Getting started with C Programming for
the ATMEL AVR Microcontroller

By Lam Phung

Version 1.0
Created on May 14, 2008. Last updated January 15, 2010.
Latest version of this document is available at: http://www.elec.uow.edu.au/avr

© University Of Wollongong, 2008.



Table of Contents

1. Introduction
2. Installing tools for C programming
3. Using AVR Studio for C programming
3.1 Creating an AVR Studio project
3.2 Compiling C code to HEX file
3.3 Debugging C program using the simulator

0 oo 00 w W NDN

3.4 Downloading and running HEX file on AVR board

1. Introduction

This tutorial provides information on the tools and the basic steps that are involved in using
the C programming language for the Atmel AVR microcontrollers. It is aimed at people who are
new to this family of microcontrollers. The Atmel STK500 development board and the
ATMEGAL16 chip are used in this tutorial; however, it is easy to adopt the information given
here for other AVR chips.

This tutorial requires the following:
¢ the AVR Studio produced by Atmel,
¢ the WIinAVR package by Sourgeforge WinAVR project, and
e an STK500 development board produced by Atmel.

2. Installing tools for C programming

To work with the Atmel AVR microcontroller using the C programming language, you will need
two tools: AVR Studio and WinAVR. Both tools are free at the links given below.

e AVR Studio is an integrated development environment that includes an editor, the
assembler, HEX file downloader and a microcontroller emulator. AVR Studio setup file
and service packs are available at

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725

e WInAVR is for a GCC-based compiler for AVR. It appears in AVR Studio as a plug-in.
WInAVR also includes a program called Programmer’s Notepad that can be used to
edit and compile C programs, independently of AVR Studio. WIinAVR setup file is
available at

http://winavr.sourceforge.net/

Installing these tools is easy: just download and run the setup files, and accept the default
installation options. Remember to install AVR Studio first before WinAVR.



3. Using AVR Studio for C programming

As an example, we will create a simple C program for the Atmel AVR that allows the user to
turn on one of the eight Light Emitting Diodes (LEDs) on the STK500 development board, by
pressing a switch. Next, you will be guided through four major stages:

e creating an AVR Studio project,

e compiling C code to HEX file,

e debugging C program using the simulator,

e downloading HEX file to the STK500 development board and running it.

3.1 Creating an AVR Studio project

Perform the following steps to create a simple AVR Studio project.

e Start the AVR Studio program by selecting Start | Programs | Atmel AVR Tools |
AVR Studio.

e Select menu Project | New Project. In the dialog box that appears (see Figure 1),
select AVR GCC as project type, and specify the project name and project location. If
options ‘Create initial file’ and ‘Create folder’ are selected, an empty C file and
containing folder will be created for you. In this case, we create a project called ‘led’.
Click button Next when you are ready.

— Create new project
Project type: Project name:

& Atmel 4VR Aszembler |Ied
%3 MR GEC

¥ Createinitialfle W Create folder
Iitial file:

|Ied £

Location:

[Cavmy _|

‘er 414589 ¥ Show dialog at startup

<o Back | Mest > I Finizh | LCancel I Help

Figure 1: Entering project type, name and location.

e In the ‘Select debug platform and device’ dialog that appears (see Figure 2), choose
‘AVR Simulator’ as the debug platform and ‘ATMEGA16’ as the device. Click button
Finish.

Note: If you want to use other AVR chips such as ATMAGE8515, select it at this step.
In this tutorial, we will use ATMEGA16 for both software simulation and hardware
testing.



‘Welcome to AVR Studio 4

N5

AVYR

Wer 4.13.557

— Select debug platform and device
Debug platform: Device:
AWR Dragon ATrmegal 281 -]
AWE Simulatar
AR Sirulator W2 (preview) ATmegalbl
ICE200 ATmegalb2
ICE40 ATmegalka J
ICESD ATmegalB4P
JTAG ICE ATmegalBa
JTAGICE mikll ATmegalBEP
ATmegalbe
ATmegalGEP
ATmegal 69 hd|
™| Open platfom options
<< Back | et > I Finish | LCancel | Help

Figure 2: Selecting debug platform and device.

e A project file will be created and AVR Studio displays an empty file led.c (see Figure 3).
Enter the C code shown in Figure 4. It is not important to understand the code at this
stage, but you can do that by reading the C comments.

