However, assuming that the source impedance is less than the recommended maximum of 10 kΩ, an

acquisition time of 10 µs is adequate for the 16F684 and most modern midrange PICs.

After delaying for the required acquisition time, the conversion is then initiated by setting the GO/ DONE bit

in ADCON0 to „1‟.

Your code then needs to wait until the GO/ DONE bit has been cleared to „0‟, which indicates that the

conversion is complete. You can then read the conversion result from the ADRESH and ADRESL registers.

You should copy the result before beginning the next conversion, so that it isn‟t overwritten during the

conversion process.

HI-TECH C implementation

Since HI-TECH C makes the special function registers directly accessible through variables defined in the

device-specific header files, the code to configure RC0 – RC3 as outputs, and AN0 as an analog input, is

simply:

 // configure ports

 TRISC = 0; // PORTC is all outputs

 ANSEL = 1<<0; // AN0 (only) is analog

 CMCON0 = 7; // disable comparators (CM = 7)

Configuring the ADC module can then be done by writing to ADCON0 and ADCON1:

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

 ADCON0 = 0b00000001;

 //0------- MSB of result in ADRESH<7> (ADFM = 0)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

Before starting the conversion, we must wait the required minimum acquisition time, which can be done by:

 __delay_us(10); // wait 10 us for acquisition time

using the delay function and __delay_us() macro built into HI-TECH C, or:

 DelayUs(10); // wait 10 us for acquisition time

using the DelayUs() macro provided with PICC-Lite.

To begin the conversion, set the GO/ DONE bit:

 GODONE = 1; // start conversion

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 5

We then wait until the GO/ DONE bit is clear (something that can be done quite succinctly in C):

 while (GODONE) // wait until done

 ;

The upper eight bits of the result of the conversion is available in ADRESH, accessible through the

„ADRESH‟ variable.

We need to copy the upper four bits of the result to the lower four bits of PORTC (where the LEDs are

connected). This means shifting the result four bits to the right, so we can write simply:

 PORTC = ADRESH >> 4; // copy high four bits of result

 // to low nybble of output port

Complete program

Here is how the above code fragments fit together, for HI-TECH C:

/**

* *

* Description: Lesson 8, example 1 *

* *

* Demonstrates basic use of ADC *

* *

* Continuously samples analog input, copying value to 4 x LEDs *

* *

* *

* Pin assignments: *

* AN0 - voltage to be measured (e.g. pot output or LDR) *

* RC0-3 - output LEDs (RC3 is MSB) *

* *

**/

#include <htc.h>

#define _XTAL_FREQ 4000000 // oscillator frequency for __delay_us()

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer, int clock with I/O,

// no failsafe clock monitor, two-speed start-up disabled

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO & FCMDIS &

IESODIS);

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure ports

 TRISC = 0; // PORTC is all outputs

 ANSEL = 1<<0; // AN0 (only) is analog

 CMCON0 = 7; // disable comparators (CM = 7)

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 6

 ADCON0 = 0b00000001;

 //0------- MSB of result in ADRESH<7> (ADFM = 0)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

 // Main loop

 for (;;)

 {

 // sample analog input

 __delay_us(10); // wait 10 us for acquisition time

 GODONE = 1; // start conversion

 while (GODONE) // wait until done

 ;

 // display result on 4 x LEDs

 PORTC = ADRESH >> 4; // copy high four bits of result

 // to low nybble of output port

 }

}

Comparisons

The following table summarises the resource usage for the “simple ADC demo” assembler and C examples,

along with the baseline (PIC16F506) versions of this example, from baseline C lesson 6, for comparison.

ADC_4LEDs

The PICC-Lite compiler in this case generates extremely efficient code, even shorter than the hand-written

assembler version, from source code less than half the length of the assembler source.

Note that the 16F684 versions are all larger than their 16F506 equivalents, reflecting the need for additional

initialisation instructions (because there are more settings to configure), code required for the acquisition

time delay (part of the conversion process in the baseline ADC module), and the additional bank selection

instructions necessary in the midrange architecture.

ADC Operation in Sleep Mode

To save power, the PIC can be placed into sleep mode after the AD conversion has started. When the

conversion is complete, the device will wake, with the result in ADRESL and ADRESH as normal.

As with any other event able to wake a midrange PIC from sleep mode, the corresponding interrupt source

must be enabled, which, for the ADC module, is done by setting the ADIE bit in the PIE1 register, and,

because the ADC module is a peripheral, also setting the PEIE bit in INTCON.

If you do not wish to actually generate an interrupt when the AD conversion completes (see the next section),

you should ensure that the GIE bit in INTCON is clear.

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

16F684 16F506 16F684 16F506 16F684 16F506

Microchip MPASM 32 20 31 16 0 0

HI-TECH PICC-Lite 15 12 27 18 3 4

HI-TECH C (Lite) 14 12 44 40 7 4

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_6.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 7

The ADIF flag in the PIR1 register must be cleared before the conversion begins. This flag will be set when

the conversion is complete, waking the device from sleep mode; if it has not been cleared, the PIC will wake

immediately, before the conversion is complete, and the result will be incorrect.

It is also important to select the ADC‟s internal oscillator, FRC, as the conversion clock source. This is

because the processor clock is stopped while in sleep mode – using the ADC‟s internal clock allows it to

continue to operate, even while the rest of the PIC is stopped.

HI-TECH C implementation

To show how to the ADC module can be used in sleep mode, we can modify the previous example, so that

the device enters sleep immediately after the AD conversion begins.

We need to modify the ADC configuration so that the ADC‟s internal oscillator has to be selected as the

conversion clock source:

 // configure ADC

 ADCON1 = 0b00110000;

 //--11---- internal oscillator, Frc (ADCS = x11)

 // -> operation in sleep mode possible

 ADCON0 = 0b00000001;

 //0------- MSB of result in ADRESH<7> (ADFM = 0)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

We also need to enable the ADC and peripheral interrupts, and this is done through single-bit variables

providing access to the interrupt enable flags, in much the same way as in previous lessons:

 // enable ADC interrupt (for wake on completion)

 ADIE = 1; // enable ADC interrupt

 PEIE = 1; // and peripheral interrupts

Within the main loop, we now need to clear the ADC interrupt flag (ADIF), accessible via the single bit

variable „ADIF‟, before initiating the conversion.

After the conversion has been done, the device can then be placed into sleep mode, using the SLEEP()

macro, instead of polling the GO/ DONE flag:

 // Main loop

 for (;;)

 {

 // sample analog input

 __delay_us(10); // wait 10 us for acquisition time

 ADIF = 0; // clear ADC interrupt flag

 GODONE = 1; // start conversion

 SLEEP(); // sleep until done

 // display result on 4 x LEDs

 PORTC = ADRESH >> 4; // copy high four bits of result

 // to low nybble of output port

 }

Note, however, that if we were serious about saving power, we‟d turn off the LEDs before entering sleep

mode. With the LEDs left on, the power saved by using sleep mode is minimal.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_6.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 8

ADC Interrupts

As mentioned earlier, the ADC module can be configured to generate an interrupt when the analog-to-digital

conversion process is complete. If the ADC interrupt is enabled, your code does not have to sit in a loop,

polling the GO/ DONE flag. Instead, some of that the AD conversion time can be spent on with other tasks,

until the conversion is complete. The ADC interrupt will then be triggered, and your interrupt service

routine (ISR) can immediately read the conversion result.

Note, however, that if your program has to perform a number of tasks, it doesn‟t really make sense to initiate

a new AD conversion as soon as the last one completes – that approach leaves no time to do anything else. It

is often more appropriate to perform the AD conversions at a steady rate – more slowly than the ADC

module is actually capable of. An ideal way to do that is to use a timer-based interrupt (see lesson 3) to

initiate the conversions. This means that other tasks can be completed in between AD conversions; it also

means that there is no need for any additional, acquisition delay before initiating each conversion – we know

that, with the conversions spaced apart, ample acquisition time has elapsed between each conversion.

If you are using a timer interrupt to initiate the AD conversions, it then makes sense to use an ADC interrupt

to process the conversion result. This avoids placing a polling loop within the ISR; something to be avoided

if at all possible. Interrupt service routines should be made as short and sharp as possible, so that other

events can be responded to as quickly as possible.

To illustrate this, we‟ll use a multiplexed 7-segment LED display to output the value of an analog signal,

with the AD conversion being done within the main loop, polling the GO/ DONE flag. Then we‟ll re-

implement the same thing, using an ADC interrupt, instead of polling.

