
"TRADER" SERVICE SHEET

PILOT LITTLE MAESTRO

AC/DC SUPERHET

ne of the three alternative cabinet versions of the Pilot Little Maestro.

THE Pilot Little Maestro is a 4-valve (plus valve rectifier) AC/DC 2-band superhet. It is fitted into several alternative small table cabinets. of which the walnut type is illustrated. An aerial lead is permanently attached, and no earth is used. The receiver is for 200-240 V, AC or DC mains.

Release date: February, 1939. THE Pilot Little Maestro is a 4-valve (plus valve rectifier) AC/DC

Release date: February, 1939.

CIRCUIT DESCRIPTION

Aerial input via isolating condenser C1 to coupling coil L2 and single tuned circuits L3, C18 (MW) and L4, C18 (LW). On LW, S1 closes to connect C2 across L2 to remove a possible reson-

ance in the band.

L1, C16 across aerial circuit form an IF filter.

First valve (V1, Brimar 6A8G) is a

heptode operating as frequency changer. Oscillator grid coils L5 (MW) and L6 (LW) are tuned by C20; parallel trimming by C21 (MW); series tracking by C22 (LW) and specially shaped C20 plates. Reaction by L7 (MW) and direct coupling via C22 (LW). Second valve (V2, Brimar 6K7G) is a variable-mu RF pentode operating as IF amplifier with tuned-primary, tuned-secondary transformer couplings C23, L8, L9, C24 and C25, L10, L11. C26.

Intermediate frequency 451 KC/S.

Intermediate frequency 451 KC/S.

Diode second detector is part of double diode triode valve (V3. Brimar 6Q7G). Audio frequency component in rectified output is developed across manual volume control R4, which also operates as load resistance, and passed via C8 to CG of triode section.

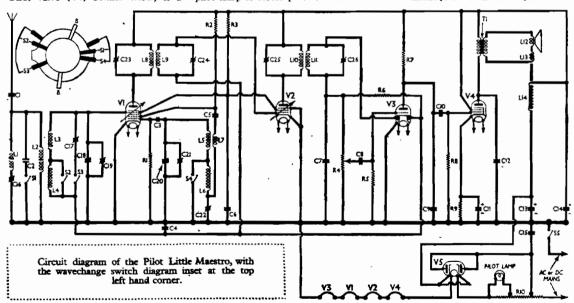
DC potential across R4 is fed back through decoupling circuit R6, C4 as GB to FC and IF valves, to give AVC. Under no signal conditions, a very small current will flow from the second diode of V3 via R6, R4 and provide a minimum GB potential for the controlled valves.

Resistance-capacity coupling by R7,

GB potential for the controlled valves. Resistance-capacity coupling by R7. C10 and R8 between V3 triode and pentode output valve (V4, Brimar 25A6G). Fixed tone correction in anode circuit by C12.

On AC mains, HT is supplied by IHC rectifying valve (V5, Brimar 25Z6G). Smoothing by speaker field L14 and electrolytic condensers C13, C14.

Valve heaters are connected in series, together with tapped line cord ballast resistance R10, across mains input. The pilot lamp is across part of R10.


COMPONENTS AND VALUES

	RESISTANCES		Values (ohms)
R1	V1 osc_CG resistances		39,080
R2	V1 osc. anode HT feed	•••	22,908
R3	V1, V2 SG's HT feed		22,000
R3 R4	Manual volume control; \	73	
i —			250,060
R5			9,500,000
R6	AVC line decoupling		1,000,000
R7	V3 triede anode load		270,000
R.8	T4 00 !	•••	270,000
R9	Tre CDt.A	•••	470
R10	Tracker simult hallant	•••	500+

† Tapped at 15 O and 370 O from V5 heater.

	Values (µF)	
C1 C2 C3 C4 C5 C7 C8 C9 C10 C12* C14* C15* C17* C16* C17* C19* C19* C19* C19* C19* C19* C19* C19	Aerial isolating condenser Anti-resonance condenser Anti-resonance condenser VI cac. CG condenser VI cac. CG condenser VI anode coupling VI anode coupling VI anode coupling VI triode coupling VI triode to V4 AF coupling V4 cathode by-pass Fixed tone corrector HT smoothing condenser V5 anodes RF by-pass Aerial Circuit E utrimmer Aerial circuit E utrimmer Aerial circuit funing Aerial circuit funing Aerial circuit funing Aerial circuit funing Ose circuit My trimmer Ose circuit My trimmer Ose circuit My trimmer	
C25	Osc. circuit LW tracker 1st IF trans. pri. tuning 1st IF trans. sec. tuning 2nd IF trans. sec. tuning 2nd IF trans. sec. tuning	0-00045

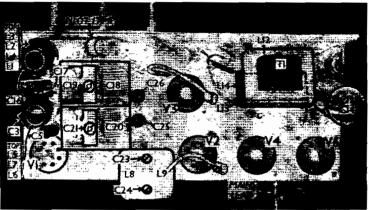
* Electrolytic. † Variable. 1 Pre-set.