List of project files

Status messages —\

AYR Studio - [E\AYR"Projectsled'led.c] -0 x|
E Project Build Edit ‘iew Tools Debug MWindow Help 8 x
ISR v Y aBa L L
5|Trace Disabled 'l LT - P [con f nrr JR \Ez '\:2 1) (T

=438 led (deFault)
1423 Source Files
o -- led.c
=5 Header Files
‘5] External Dependencies

----- 5] Other Files

AEIN

E:\AYR'Projectsiled'led.c 4 b

program code led.c

\

Loaded plugin STKS00
Loaded plugin AYR GCC
Loaded partfile: C:\Program Files\Atmel\AYR Tools\PartDescriptionFiles|ATmegad515, xml

2|

il
=leuild | @ Message %Find in Files | jBreakpoints and Tracepoints

ATmegassls

AYR Simulakar y

Figure 3: The AVR Studio with a project file open.

e Click menu Project | Save Project to save the project file and the C program. AVR
Studio project files have extension ‘aps’.



// File: led.c
// Description: Simple C program for the ATMEL AVR uC (ATMEGA16 or ATMEGA8515 chip)

// This program lets the user turn on LEDs by pressing the switches on STK500 board
// Date modified: 13 May 2008

#include <avr/io.h> // avr header file for 10 ports
int main(void){
unsigned char i; // temporary variable

DDRA = 0x00; // set PORTA for input
DDRB = OxFF; // set PORTB for output

PORTB = 0x00; // turn ON all LEDs initially

while(1){
// Read input from PORTA.
// This port will be connected to the 8 switches

i = PINA;

// Send output to PORTB.
// This port will be connected to the 8 LEDs

PORTB = 1;

return 1;

Figure 4: Program code led.c

3.2 Compiling C code to HEX file

e Click menu Build | Rebuild All to compile the C code.

e If there is no error message, a file called led.hex will be produced (see Figure 5). This
file contains the machine code that is ready to be downloaded to the ATMEGA16
microcontroller. The file is stored in sub-folder ‘\default’ of your project.

o If there are error messages, check your C code. Most often, they are caused by some

typos or syntax errors.

AYR Studio - [E:\A¥R'\Projects'lediled.c] i [ |
E File Project Buld Edit Wiew Tools Debug ‘Window Help _Ax
NEHI 0 B9 "R i AE R P Pl
5|Trace Disabled v| R A EIE R R . W IREIRC | (N B o i
| [~ File: led o =
27 led (default < Description: Simple C program
= ‘g.é(seau |)='I <« Thiz program lets the uszer turn c
-l oouree Hles /¢ Date modified: 13 Hay 2008
: e [E] ledoe
{29 Header Files #include <avr/io. h> 7/ avr heade
#4239 External Dependencies int main(wvoid){ )
a other Filas unsigned char i; ~/~ temporary ve_
I 4 I I 3
Bl e\ AVR' Projects'lediled.c 4 b
Data: 0 bytes (0.0% Full) -]

[.data + .bsz + .noinit)

Build succeeded with 0 Warnings... AIj
< | »

= Build o Meszage | % Find in Files | _:JBreakpoints and Tracepoinks

ATmegashls AYR Simulatar Auko Y

Figure 5: Selecting menu Build | Rebuild All to create HEX file.



3.3 Debugging C program using the simulator

Debugging is an essential aspect in any type of programming. This section will show you how

to debug a C program at source-code level, using AVR Studio. You can execute a C program
one line at a time, and observe the effects on the CPU registers, 10 ports and memory. This is
possible because AVR Studio provides a simulator for many AVR microcontrollers, including the
ATMEGA16 and ATMEGA8515. Therefore, this debugging does not require the STK500 kit.

We will continue with the example project led.aps created in Section 3.2 of this tutorial.

e AVR Studio lets you examine the contents of CPU registers and 10 ports. To enable these
views, right click on the menu bar at the top and select ‘I/0’ and ‘Processor’ options. Refer

: click to select tree display

to Figure 6.

+ | Standard Toolbar

m
=3
=

W

w

)
o
=g
C
(=]

» | Debug Windows
« [ MDI Tabs
AYRGCCPLUIGIN
w | STES00

"

=
=
o
o
o
m
I
it

w | I Alt+E
+ | Processor

Build Oukput

L%

[T eIl <]

Message Cukput
+ | Find Output
Breakpoints and Tracepaints

W [ AR GCC

[<Il<]<]

Cuskamize

(a) Selecting views

Figure 6: Debugging views.