Example 3: Hexadecimal Output

To add a more useful, human-readable output to the ADC demo, the third example in midrange lesson 13

implemented a three-digit hexadecimal display, based on the multiplexed 7-segment display circuit from

midrange lesson 12, as shown below:

The source code was adapted from the timer interrupt-driven 7-segment display multiplexing routines

presented in midrange lesson 12, with the only important differences being that, instead of a time count, the

value to be displayed was now the 10-bit result of an analog-to-digital conversion, and that the pattern

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_3.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 9

lookup table for the 7-segment display was extended from 10 to 16 entries, to include representations of the

letters „A‟ to „F‟.

HI-TECH C implementation

Firstly we setup all of PORTC and four of the PORTA pins as digital outputs, with AN0 configured as an

analog input:

 // configure ports

 TRISC = 0; // PORTC is all outputs

 TRISA = 1<<0; // configure RA0/AN0 (only) as an input

 ANSEL = 1<<0; // make only AN0 analog

 CMCON0 = 7; // disable comparators (CM = 7)

The ADC is setup much as before, but this time the result is right-justified (ADFM = 1), to make it easier to

extract the hex digits from the result:

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

 ADCON0 = 0b10000001;

 //1------- LSB of result in ADRESL<0> (ADFM = 1)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

Most of the rest of the code is adapted from that presented in lesson 7.

For example, setting up the timer interrupt:

 // configure Timer0

 OPTION = 0b11000010; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----010 prescale = 8 (PS = 010)

 // -> increment every 8 us

 // -> TMR0 overflows every 2.048 ms

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // and global interrupts

A set of global variables are used to communicate with the ISR:

unsigned char hundreds = 0; // current ADC result (in hex): "hundreds"

unsigned char tens = 0; // "tens"

unsigned char ones = 0; // "ones"

(explicitly initialised to ensure that they hold defined values, within the expected 0 – 15 range, when the ISR,

which references them, first runs)

The main loop updates these display variables, which hold the three digits which the ISR then displays on the

3 × 7-segment displays.

Note that since the value displayed is in hexadecimal, “hundreds” stores the number of 0x100s in the result,

not 100s, and “tens” stores 0x10s, not 10s...

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_7.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 10

The main loop then has the job of performing the analog-to-digital conversion:

 // sample analog input

 __delay_us(10); // wait 10 us for acquisition time

 GODONE = 1; // start conversion

 while (GODONE) // wait until done

 ;

and extracting the hexadecimal digits from the result into the display variables
3
:

 // copy result to variables

 // (to be displayed by ISR)

 ones = ADRESL & 0x0F; // get "ones" digit from low nybble of ADRESL

 tens = ADRESL >> 4; // get "tens" digit from high nybble of ADRESL

 hundreds = ADRESH; // get "hundreds" digit from ADRESH

The content of these variables is then displayed by the ISR, using code adapted from lesson 7:

 // Display current ADC result (in hex) on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

 //

 switch (mpx_cnt)

 {

 case 0:

 set7seg(ones); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 break;

 case 1:

 set7seg(tens); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 case 2:

 set7seg(hundreds); // output hundreds digit

 sPORTA |= 1 << nHUNDREDS; // enable hundreds display

 break;

 }

The „set7seg()‟ function is much the same as that presented in lesson 7, extracting the pattern bits from a

lookup array (now extended to 16 entries) for each port and writing to the corresponding shadow register:

/***** Display digit on 7-segment display (shadow) *****/

void set7seg(char digit)

{

 // Lookup pattern table for 7 segment display on PORTA

 const char pat7segA[16] = {

 // RA5 = G

 0b000000, // 0

 [patterns 1-9 go here]

 0b100000, // A

 0b100000, // b

 0b000000, // C

 0b100000, // d

 0b100000, // E

 0b100000 // F

 };

3
 This is an example of where C expressions can be much more succinct than the assembler equivalent; these three

statements were implemented as fourteen lines of assembler in the corresponding example in midrange lesson 13.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_7.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_7.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 11

 // Lookup pattern table for 7 segment display on PORTC

 const char pat7segC[16] = {

 // RC5:0 = ABCDEF

 0b111111, // 0

 [patterns 1-9 go here]

 0b111011, // A

 0b001111, // b

 0b100111, // C

 0b011110, // d

 0b100111, // E

 0b100011 // F

 };

 // lookup pattern bits and write to shadow registers

 sPORTA = pat7segA[digit];

 sPORTC = pat7segC[digit];

}

Alternatively, you could use a single pattern array, instead of having a separate one for each port, and extract

the bits for each port from it, as was done in lesson 7:

/***** Display digit on 7-segment display (shadow) *****/

void set7seg(char digit)

{

 // Lookup pattern table for 7 segment display on ports A and C

 const char pat7seg[16] = {

 // RC5:0,RA5 = ABCDEFG

 0b1111110, // 0

 0b0110000, // 1

 0b1101101, // 2

 0b1111001, // 3

 0b0110011, // 4

 0b1011011, // 5

 0b1011111, // 6

 0b1110000, // 7

 0b1111111, // 8

 0b1111011, // 9

 0b1110111, // A

 0b0011111, // b

 0b1001110, // C

 0b0111101, // d

 0b1001111, // E

 0b1000111 // F

 };

 // lookup pattern bits and write to shadow registers

 sPORTA = (pat7seg[digit] & 0b0000001) << 5; // update shadow RA5

 sPORTC = pat7seg[digit] >> 1; // and PORTC

}

Note that the value to be written to RA5 is held in the least significant bit of the values in the pattern array;

this is extracted by ANDing the looked-up value with binary 0000001, to mask out all the other bits. But

because we‟re using shadow registers, we can‟t update RA5 directly with:

 RA5 = pat7seg[digit] & 0b0000001;

Instead, we have to shift this value 5 binary digits to the right (since it corresponds to RA5), before writing it

to the shadow register for PORTA. This has the side-effect of clearing every other bit in PORTA, disabling

whichever display is currently lit. The appropriate segment is then enabled in the ISR.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_7.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 12

Using a single pattern array is certainly shorter, but the more complex extraction process means that the C

compilers will generate longer code. The code generated by PICC-Lite occupies 153 words when separate

pattern arrays are used, versus 156 words for the single, combined pattern array. There is very little

difference, and it is clear that, as lookup tables become longer, it will become more memory efficient to

combine them to save array storage memory – but in this case, using separate arrays is still (slightly) more

efficient – and a little easier to understand.

Another change you could make would be to have the ISR read the ADC result directly, instead of using

global display variables:

 // Display current ADC result (in hex) on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

 //

 switch (mpx_cnt)

 {

 case 0:

 set7seg(ADRESL & 0x0F); // output low nybble of ADRESL

 sPORTA |= 1 << nONES; // enable ones display

 break;

 case 1:

 set7seg(ADRESL >> 4); // output high nybble of ADRESL

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 case 2:

 set7seg(ADRESH); // output ADRESH

 sPORTA |= 1 << nHUNDREDS; // enable hundreds display

 break;

 }

The main loop then does nothing more than continually perform analog-to-digital conversions:

 // Main loop

 for (;;)

 {

 // sample analog input

 DelayUs(10); // wait 10 us for acquisition time

 GODONE = 1; // start conversion

 while (GODONE) // wait until done

 ;

 }

This is a valid approach (it works, and the code is shorter, and in some ways easier to understand), but goes

against the principle of keeping the ISR code as short as possible. Extracting the hex digits from the ADC

result does not involve a lot of processing; nevertheless, it is normally considered “better practice” to

minimise the amount of processing performed within an ISR, so that it finishes as quickly as possible.