PILOT-Continued

OTHER COMPONENTS	Approx. Values (ohms)
L1	36-0 13-5 3-4 16-3 7-5 105-0 8-5 8-5 35-0 35-0 35-0 270-0 0-3

DISMANTLING THE SET

Removing Chassis.—Remove the three control knobs (pull-off), prise out the staple holding the aerial wire to the bottom of the cabinet, and remove the three self-tapping screws (with washers) holding the chassis to the bottom of the cabinet, when the complete receiver can be withdrawn as a single unit.


VALVE ANALYSIS

Valve voltages and currents given in the table below are those measured in our receiver when it was operating on

Valve	Voltage	Anode Current (mA)		Screen Current (mA)
V1 6A8G	(160 Oscili (106	3-8 lator	66	2.7
V2 6K7G	160	3-6	66	1-4
V3 6Q7G	47	0.4	_	. –
V4 25 A 6G	152	, 35-0	160	6-0
V5 25Z6G-	1 -	_	-	<u> </u>

· Cathode to chassis, 202 V. D.C.

AC mains of 236 V. The receiver was tuned to the lowest wavelength on the MW band, and the volume control was

Plan view of the chassis of the Pilot Little Maestro. The adjustment of the trimmers in the set (including Cl6 and Cl7) can be seen.

parts of the speaker, which is mounted on the chassis. The adjustments of most

at maximum, but there was no signal

Notages were measured on the 400 V scale of a model 7 Universal Avometer, chassis being negative.

GENERAL NOTES

GENERAL NOTES

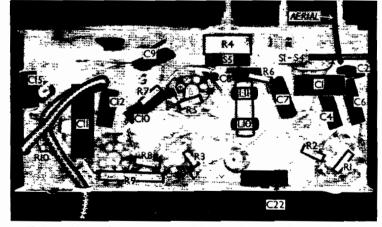
Switches.—S1-S4 are the waveband switches, in a single rotary unit beneath the chassis. They are shown inset in the circuit diagram, where they are drawn as seen looking from the rear of the underside of the chassis. On MW (knob anti-clockwise), S2 and S4 are closed; on LW (knob clockwise), S1 and S3 are closed.

S5 is the QMB mains switch, ganged with the volume control. R4.

Coils.—L1-L4 and L5-L7 are in two unscreened tubular units on the chassis deck. L8, L9 are in a screened unit on the chassis deck. L10, L11 are in annscreened unit beneath the chassis.

Pilot Lamp.—This is an Ever Ready type, with a miniature bayonet cap, and is rated at 7.3 V. O.23 Å.

Condensers C13. C14.—These are two 20μ F electrolytics in a single metal can, the can being the common negative connection. The tag at the top end is the positive of C14, and the tag beneath the chassis the positive of C13.


Resistance R10.—This is incorporated in the mains lead, and is asbestos insulated. At the chassis end of the cable, the asbestos-covered lead is the end of R10 connected to V5; the white lead is the first tapping: the red lead is the second tapping (anodes of V5); and the black lead is one of the mains connections, the other being the far end of R10.

Chassis Divergencies.—C9 is not in the makers' diagram. The makers show R8 as 470,000 O: C7 as 0.00025uF; C12 as 0.025uF and C15 as 0.025uF

IF Stages.—Switch set to MW, turn gang to maximum and connect gang to maximum and connect live signal generator lead via a 0.1 µF condenser to top cap of V2, and carthed lead (via a 0.1 µF condenser) to chassis. Feed in a 451 KC/S signal, and adjust C26 and C25 (through chassis deck) for maximum output. Transfer "live" maximum output. Transfer "live" generator lead and its condenser to cop cap of V1, and adjust C24 and C23 for maximum output. Transfer signal generator to aerial lead, via a 0.00005#F condenser, and adjust C16 for minimum

arguer and Oscillator Stages.—With gang at maximum, pointer should be horizontal Connect signal generator to aerial lead, via a suitable dummy aerial, and to chassis, via a 0.1 of condenser MW.—Switch set to MW, tune to 200 m on scale, feed in a 200 m (1,500 KC/S) signal, and adjust C21, then C19, for maximum output.

LW.—Switch set to LW. tune to 2.000 m on scale, feed in a 2.000 m (150 KC/S) signal, and adjust C22 for maximum output. Feed in a 1,000 m (300 KC/S) signal, tune it in, and adjust C17 for maximum output, rocking the gang slightly, if necessary.

Underneath view of the chassis of the Pilot Little Maestro. R10 is included in the mains lead, and is tapped (see General Notes). A diagram of the \$1-54 unit is inset in the circuit diagram.