it _; l:l -
Mame | Address | Walue | Bits |
+ TP ANALOG_COMPARATOR
+ 39 USART
13257
Program Counter  0x000020 +BEcrPu
Stack Painter 040250 #) S EXTERNAL_INTERRUFT
* pointer 040060 ) ¢¢ WATCHDOG
f pointer 0x025F + {® TIMER_COUNTER_0
Z poirter Ox00B& + R TIMER_COUNTER_1
Cycle Courter 29 =2 PORTA
Frequency 40000 MHz S|PORTA WIB(@m3B) 00 OOO00O0O0O0O0
Stop Watch 7 75 us $# DDRA ADas) 600 OO00O0000O00
SREG ] = e v - [ L PINA 19 ((¢39) 00 JOO0OO0O00
+| Registers =12 PORTE
=2 PORTE k18(k33) 00 OOOOOO0OO
o [ ¥ DDRB k17037 OFF NN EREN
2 PINB 6 (k36) 00 OOOOO0O0O0
+ 2 PORTC
+ 2 PORTD
+ 22 PORTE
+| B)EEPROM
(b) Processor view (c) 10 view

e Select menu Debug | Start Debugging. A yellow arrow will appear in the code window

(Figure 7); it indicates the C instruction to be executed next.

e Select menu Debug | Step Into (or press hot-key F11) to execute the C instruction at
the yellow arrow. Figure 6c shows the 10 view after the following C instruction is

executed:

DDRB = OxFF;

// set PORTB for output

We can see that Port B Data Direction Register (DDRB) has been changed to OxFF.



1ol x]
- X
@ S=(=2:

AVR Studio - [E:\AVR\Projects\led\led.c]
i File Project Buld Edit Wiew Tools Debug Window Help
INEHdP Y RS T Gty 4 TG T 2
-] % % oA G g o e S am

File: led. o

Description: Simple C program for the
Thi= program lets the user turn on LED=
Date modified: 13 May 2008

: Eg i p @ Eil 1l

g X

; |Trace Disabled

i
e
e
A

ATHEL AVE uC (ATHEGALS or ATHEGABRS1S chip)
by pressing the switches on STKS00 board

Finclude <awr-sio. h: s awr header file for I0 ports
int main{wvoid)d{
unsigned char i; v temporary wariable

DDRA

= 0=00;
DCRE =

0=FF;

<« zet PORTA for input
S =2t PORTE for output
FORTE = 0=00: S turn ON all LED=s initially
while{1){

<7 Bead input from PORTA.

<4 This port will be connected to the § switches

1 = PIHA;

<7 Send output to PORETE.
s Thi= port will be connected to the 8 LED=
PORTE = 1;

return 1:

¥ |
| D

E:\AVR\Projects\led\led.c | q b

=)

ATMEGA16 AVR Simulator

Auto  Stopped Ln 13, Col 1

CAP y

Figure 7: Stepping through a C program in debugging mode.

e While debugging the C program, you can change the contents of a register. For example,
to change Port A Input Pins register (PINA), click on the value column of PINA and enter a
new value (Figure 8a). This change takes effect immediately. Subsequently, the contents
of PORTB will be 0x04 (see Figure 8b) after running the two C instructions:

i = PINA;
PORTB = i;
43 ~ L:il:l = “g - LI;I:I =
MName | Address | Walue | Bits | Mame | Address | Value | Bits |
+/ T ANALOG_COMPARATOR +/T»ANALOG_COMPARATOR
-+ 29 USART + 29 USART
FEEES 483 5P
< Bcru ] = [
+1 S5 EXTERNAL_INTERRUPT -+ SHEXTERNAL_INTERRUPT
¢ WATCHDOG + ¢ WATCHDOG
+ B TIMER_COUNTER_D + B TIMER_COUNTER_D
+ B TIMER_COUNTER_1 + B TIMER_COUNTER_1
~/S2 PORTA ~I[Z2 PORTA |
L PORTA IIB(k3E) 00 OJOOOOO0O Z2FORTA B (k3B 00 OJOOOOOOO
“ DORA kIAR3A) k00 OOOOO0O00 ¥ DDRA AR 00 OO0O0O0O0O0O4
2 PINA 13 (B39) [ e4O00O00OmO0 2 PINA k19 (33 G4 OJOOO0MON
|52 PORTE |52 PORTE
=2 PORTE 1838 00 OO0O0O00O00O00 =2 PORTE k1838 &< OO0OO00OMO0O
$ DDRB 1737 oFF INEEEREN ¥ DDRB k1737 off ANEEEEEN
=2 PINB 16 (@36 o0 00000000 2 PINB 16 (036 G0 OO0OOOWOO
+ =2 PORTC +/ =2 PORTC
+ =2 PORTD + =2 PORTD
+ =2 PORTE + =2 PORTE
-+ E)EEFROM +/ E)EEFROM

(a) changing PINA register
to Ox04

Figure 8: Modifying registers manually.

(b) effects on PORTB after running
i = PINA; PORTB = i;




e To monitor a C variable, select the variable name in the code window and click menu
Debug | Quick Watch. The variable will be added to a watch window, as in Figure 9.