Complete program

Here is the complete HI-TECH C version of the “ADC demo with hexadecimal output” program, using

separate pattern arrays and global display variables:

/**

* *

* Description: Lesson 8, example 3a *

* *

* Displays ADC output in hexadecimal on 7-segment LED displays *

* *

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 13

* Continuously samples analog input, *

* displaying result as 3 x hex digits on multiplexed 7-seg displays *

* (one pattern lookup array per port) *

* *

* *

* Pin assignments: *

* AN0 = voltage to be measured (e.g. pot or LDR) *

* RA5, RC0-5 = 7-segment display bus (common cathode) *

* RA4 = "hundreds" enable (active high) *

* RA2 = "tens" enable *

* RA1 = "ones" enable *

* *

**/

#include <htc.h>

#define _XTAL_FREQ 4000000 // oscillator frequency for __delay_us()

/***** CONFIGURATION *****/

// int reset, no code or data protect, no brownout detect,

// no watchdog, no power-up timer, int clock with I/O,

// no failsafe clock monitor, two-speed start-up disabled

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTDIS & INTIO & FCMDIS &

IESODIS);

// Pin assignments

#define nHUNDREDS 4 // "hundreds" enable on RA4

#define nTENS 2 // "tens" enable on RA2

#define nONES 1 // "ones" enable on RA1

/***** PROTOTYPES *****/

void set7seg(char digit); // display digit on 7-segment display (shadow)

/***** GLOBAL VARIABLES *****/

unsigned char sPORTA; // shadow registers: PORTA

unsigned char sPORTC; // PORTC

unsigned char hundreds = 0; // current ADC result (in hex): "hundreds"

unsigned char tens = 0; // "tens"

unsigned char ones = 0; // "ones"

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure ports

 TRISC = 0; // PORTC is all outputs

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 14

 TRISA = 1<<0; // configure RA0/AN0 (only) as an input

 ANSEL = 1<<0; // make only AN0 analog

 CMCON0 = 7; // disable comparators (CM = 7)

 // configure Timer0

 OPTION = 0b11000010; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----010 prescale = 8 (PS = 010)

 // -> increment every 8 us

 // -> TMR0 overflows every 2.048 ms

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

 ADCON0 = 0b10000001;

 //1------- LSB of result in ADRESL<0> (ADFM = 1)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // and global interrupts

 // Main loop

 for (;;)

 {

 // sample analog input

 __delay_us(10); // wait 10 us for acquisition time

 GODONE = 1; // start conversion

 while (GODONE) // wait until done

 ;

 // copy result to variables

 // (to be displayed by ISR)

 ones = ADRESL & 0x0F; // get "ones" digit from low nybble of ADRESL

 tens = ADRESL >> 4; // get "tens" digit from high nybble of ADRESL

 hundreds = ADRESH; // get "hundreds" digit from ADRESH

 }

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned char mpx_cnt = 0; // multiplex counter

 // *** Service Timer0 interrupt

 // TMR0 overflows every 2.048 ms

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 15

 // (only Timer0 interrupts are enabled)

 //

 T0IF = 0; // clear interrupt flag

 // Display current ADC result (in hex) on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

 //

 switch (mpx_cnt)

 {

 case 0:

 set7seg(ones); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 break;

 case 1:

 set7seg(tens); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 case 2:

 set7seg(hundreds); // output hundreds digit

 sPORTA |= 1 << nHUNDREDS; // enable hundreds display

 break;

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 3) // reset count if at end of digit sequence

 mpx_cnt = 0;

 // copy shadow regs to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

}

/***** FUNCTIONS *****/

/***** Display digit on 7-segment display (shadow) *****/

void set7seg(char digit)

{

 // Lookup pattern table for 7 segment display on PORTA

 const char pat7segA[16] = {

 // RA5 = G

 0b000000, // 0

 0b000000, // 1

 0b100000, // 2

 0b100000, // 3

 0b100000, // 4

 0b100000, // 5

 0b100000, // 6

 0b000000, // 7

 0b100000, // 8

 0b100000, // 9

 0b100000, // A

 0b100000, // b

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 16

 0b000000, // C

 0b100000, // d

 0b100000, // E

 0b100000 // F

 };

 // Lookup pattern table for 7 segment display on PORTC

 const char pat7segC[16] = {

 // RC5:0 = ABCDEF

 0b111111, // 0

 0b011000, // 1

 0b110110, // 2

 0b111100, // 3

 0b011001, // 4

 0b101101, // 5

 0b101111, // 6

 0b111000, // 7

 0b111111, // 8

 0b111101, // 9

 0b111011, // A

 0b001111, // b

 0b100111, // C

 0b011110, // d

 0b100111, // E

 0b100011 // F

 };

 // lookup pattern bits and write to shadow registers

 sPORTA = pat7segA[digit];

 sPORTC = pat7segC[digit];

}

Comparisons

Here is the resource usage for the “ADC demo with hexadecimal output” assembler and C examples:

ADC_hex-out

Once again, the PICC-Lite compiler generates extremely efficient code, continuing to be even shorter than

the hand-written assembler version, from source code around half the length of the assembler source.

Note that it would not be valid to compare this example directly with the corresponding example in baseline

C lesson 6, because that example was for only two digits (the baseline devices having only an 8-bit ADC).

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 150 165 8

HI-TECH PICC-Lite 88 153 14

HI-TECH C (Lite) 87 189 19

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_6.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 17

Example 4: ADC Interrupts

Next we‟ll modify the last example, to use an ADC interrupt, instead of polling the GO/ DONE flag.

This is done by enabling ADC interrupts, and getting the timer interrupt to initiate the conversion. When the

conversion is complete, an interrupt is triggered, and the ADC interrupt handler copies the result into the

display variables, to be displayed by the timer interrupt, as before.

Given that there are three digits, the overall display is refreshed every third timer interrupt. It is pointless to

sample the input faster than the result can be displayed, so we should only initiate a conversion on every

third timer interrupt. That is easily done, by tying the AD conversion to a specific digit.

It makes most sense to initiate the conversion after the “hundreds” digit has been displayed, because that is

the last digit to be displayed in each refresh cycle.

HI-TECH C implementation

Most of the code is the same as in the last example.

To enable the ADC interrupt, we expand the interrupt initialisation code:

 // configure interrupts

 // enable ADC interrupt

 ADIF = 0; // clear interrupt flag

 ADIE = 1; // set enable bit

 T0IE = 1; // enable Timer0 interrupt

 PEIE = 1; // enable peripheral

 ei(); // and global interrupts

This is much the same as in the wake-up from sleep example, except that now, because global interrupts are

being enabled, as interrupt will actually be triggered as soon as the ADIF flag is set, which happens

whenever a conversion completes.

Note that, to avoid the ADC interrupt triggering prematurely, ADIF is cleared before the interrupts are

enabled
4
.

The code to initiate the conversion is moved into the Timer0 ISR, just after the “hundreds” digit has been

displayed:

 // display "hundreds" digit

 set7seg(hundreds); // output hundreds digit

 sPORTA |= 1 << nHUNDREDS; // enable hundreds display

 // get next analog sample

 GODONE = 1; // start conversion

 break;

Since we now have two interrupt sources, we need to add some code to the ISR, to execute the appropriate

interrupt handler, depending on which interrupt flag has been set. Note that, because more than one interrupt

flag may be set (more than one interrupt source may have triggered since the last time we entered the ISR),

you should test the interrupt flags in priority.

4
 You may have noticed that we haven‟t been clearing the Timer0 interrupt flag, T0IF, before enabling the Timer0

interrupt. This is because the Timer0 interrupt occurs asynchronously with the rest of the program; that is, it can

happen at any time. So it doesn‟t really matter if it triggers prematurely. In fact, because the initial value of TMR0 is

undefined, the Timer0 interrupt could occur before your code is ready for it, even if you clear T0IF. If that‟s a concern,

you should load TMR0 with a known value, and clear T0IF, before enabling the Timer0 interrupt.

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 18

In this case, we want the display to keep an even brightness, and a delay in reading the conversion result of a

couple of milliseconds won‟t be noticeable, so we‟ll give priority to the timer interrupt:

 // Service all triggered interrupt sources

 if (T0IF)

 {

 // *** Timer0 interrupt

 }

 if (ADIF)

 {

 // *** ADC interrupt

 }

The ADC interrupt handler then consists only of the code to copy the conversion result into the display

variables:

 // *** ADC interrupt

 //

 ADIF = 0; // clear interrupt flag

 // copy ADC result to display variables

 // (to be displayed by ISR)

 ones = ADRESL & 0x0F; // get "ones" digit from low nybble of ADRESL

 tens = ADRESL >> 4; // get "tens" digit from high nybble of ADRESL

 hundreds = ADRESH; // get "hundreds" digit from ADRESH

This leaves the main loop with nothing to do, which becomes simply:

 // Main loop

 for (;;)

 ; // do nothing

All the regular analog input sampling and display updating is being done by the interrupt handlers, in the

background, leaving the main loop to respond to external events, or a timer, or whatever.

Complete interrupt service routine

Since most of the code is the same as in the previous example, with the changes detailed above, there is no

need to list the complete program here – but it‟s worth seeing the new ISR:

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned char mpx_cnt = 0; // multiplex counter

 // Service all triggered interrupt sources

 if (T0IF)

 {

 // *** Timer0 interrupt

 // TMR0 overflows every 2.048 ms

 // (only Timer0 interrupts are enabled)

 //

 T0IF = 0; // clear interrupt flag

 // Display current ADC result (in hex) on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 19

 //

 switch (mpx_cnt)

 {

 case 0:

 // display "ones" digit

 set7seg(ones); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 break;

 case 1:

 // display "tens" digit

 set7seg(tens); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 case 2:

 // display "hundreds" digit

 set7seg(hundreds); // output hundreds digit

 sPORTA |= 1 << nHUNDREDS; // enable hundreds display

 // get next analog sample

 GODONE = 1; // start conversion

 break;

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 3) // reset count if at end of digit sequence

 mpx_cnt = 0;

 // copy shadow regs to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

 }

 if (ADIF)

 {

 // *** ADC interrupt

 //

 ADIF = 0; // clear interrupt flag

 // copy ADC result to display variables

 // (to be displayed by ISR)

 ones = ADRESL & 0x0F; // get "ones" digit from low nybble of ADRESL

 tens = ADRESL >> 4; // get "tens" digit from high nybble of ADRESL

 hundreds = ADRESH; // get "hundreds" digit from ADRESH

 }

}

Measuring Supply Voltage

In some PICs, such as the 16F506 used in baseline C lesson 6, an internal fixed (or absolute) 0.6 V reference

can be selected as an ADC input channel. This makes is possible to infer the supply voltage (effectively

VDD, given that in most cases VSS = 0 V), since the 0.6 V reference will read as 0.6 V ÷ VDD × 255.

For VDD = 5.0 V, the expected ADC result = 30.

As VDD falls, the ADC reading corresponding to 0.6 V rises. This provides a means to check that the power

supply voltage (perhaps from a battery) is adequate, and to shut down the device and/or provide a warning if

it falls too low.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_6.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 20

Although the PIC16F684 does not provide an internal fixed voltage reference, we can achieve the same

effect, using the forward voltage drop across a silicon diode as an external reference, as shown:

To demonstrate this, we will show the ADC result (now representing the value of the 0.6 V reference) in hex

on the 7-segment displays, and to indicate low voltage, the LED on RA2 will be lit if VDD falls below a

threshold of approximately 3.5 V.

Since we had already used all the available output pins on the 16F684, we have to drop one of the 7-segment

displays, to accommodate the warning LED on RA2.

HI-TECH C implementation

Most of the program code is the same as that in example 3 (to make the code easier to follow, we won‟t use

the ADC interrupt). We only need to reduce the number of displays from three to two, and add some code to

turn on the warning LED when the value read on AN0 is above the threshold.

Since we are now displaying only two hex digits (the most significant eight bits of the result), it makes more

sense to left-justify the result, using ADRESH as our 8-bit result register, and ignoring the two LSBs in

ADRESL.

The ADC configuration becomes:

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

 ADCON0 = 0b00000001;

 //0------- MSB of result in ADRESH<7> (ADFM = 0)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 21

The display routine in the ISR is reduced to two digits, becoming:

 // Display current ADC result (in hex) on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

 //

 switch (mpx_cnt)

 {

 case 0:

 set7seg(ones); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 break;

 case 1:

 set7seg(tens); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 2) // reset count if at end of digit sequence

 mpx_cnt = 0;

The input is sampled within the main loop, in the same way as before, but we now need to add some code to

test for the under-voltage condition (VDD < 3.5 V).

In the assembler example, the minimum allowable VDD was defined as a constant at the beginning of the

program, so that it could be easily changed later:

 constant MINVDD=3500 ; Minimum Vdd (in mV)

It was necessary to express this as an integer, because MPASM does not support floating-point expressions.

Thus, the expression to convert this minimum VDD value to a constant which could be used to compare the

ADC result with also had to be written using integers only:

 constant VRMAX=255*600/MINVDD ; Threshold for 0.6V ref measurement

Since C does support floating-point expressions, it is tempting to define the minimum VDD as a floating-

point constant:

#define MINVDD 3.5 // minimum Vdd (Volts)

and to then write the ADC comparison as:

 // test for low Vdd (measured 0.6 V > threshold)

 if (ADRESH > 0.6/MINVDD*255) // if measured 0.6 V > threshold

 {

 sPORTA |= 1 << nWARN; // light warning LED

 }

Writing it that way makes the code very clear, because we normally refer to the internal reference as 0.6 V,

not 600 mV, and it is natural to express the minimum VDD as 3.5 V, not 3500 mV.

But there is a big problem with this – and it is a very easy mistake to make, when using C with small

microcontrollers. The compiler sees „0.6/MINVDD*255‟ as a floating-point expression (which, of course,

it is), and implements the comparison as a floating-point operation. To do so, it links a number of floating-

point routines into the code, and generates code to convert ADRESH into floating-point form, passing it to a

floating-point comparison routine. This greatly increases the size of the generated code, with the PICC-Lite

version blowing out to 361 words of program memory
5
. Compare this with example 3, which uses three 7-

5
 Using PICC-Lite v9.60PL2, with default options.

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 22

segment displays and lacks only this ADC comparison routine, but required only 153 words of program

memory. You wouldn‟t expect that adding such a simple routine would more than double the size of the

generated program! And normally it wouldn‟t; the only reason the generated code is so large is that floating-

point routines have been inadvertently, and unnecessarily, included into it.

There are a number of ways to overcome this problem, including the use of integer-only expressions, but

surely the simplest method, while maintaining clarity, is to explicitly cast the expression as an integer:

 if (ADRESH > (int)(0.6/MINVDD*255)) // if measured 0.6V > threshold

 {

 sPORTA |= 1 << nWARN; // light warning LED

 }

This simple change prevents the compiler from including floating-point code, reducing the size of the

generated code from 361 to only 145 words of program memory!

Finally, now that the shadow registers are being updated within the main loop (when the warning LED is

turned on), it is necessary to move the port update routine, where the shadow registers are written to the

ports, from the timer ISR to the main loop, to make changes made within the main loop visible. This is

explained in more detail in midrange lesson 13.

Complete program

Although the changes from example 3 are not extensive, some of the structure of the program has changed

(such as moving the port update routine out of the ISR), so it is worth looking at the complete source for the

HI-TECH C version, to see how it all fits together:

/**

* *

* Description: Lesson 8, example 5b *

* *

* Demonstrates use of fixed reference with ADC to test supply voltage *

* *

* Continuously samples external 0.6V reference, *

* displaying result as 2 x hex digits on multiplexed 7-seg displays *

* Turns on warning LED if measurement > threshold *

* (using integer comparison) *

* *

* *

* Pin assignments: *

* AN0 = external 0.6 V reference *

* RA5, RC0-5 = 7-segment display bus (common cathode) *

* RA4 = "tens" enable (active high) *

* RA1 = "ones" enable *

* RA2 = warning LED *

* *

**/

#include <htc.h>

#define _XTAL_FREQ 4000000 // oscillator frequency for __delay_us()

Note: The inadvertent use of floating-point expressions in C programs can lead the C compiler to

unnecessarily link floating-point routines into the object code, significantly increasing the size of

the generated code.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 23

/***** CONFIGURATION *****/

// int reset, no code or data protect, no brownout detect,

// no watchdog, no power-up timer, int clock with I/O,

// no failsafe clock monitor, two-speed start-up disabled

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTDIS & INTIO & FCMDIS &

IESODIS);

// Pin assignments

#define nTENS 4 // "tens" enable on RA4

#define nONES 1 // "ones" enable on RA1

#define nWARN 2 // warning LED on RA2

/***** CONSTANTS *****/

#define MINVDD 3.5 // minimum Vdd (Volts)

/***** PROTOTYPES *****/

void set7seg(char digit); // display digit on 7-segment display (shadow)

/***** GLOBAL VARIABLES *****/

unsigned char sPORTA; // shadow registers: PORTA

unsigned char sPORTC; // PORTC

unsigned char tens = 0; // current ADC result (in hex): "tens"

unsigned char ones = 0; // "ones"

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure ports

 TRISC = 0; // PORTC is all outputs

 TRISA = 1<<0; // configure RA0/AN0 (only) as an input

 ANSEL = 1<<0; // make only AN0 analog

 CMCON0 = 7; // disable comparators (CM = 7)

 // configure Timer0

 OPTION = 0b11000010; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----010 prescale = 8 (PS = 010)

 // -> increment every 8 us

 // -> TMR0 overflows every 2.048 ms

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

 ADCON0 = 0b00000001;

 //0------- MSB of result in ADRESH<7> (ADFM = 0)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // and global interrupts

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 24

 // Main loop

 for (;;)

 {

 // sample 0.6 V reference on AN0

 __delay_us(10); // wait 10 us for acquisition time

 GODONE = 1; // start conversion

 while (GODONE) // wait until done

 ;