M arme | Walue

i 4 'O

4 4 ¢ M Watch1 JWatch 2 < Wa

Figure 9: Watch window for C variables.

¢ Many other debugging options are available in the Debug menu, such as running up to a
break point or stepping over a function or a loop. To view the assembly code along with
the C code, select menu View | Disassembler.

3.4 Downloading and running HEX file on AVR board
To perform the steps in this section, you will need a STK500 development board from Atmel.
The STK500 kit includes two AVR microcontroller chips: ATMEGA8515 and ATMEGA16.

e The ATMEGA8515 is installed on the development board by the manufacturer.

e The ATMEGA1G6 is installed on all development boards in SECTE laboratories.

e To install the ATmegal6 chip, simply use a chip extractor tool to remove the existing
ATMEGA8515 from its socket. Then place the ATMEGAL6 in socket SCKT3100A3.

e If you use other AVR chips such as ATMEGA128, refer to Table 3.2 AVR Sockets, ‘AVR
STK500 User Guide’ for the exact socket.

Hardware setup

Refer to Figure 10 when carrying out the following steps for hardware setup.

e Connect the SPRO3G jumper to the ISP6PIN jumper, using the supplied cable in the
STK500 kit. This is needed to program the ATMEGA16 chip.

e Connect the board with the PC using a serial cable. Note that the STK500C has two
RS232 connectors; we use only the connector marked with RS232 CTRL.

e Connect the SWITCHES jumper to PORTA jumper. This step is needed in our example
because we want to connect 8 switches on the development board to port A of the
microcontroller.



e Connect the LEDS jumper to PORTB jumper. Th

is step is needed in our example

because we want to connect 8 LEDs on the development board to port B of the

microcontroller.

e Connect the board with 12V DC power supply and turn t eN.

f PORTA to SWITCHES

12-V power supply
--‘\ﬁ“--__;

to serial port of PC
)~

g ATMEGAS8515 chip (not used here)
PORTB to LEDs -

Figure 10: Setting up the STK500 for down

Downloading and running HEX file

loading and testing.

¢ In AVR Studio, select menu Tools | Program AVR | Connect.
e In the ‘Select AVR Programmer’ dialog box, choose ‘STK500 or AVRISP’ as the

platform and ‘Auto’ as Port (see Figure 11). Then c

Select AYR Programmer

Platfarm:

STKE00 ar AYRISP

JTAG ICE

JTAGICE mkll ComMz

AVRISP mkll COM3

AWH Dragon COmM4
COmM5

Tip: To auta-cohhect to the programmer used last time, press the ‘Programmer’

button on the toolbar.

Mote that the JTAGICE cannot be used for programming as long as it is

connected in a debugaging session. |n that case, select 'Stap Debugaging' fiest.

Dizconhected Mode. .. |

lick button Connect.

Cancel |

||

Figure 11: Selecting AVR progr

e Depending on the version of your AVR Studio,
appear. For now, this message can be discarded
future, you may want to read this message carefu
there to perform firmware update.

ammer.

a message about firmware may
by clicking button Cancel. In the
lly and perform the steps described



¢ In the ‘STK500’ dialog box that appears, select led.hex as ‘Input Hext File’. Then, click
button Program to download the HEX file to the AVR chip (Figure 12).

~i

Program |F|.|ses I LockBits | Advancedl Boand | Auto |

— Device

IATmega'I 6 j Erase Device |

r Programming mode
[ Erase Device Before Programming
IlSP mode J ¥ Veiify Device After Programming

r~Flash T a) Select HEX file
 se Cument Simulator/Emulator FLASH Memory /

£+ Input HEX File |E:\AVR'Projects'led\led hex g
b) Click to program R Program | Verty e— |
—EEPROM
 Use Cument Simulator/Emulator EEPROM Memory
£+ Input HEX File | -
Program | Verify Read |

Detecting on "Auto”...
STKS00 with V2 fimmware found on COM1:
Getting revisions.. HW: 02, SW Major: 02, SW Minor: (04 .. OK

Figure 12: Selecting AVR programmer.

e The program will now run on the microcontroller. If you press and hold down one of
the 8 switches on the development board, the corresponding LED will be turned on.

A MPEG-4 video demo of the program is available at
http://www.elec.uow.edu.au/avr/getdoc.php?doc=ecte333/1ab07_task123.mp4

This is the end of this introductory tutorial. More in-depth information about programming
Atmel AVR microcontrollers for embedded applications is provided in ECTE333 Digital Hardware
course at the School of Electrical, Computer and Telecommunication Engineering, University of
Wollongong, and also at our website http://www.elec.uow.edu.au/avr.

10