 // test for low Vdd (measured 0.6 V > threshold)

 if (ADRESH > (int)(0.6/MINVDD*255)) // if measured 0.6 V > threshold

 {

 sPORTA |= 1 << nWARN; // light warning LED

 }

 // copy result to variables

 // (to be displayed by ISR)

 ones = ADRESH & 0x0F; // get "ones" digit from low nybble of ADRESH

 tens = ADRESH >> 4; // get "tens" digit from high nybble of ADRESH

 // copy shadow registers to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

 }

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned char mpx_cnt = 0; // multiplex counter

 // *** Service Timer0 interrupt

 // TMR0 overflows every 2.048 ms

 // (only Timer0 interrupts are enabled)

 //

 T0IF = 0; // clear interrupt flag

 // Display current ADC result (in hex) on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

 //

 switch (mpx_cnt)

 {

 case 0:

 set7seg(ones); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 break;

 case 1:

 set7seg(tens); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 2) // reset count if at end of digit sequence

 mpx_cnt = 0;

}

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 25

/***** FUNCTIONS *****/

/***** Display digit on 7-segment display (shadow) *****/

void set7seg(char digit)

{

 // Lookup pattern table for 7 segment display on PORTA

 const char pat7segA[16] = {

 // RA5 = G

 0b000000, // 0

 0b000000, // 1

 0b100000, // 2

 0b100000, // 3

 0b100000, // 4

 0b100000, // 5

 0b100000, // 6

 0b000000, // 7

 0b100000, // 8

 0b100000, // 9

 0b100000, // A

 0b100000, // b

 0b000000, // C

 0b100000, // d

 0b100000, // E

 0b100000 // F

 };

 // Lookup pattern table for 7 segment display on PORTC

 const char pat7segC[16] = {

 // RC5:0 = ABCDEF

 0b111111, // 0

 0b011000, // 1

 0b110110, // 2

 0b111100, // 3

 0b011001, // 4

 0b101101, // 5

 0b101111, // 6

 0b111000, // 7

 0b111111, // 8

 0b111101, // 9

 0b111011, // A

 0b001111, // b

 0b100111, // C

 0b011110, // d

 0b100111, // E

 0b100011 // F

 };

 // lookup pattern bits and write to shadow registers

 sPORTA = pat7segA[digit];

 sPORTC = pat7segC[digit];

}

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 26

Comparisons

Here is the resource usage comparison for the “VDD measure” example, including the floating-point and

integer arithmetic versions of the C programs, along with the baseline (PIC16F506) versions of this example,

from baseline C lesson 6, for comparison:

ADC_Vdd-measure

There‟s a lot of information in this table, but we can see that the C source code is around 40% shorter than

the assembler source, while the PICC-Lite compiler continues to generate efficient code – only a few words

larger than the assembler version. It‟s also apparent that the 16F684 versions are much larger than their

16F506 equivalents – mainly due to the use of timer interrupts to drive the display.

The real story here, however, is how very inefficient the floating-point versions are, in comparison with the

integer versions, showing that floating-point operations should be avoided wherever possible.

Decimal Output

Most people would find it easier to read the output of the light meter presented above if the display was in

decimal, not hex, with a scale from 0 – 99 instead of 0 – 3FFh.

To demonstrate how to do this, we‟ll use a 2-digit version of the circuit, as shown below.

Assembler /

Compiler Arithmetic

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

16F684 16F506 16F684 16F506 16F684 16F506

Microchip MPASM integer 142 99 144 87 7 1

HI-TECH PICC-Lite float 85 50 361 297 31 15

HI-TECH PICC-Lite integer 85 50 145 109 13 7

HI-TECH C (Lite) float 84 50 458 552 42 34

HI-TECH C (Lite) integer 84 50 184 162 18 7

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_6.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 27

This example was implemented in assembler in midrange lesson 14, where the main focus of the lesson was

on integer arithmetic, including multi-byte addition and subtraction, and 8- and 16-bit multiplication. Since

the C compiler takes care of the implementing arithmetic operations, we don‟t need to be concerned with

those details here.

To scale the full 10-bit ADC output from 0 – 1023 to 0 – 99, it should be multiplied by 99/1023. That can be

done easily in C, but it is more difficult to do in assembler. In the assembler example, the ADC result was

limited to the most significant eight bits and then multiplied by 100/256, which is much easier to implement

and is “close enough”, in that the full-scale ADC output of 1023 will result in the full-scale value of 99 being

displayed.

So that the C examples are comparable to the assembler version, we will use only use the most significant

eight bits of the ADC result and scale it by 100/256 here, as well.

HI-TECH C implementation

Most of the HI-TECH C program code can be re-used from the hexadecimal example, above.

After sampling the analog input, we need to scale the ADC result to 0 – 99, and this scaled result is then

referenced twice; once for each digit. So it makes sense to store the scaled result in a variable, which would

normally be declared as:

 unsigned char adc_dec; // scaled ADC output (0-99)

because this value will always be small enough (≤ 99) to represent using 8 bits.

However, the PICC-Lite compiler generates smaller code if we declare it as:

 unsigned int adc_dec; // scaled ADC output (0-99)

C compilers usually promote smaller integral types (such as „char‟) to type „int‟ when they are included in

integer arithmetic calculations. In fact, this behaviour is required by the ANSI C standard. By declaring this

variable as type „int‟, the PICC-Lite compiler does not need to promote it during arithmetic operations., and

can therefore generate a smaller program.

Note that integer promotion is not mandatory in all situations, and C compilers will generally avoid it in

situations where they can conclude that the result will be the same if promotion doesn‟t occur. So it‟s not a

good idea to assume that a particular change, like this, will make your code smaller – it depends on the

specific compiler and its optimisation settings.

In this case, HI-TECH C v9.70, running in “lite” mode, generates smaller code if we declare adc_dec as an

unsigned char, as in the first declaration, above.

After sampling the input, the ADC result is scaled as follows:

 // scale result to 0-99

 adc_dec = ADRESH * 100/256;

Both HI-TECH compilers generate smaller code if this is written as:

 adc_dec = (unsigned)ADRESH * 100/256;

That is, the 8-bit ADC result in ADRESH is cast as an unsigned integer.

This allows the compilers to optimise their code generation, because they can avoid promoting the ADC

result to a signed integer and using signed multiplication and division routines; unsigned arithmetic is

simpler and therefore requires less code to implement.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 28

We then need to extract each digit of the scaled result for display. As we saw in lesson 7, this can be done

using the integer division (/) and modulus (%) operators:

 // extract digits of scaled result for ISR to display

 // (to be displayed by ISR)

 ones = adc_dec%10;

 tens = adc_dec/10;

However, HI-TECH C v9.70 (in “lite” mode) can generate smaller code if we write this as:
 ones = (unsigned)adc_dec%10;

 tens = (unsigned)adc_dec/10;

But this change makes no difference when using PICC-Lite.

Again, source code changes which will optimise code generation is very much compiler-specific.

As we did in the assembler example in midrange lesson 14, it is best to disable interrupts while the display

variables are being updated. We don‟t know how the compiler implements these calculations, and hence we

cannot know whether the variables will at any point hold values outside the range that the ISR is designed to

handle.

So we will place these statements, along with the code to copy the shadow register variables to the ports,

within a pair of directives (macros provided by HI-TECH C) to disable and then re-enable interrupts:

 // disable interrupts during display variable update

 // (stops ISR attempting to display out-of-range intermediate results)

 di();

 // extract digits of scaled result for ISR to display

 // (to be displayed by ISR)

 ones = (unsigned)adc_dec%10;

 tens = (unsigned)adc_dec/10;

 // copy shadow regs (updated by ISR) to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

 // re-enable interrupts

 ei();

Main program listing

Here is the new main() function, showing where these additions fit in:

/***** MAIN PROGRAM *****/

void main()

{

 unsigned char adc_dec; // scaled ADC output (0-99)

 // Initialisation

 // configure ports

 TRISC = 0; // PORTC is all outputs

 TRISA = 1<<0; // configure RA0/AN0 (only) as an input

 ANSEL = 1<<0; // make only AN0 analog

 CMCON0 = 7; // disable comparators (CM = 7)

 // configure Timer0

 OPTION = 0b11000010; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_7.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 29

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----010 prescale = 8 (PS = 010)

 // -> increment every 8 us

 // -> TMR0 overflows every 2.048 ms

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

 ADCON0 = 0b00000001;

 //0------- MSB of result in ADRESH<7> (ADFM = 0)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // and global interrupts

 // Main loop

 for (;;)

 {

 // sample analog input

 __delay_us(10); // wait 10 us for acquisition time

 GODONE = 1; // start conversion

 while (GODONE) // wait until done

 ;

 // scale 8-bit ADC result to 0-99

 adc_dec = (unsigned)ADRESH * 100/256;

 // disable interrupts during display variable update

 // (stops ISR attempting to display out-of-range intermediate results)

 di();

 // extract digits of scaled result for ISR to display

 // (to be displayed by ISR)

 ones = (unsigned)adc_dec%10;

 tens = (unsigned)adc_dec/10;

 // copy shadow regs (updated by ISR) to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

 // re-enable interrupts

 ei();

 }

}

Comparisons

The table on the next page summarises the resource usage of the “ADC demo with decimal output”

examples, along with the baseline (PIC16F506) versions from baseline C lesson 6, for comparison:

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_6.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 30

ADC_dec-out

In this example, where integer arithmetic is involved, the pros and cons of assembler versus C become very

apparent. The assembler source is twice as long as the C versions, reflecting the need to explicitly code the

arithmetic operations in assembler. On the other hand, the assembler version generates significantly smaller

code – around half the size of the optimised PICC-Lite C version.

And again, the 16F684 versions are all much larger than their 16F506 equivalents.

Using an Array to Implement a Moving Average

A problem with the decimal-output example above (and the previous hexadecimal-output example) is that

that the display can become unreadable in flickering light, such as that produced by fluorescent lamps.

These flicker at 50 or 60 Hz – too fast for the human eye to notice, but not too quickly for our simple light

meter, which displays the changing light level 244 times per second.

As we saw in midrange lesson 14, this problem can be effectively overcome by smoothing, or filtering, the

raw results before displaying them. Although more advanced (and efficient and effective) filtering

algorithms exist, one that is simple to implement is the simple moving average (or box filter), which averages

the last N samples (where N is a fixed number, referred to as the window size), giving the same weight to

each sample.

To implement this filter, we need to sample the input at a fixed rate (say, every 2 ms), which can be done by

using a timer interrupt to initiate the conversions, as was done in the ADC interrupt example, above. We

also need to store the last N samples, in an array of size N. Every time a new light level is sampled, the array

is updated, with the oldest sample value being overwritten with the new one. Note that is it not necessary to

calculate the sum of values in the array every time it is updated; we can instead maintain a running total by

subtracting the oldest value and adding the new value to it.

Since the largest contiguous block of data memory in the 16F684 is 80 bytes, and given that a single, simple

array
6
 has to be contiguous, in a 16F684 no single array can be larger than 80 bytes. In practice, the

maximum size will be less than this, because, in the 16F684, the largest contiguous block of data memory is

located in bank 0 (see midrange lessons 10 and 14), and C compilers will normally need to allocate storage

for at least some of the variables or working space in bank 0.

If we sample the input every 2 ms, we need to store at least ten samples (10 × 2 ms = 20 ms) to smooth out a

50 Hz flicker, since a 50 Hz signal has a period of 20 ms. But it wouldn‟t hurt to try to store enough samples

to average across a few power cycles, to be sure of removing visible flicker.

In the assembler example in midrange lesson 14, we worked with the full 10-bit ADC output, maintaining

more resolution than the display is able to show, mainly to demonstrate how to work with 16-bit quantities.

6
 as opposed to a more elaborate structure such as a linked list

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

16F684 16F506 16F684 16F506 16F684 16F506

Microchip MPASM 144 111 146 100 11 7

HI-TECH PICC-Lite 73 42 272 238 29 14

HI-TECH C (Lite) 72 42 388 529 26 20

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_10.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 31

This means that, if each10-bit sample is stored as a 16-bit value, we need to allocate two bytes for each

sample in the array, or buffer. For example, storing sixteen samples would require thirty-two bytes of

storage – which shouldn‟t be a problem, even after allowing for C compiler overheads.

PICC-Lite implementation

Storing the samples and maintaining the running total has to be done within the ADC interrupt handler,

because it handles the ADC results as they become available.

In theory, calculating the scaled average from the running total could be done in the main loop, outside the

ISR. That‟s a valid option and would often be the best choice, because calculations take time and it‟s usually

best to keep the ISR as short as possible, so that there is enough time to perform other tasks. But in this

example, there are no other interrupts or events for the program to respond to; it doesn‟t matter if a lot of

time is spent within an ISR, performing calculations. Since it simplifies the code a little, we‟ll perform the

scaling calculation within the ADC interrupt handler in this example.

That means that the running total, scaled average, and of course the sample buffer itself as well as the index

used to reference the current sample can be declared as local variables within the ISR:

 // variables used by ADC interrupt to calculate moving average

 static unsigned int smp_buf[NSAMPLES]; // sample buffer

 // cleared by startup code)

 static unsigned char s = 0; // index into sample array

 static unsigned int adc_sum = 0; // sum of samples in buffer

 unsigned char adc_dec; // scaled avg ADC output (0-99)

where „NSAMPLES‟ is a symbol defined toward the start of the code, to make it easier to modify the number

of samples stored in the array:

#define NSAMPLES 16 // size of sample array

As NSAMPLES is increased, at some point the smp_buf[] array will become too big to fit into memory

alongside the other variables and the compiler‟s working space, and you will see error messages such as:

 can't find 0x1 words (0x1 withtotal) for psect "intsave" in egment "BANK0"

 can't find 0x1 words (0x1 withtotal) for psect "xtemp" in segment "BANK0"

Using PICC-Lite v9.60PL2 with the PIC16F684 and the code presented below, the maximum array size is 28

samples; much smaller than the assembler example in midrange lesson 14, where we were able to use the

whole of bank 0 to store 40 samples.

Unfortunately, the PICC-Lite compiler limits data memory use on the 16F684 to a single bank: bank 0. On

some midrange devices, such as the 16F690 and 16F887, PICC-Lite is able to use two banks, and the

„bank1‟ type qualifier can then be used to explicitly place specific variables into the second bank.

However, even if PICC-Lite did allow us to relocate some variables into bank 1 on the 16F684, it wouldn‟t

be enough to make it possible to use the whole of bank 0 for the sample array; PICC-Lite will always

allocate storage for interrupt context saving, parameter passing and temporary storage (such as immediate

results) within bank 0. We simply have to accept that the sample buffer cannot be as large as in the

assembler version.

Note that the sample buffer, index and running total are declared as static, because they have to retain

their values from one interrupt to the next.

Note also that the index and running total are cleared to zero as part of the variable declaration. The sample

array also has to be cleared before it can be used, so that the running total is correct (if the running total is

initially zero, the array elements must initially sum to zero – easiest to ensure if they are all initially equal to

zero). But there is no need to include explicit code to clear the array.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 32

By default, the PICC_Lite compiler adds runtime code which, among other things, clears all uninitialised

non-auto (global or static) variables, including arrays.

You can check that this option

is selected by looking at the

“Linker” tab in the project‟s

build options (Project → Build

Options… → Project), as

shown on the right.

If “Clear bss” is selected, the

compiler-provided runtime code

will clear all the variables.

Within the ADC interrupt handler, we must store the new sample and update the running total, as follows:

 // store current ADC result and update running total

 adc_sum -= smp_buf[s]; // subtract old sample from total

 smp_buf[s] = ADRESH<<8 | ADRESL; // save new sample

 adc_sum += smp_buf[s]; // and add it to running total

Note the expression used to access the current ADC result: ADRESH<<8 | ADRESL.

Since the lower two bits of ADRESH hold the upper two bits of the 10-bit ADC result, we need to shift

those bits eight places to the left, before ORing them with the lower eight bits held in ADRESL.

Another way to write this would be as „ADRESH*256 + ADRESL‟, but the first form more clearly

expresses how we are assembling the 10-bit result from the two 8-bit registers.

The above code assumes that the sample buffer index („s‟) is pointing to the current sample. This will be

true when the program starts, because „s‟ is initialised to zero, but having processed the current sample, we

need to increment „s‟ to reference the next sample, ready for the next time the ADC handler runs:

 // advance index to reference next sample

 if (++s == NSAMPLES) s = 0;

Equivalently, this could have been written as:

 s++; // increment sample index

 if (s == NSAMPLES) // if end of buffer is reached

 s = 0; // reset index to start of buffer

The compiler will actually generate the same code in both cases, but the first form is shorter and just as

easily understood when you are familiar with C.

Next, we need to calculate the scaled average.

The average is equal to the running total divided by the number of samples in the buffer, and could be

calculated as:

 adc_avg = adc_sum / NSAMPLES

This average value will be in the range 0 – 1023.

To scale it to the range 0 – 99, we can multiply it by 100 / 1024:

 adc_dec = adc_avg * 100 / 1024

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 33

But there is no need to actually declare and use an intermediary variable such as „adc_avg‟.

Instead, the averaging and scaling operations could be combined in a single expression, such as:

 adc_dec = (adc_sum / NSAMPLES) * 100 / 1024;

or:

 adc_dec = adc_sum * 100 / (1024 * NSAMPLES);

The second form is preferable, if we are striving to preserve as much resolution as possible, because if the

division is done first, only the integer part of the quotient is preserved and any remainder is lost, because we

are using integer arithmetic. Order of evaluation can be very important in integer arithmetic, and this can be

source of errors and confusion.

For example, suppose adc_sum = 103 and NSAMPLES = 10.

Then:

 adc_dec = (adc_sum / NSAMPLES) * 100 / 1024

 = (103 / 10) * 100 / 1024

 = (10) * 100 / 1024

 = 1000 / 1024

 = 0

because 103/10 evaluates to 10 using integer arithmetic (since the remainder is thrown away) and

1000/1024 evaluates to 0.

But:

 adc_dec = adc_sum * 100 / (1024 * NSAMPLES)

 = 103 * 100 / (1024 * 10)

 = 10300 / 10240

 = 1

Using floating point (real number) arithmetic, the correct answer is 1.006. As you can see, the second

integer expression gives a more accurate result, because we‟re not losing information when the division is

done.

But there is still a trap for the unwary:

Given that adc_sum is an „unsigned int‟, and that by default PICC-Lite will perform calculations using 16-

bit „int‟ types, the constant „100‟ is treated as an „int‟ and the expression „adc_sum*100‟ is evaluated as a

16-bit integer calculation.

That‟s a problem if „adc_sum‟ is greater than 655 (which it could easily be, given that individual samples

range up to 1023). If adc_sum = 656, then adc_sum*100 = 65600, which is too big to be expressed as a

16-bit integer, and the result will overflow.

The result will be incorrect, but the worst part is that the compiler will not warn you that this could happen.

Everything will appear to be ok, but your results will be very wrong!

To avoid this, we need to cast adc_sum as a long (32-bit) integer, so that the expression will not overflow:

 adc_dec = (long)adc_sum * 100 / (1024 * NSAMPLES);

Alternatively, the constant „100‟ can be specified as a 32-bit quantity by appending an „L‟ to it:

 adc_dec = adc_sum * 100L / (1024 * NSAMPLES);

However, as we saw in the decimal output example, the compiler generates smaller code if it can use

unsigned arithmetic routines.

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 34

So finally we have:

 // scale running total to 0-99 for display

 adc_dec = (unsigned long)adc_sum * 100 / (1024 * NSAMPLES);

Note that PICC-Lite generates more efficient code to implement this expression if NSAMPLES is a power of

two (such as 16), because division can then be performed by a series of right-shifts.

We can then extract the decimal digits of the scaled average for display, as before:

 // extract digits of scaled result for Timer0 handler to display

 ones = adc_dec%10;

 tens = adc_dec/10;

The rest of the program is essentially the same as in the ADC interrupt example, above.

HI-TECH C (v9.70 ‘Lite mode’) implementation

The HI-TECH C compiler, as of version 9.70, does not restrict the amount of usable program or data

memory on any of the midrange PICs, including the 16F684, and therefore is able to utilise bank 1, even

when running in the free „Lite‟ mode. Further, HI-TECH C will automatically manage the allocation of

storage across banks as appropriate.

So you could reasonably expect that it would be possible to declare a larger array, storing more samples, than

we were able to in the PICC-Lite version.

Unfortunately, when running in „Lite mode‟, HI-TECH C performs very little code optimisation, and this

appears to extend to the way it uses data memory; it is actually quite inefficient.

Using HI-TECH C v9.70 in „Lite mode‟ with the PIC16F684 and the same variable types as the PICC-Lite

version, the maximum array size is only 24 samples; even less than PICC-Lite was able to support.

But like PICC-Lite, HI-TECH C generates smaller code for the scaled average calculation if NSAMPLES is a

power of two.

Another effect of the „Lite mode‟ code not being optimised is that it runs more slowly.

This has a serious impact in this example: the code used to calculate the scaled moving average is unable to

complete within 2 ms. That‟s a real problem when the interrupt, running that code, is being triggered every 2

ms – there isn‟t enough time, between interrupts, for the calculations to finish!

The solution is to change the timer initialisation code, so that the interrupt is triggered every 4 ms, giving the

calculations enough time to run:

 // configure Timer0

 OPTION = 0b11000011; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----011 prescale = 16 (PS = 011)

 // -> increment every 16 us

 // -> TMR0 overflows every 4.096 ms

Luckily this is still fast enough that the multiplexed display, which will now have a 125 Hz refresh rate,

doesn‟t appear to flicker.

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 35

Finally, as we saw in the decimal output example, the HI-TECH C compiler generates smaller code if we

change the digit extraction code to:

 // extract digits of scaled result for Timer0 handler to display

 ones = (unsigned)adc_dec%10;

 tens = (unsigned)adc_dec/10;

Complete program

Here is the complete source code for the HI-TECH C version of the “ADC demo with averaged decimal

output” program, showing where these code fragments fit in:

/**

* Description: Lesson 8, example 7 *

* *

* Displays smoothed ADC output in decimal on 2x7-segment LED displays *

* *

* Continuously samples analog input, averages last 16 samples, *

* scales result to 0 - 99 and displays as 2 x decimal digits *

* on multiplexed 7-seg displays *

* *

* *

* Pin assignments: *

* AN0 = voltage to be measured (e.g. pot or LDR) *

* RA5, RC0-5 = 7-segment display bus (common cathode) *

* RA4 = tens enable (active high) *

* RA1 = ones enable *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, no power-up timer, int clock with I/O,

// no failsafe clock monitor, two-speed start-up disabled

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTDIS & INTIO & FCMDIS &

IESODIS);

// Pin assignments

#define nTENS_EN 4 // tens enable on RA4

#define nONES_EN 1 // ones enable on RA1

/***** CONSTANTS *****/

#define NSAMPLES 16 // size of sample array

/***** PROTOTYPES *****/

void set7seg(char digit); // display digit on 7-segment display (shadow)

/***** GLOBAL VARIABLES *****/

unsigned char sPORTA; // shadow registers: PORTA

unsigned char sPORTC; // PORTC

 // current result in decimal (displayed by ISR):

unsigned char tens = 0; // tens

unsigned char ones = 0; // ones

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 36

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure ports

 TRISC = 0; // PORTC is all outputs

 TRISA = 1<<0; // configure RA0/AN0 (only) as an input

 ANSEL = 1<<0; // make only AN0 analog

 CMCON0 = 7; // disable comparators (CM = 7)

 // configure Timer0

 OPTION = 0b11000011; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----011 prescale = 16 (PS = 011)

 // -> increment every 16 us

 // -> TMR0 overflows every 4.096 ms

 // configure ADC

 ADCON1 = 0b00010000;

 //-001---- Tad = 8*Tosc (ADCS = 001)

 // = 2.0 us (with Fosc = 4 MHz)

 ADCON0 = 0b10000001;

 //1------- LSB of result in ADRESL<0> (ADFM = 1)

 //-0------ voltage reference is Vdd (VCFG = 0)

 //---000-- select channel AN0 (CHS = 000)

 //-------1 turn ADC on (ADON = 1)

 // configure interrupts

 // enable ADC interrupt

 ADIF = 0; // clear interrupt flag

 ADIE = 1; // set enable bit

 T0IE = 1; // enable Timer0 interrupt

 PEIE = 1; // enable peripheral

 ei(); // and global interrupts

 // Main loop

 for (;;)

 {

 // copy shadow regs (updated by ISR) to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

 }

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 // variables used by timer0 interrupt

 static unsigned char mpx_cnt = 0; // multiplex counter

 // variables used by ADC interrupt to calculate moving average

 static unsigned int smp_buf[NSAMPLES]; // sample buffer

 // cleared by startup code)

 static unsigned char s = 0; // index into sample array

 static unsigned int adc_sum = 0; // sum of samples in buffer

 unsigned char adc_dec; // scaled avg ADC output (0-99)

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 37

 // Service all triggered interrupt sources

 if (T0IF)

 {

 // *** Timer0 interrupt

 // TMR0 overflows every 4.096 ms

 // (only Timer0 interrupts are enabled)

 //

 T0IF = 0; // clear interrupt flag

 // Display current ADC result (in hex) on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

 //

 switch (mpx_cnt)

 {

 case 0:

 // display "ones" digit

 set7seg(ones); // output ones digit

 sPORTA |= 1 << nONES_EN; // enable ones display

 break;

 case 1:

 // display "tens" digit

 set7seg(tens); // output tens digit

 sPORTA |= 1 << nTENS_EN; // enable tens display

 break;

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 2) // reset count if at end of digit sequence

 mpx_cnt = 0;

 // start next analog conversion

 GODONE = 1;

 }

 if (ADIF)

 {

 // *** ADC interrupt

 //

 ADIF = 0; // clear interrupt flag

 // store current ADC result and update running total

 adc_sum -= smp_buf[s]; // subtract old sample from total

 smp_buf[s] = ADRESH<<8 | ADRESL; // save new sample

 adc_sum += smp_buf[s]; // and add it to running total

 // advance index to reference next sample

 if (++s == NSAMPLES) s = 0;

 // scale running total to 0-99 for display

 adc_dec = (unsigned long)adc_sum * 100 / (1024 * NSAMPLES);

 // extract digits of scaled result for Timer0 handler to display

 ones = (unsigned)adc_dec%10;

 tens = (unsigned)adc_dec/10;

 }

}

/***** FUNCTIONS *****/

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 38

/***** Display digit on 7-segment display (shadow) *****/

void set7seg(char digit)

{

 // Lookup pattern table for 7 segment display on PORTA

 const char pat7segA[10] = {

 // RA5 = G

 0b000000, // 0

 0b000000, // 1

 0b100000, // 2

 0b100000, // 3

 0b100000, // 4

 0b100000, // 5

 0b100000, // 6

 0b000000, // 7

 0b100000, // 8

 0b100000, // 9

 };

 // Lookup pattern table for 7 segment display on PORTC

 const char pat7segC[10] = {

 // RC5:0 = ABCDEF

 0b111111, // 0

 0b011000, // 1

 0b110110, // 2

 0b111100, // 3

 0b011001, // 4

 0b101101, // 5

 0b101111, // 6

 0b111000, // 7

 0b111111, // 8

 0b111101, // 9

 };

 // lookup pattern bits and write to shadow registers

 sPORTA = pat7segA[digit];

 sPORTC = pat7segC[digit];

}

Comparisons

Here is the resource usage for the “ADC demo with averaged decimal output” midrange and baseline

assembler and C examples, also showing the sample buffer size used in each version:

ADC_avg

Assembler /

Compiler

Number of

Samples

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

16F684 16F506 16F684 16F506 16F684 16F506

Microchip MPASM 40 200 - 193 - 95 -

Microchip MPASM 16 - 146 - 133 - 26

HI-TECH PICC-Lite 16 79 57 379 254 72 34

HI-TECH PICC-Lite 28 79 - 500 - 98 -

HI-TECH C (Lite) 16 79 49 514 521 66 38

HI-TECH C (Lite) 24 79 - 641 - 96 -

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 39

In this example, the differences between C and assembler are even more pronounced. The midrange

(16F684) assembler source is more than twice as long as the HI-TECH C versions, while the assembled code

is only around half the size of the “optimised” code generated by PICC-Lite for the 16-sample version.

More significantly, neither of the free HI-TECH C compilers allowed us to implement a sample array

anywhere near as large as that possible with hand-written assembler: only 24 samples with HI-TECH C (in

„Lite mode‟) and 28 samples with PICC-Lite, compared with 40 samples with assembler. And in increasing

the buffer size from 16 to 24 samples in the PICC-Lite version, the generated code becomes 32% bigger,

making it nearly 160% larger than the assembler version, even though the assembler version is able to work

with 40% more samples.

We have reached a point where the limitations of the free HI-TECH C compilers are getting in the way of

making full use of the PIC‟s capability. The PIC16F684 has enough data memory to store and work with 40

samples, but only if we program in assembler; the free versions, at least, of the HI-TECH C compilers are

too inefficient.

Summary

The examples in this lesson demonstrate that it is possible to effectively perform analog to digital conversion

on midrange PICs, such as the PIC16F684, using free HI-TECH C compilers. But we have also seen that,

using either PICC-Lite or HI-TECH C operating in „Lite mode‟
7
, we were forced to implement buffers (or

arrays) smaller than those we were able to implement using assembler.

The C source code continues to be significantly shorter than the assembler equivalent (typically around half

as many lies) for each example. This difference is especially pronounced when array handing and arithmetic

expressions, which can be written succinctly in C, are heavily used, as in the final example:

Source code (lines)

An optimising C compiler, such as PICC-Lite, can sometimes generate code that is smaller than hand-written

assembler. This is apparent in the table below, for the the first three examples. But, although arithmetic

expressions can be expressed succinctly in C, the compilers usually generate code which is significantly

larger than the corresponding assembler versions; the last two examples, using integer arithmetic, being

significantly than the assembler versions; more than twice the size, in the final example:

Program memory (words)

7
 using the versions available at the time of writing (April 2010): PICC-Lite v9.60PL2 and HI-TECH C v9.70

Assembler / Compiler ADC_4LEDs ADC_hex_out Vdd_measure ADC_dec_out ADC_avg

Microchip MPASM 32 150 142 144 200

HI-TECH PICC-Lite 15 88 85 73 79

HI-TECH C (Lite) 14 87 84 72 79

Assembler / Compiler ADC_4LEDs ADC_hex_out Vdd_measure ADC_dec_out ADC_avg

Microchip MPASM 31 165 144 146 193

HI-TECH PICC-Lite 27 153 145 272 500

HI-TECH C (Lite) 44 189 184 388 641

© Gooligum Electronics 2010 www.gooligum.com.au

Midrange PIC C, Lesson 8: Analog-to-Digital Conversion and Simple Filtering Page 40

Data memory usage has not been a big concern until now, because there has always been plenty of data

memory available. However, this became significant in the final example, where inefficient data memory

use meant that we were unable to make as effective use of the 16F684‟s resources; we were forced to

implement much smaller sample buffers using C, than were able to in assembler.

In the table below, the data memory use for the ADC averaging example is shown along with the

corresponding number of samples we were able to store within that memory, in brackets:

Data memory (bytes)

There is no doubt that it is much easier to express complex routines in C than assembler, which is reflected in

the C code being significantly shorter source than the corresponding assembler source code.

On the other hand, we have seen that it is very important to be aware of the impact of variable and

expression types on code generation, and the need to use type casting appropriately, to allow the compiler to

generate more efficient code or indeed, as we saw in the last example, to produce correct results.

So although it is very easy to write arithmetic expressions in C, you have to be very careful when doing so.

It also appears that, in the last example, when implementing a “large” sample buffer, we were starting to

reach the limit of what can be achieved with either the free HI-TECH C compilers on a device as small as the

PIC16F684. To make the most of a PIC‟s memory resources, it may be necessary to write at least parts of

the program in assembler. Or – use a bigger PIC. Or pay for an optimising C compiler without limitations

(which is nevertheless unlikely to use memory as efficiently as hand-written assembler in many cases).

We have now gone as far as the baseline C tutorial series did, but of course the midrange PIC architecture

has a lot more to offer.

Even for something as apparently simple as timers, we have only just scratched the surface, having only

described Timer0 so far.

In the next lesson, we‟ll revisit the material from midrange lesson 15, introducing a 16-bit timer: Timer1.

Assembler / Compiler ADC_4LEDs ADC_hex_out Vdd_measure ADC_dec_out ADC_avg

Microchip MPASM 0 8 7 11 95 (40)

HI-TECH PICC-Lite 3 14 13 29 98 (28)

HI-TECH C (Lite) 7 19 18 26 96 (24)

http://www.gooligum.com.au/tut_baseline_C.html
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_9.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_15.pdf

	Introduction to PIC Programming
	Programming Midrange PICs in C
	Lesson 8: Analog-to-Digital Conversion and Simple Filtering
	Analog-to-Digital Converter
	HI-TECH C implementation
	Complete program

	Comparisons

	ADC Operation in Sleep Mode
	HI-TECH C implementation

	ADC Interrupts
	Example 3: Hexadecimal Output
	HI-TECH C implementation
	Complete program

	Comparisons
	Example 4: ADC Interrupts
	HI-TECH C implementation
	Complete interrupt service routine

	Measuring Supply Voltage
	HI-TECH C implementation
	Complete program

	Comparisons

	Decimal Output
	HI-TECH C implementation
	Main program listing

	Comparisons

	Using an Array to Implement a Moving Average
	PICC-Lite implementation
	HI-TECH C (v9.70 ‘Lite mode’) implementation
	Complete program

	Comparisons

	Summary

