
 1

MPLAB Tutorial
If you are new to MPLAB IDE and MPLAB SIM, this tutorial should help you
understand the basics of using the integrated development environment to set up your
application for development and of using the simulator to debug your application
code. You will set up a simple application for the PIC16F84 device in a single project,
single workspace environment.

MPLAB IDE Features and Installation
MPLAB IDE is a Windows OS based Integrated Development Environment for the
PICmicro MCU families and the dsPIC Digital Signal Controllers. The MPLAB IDE
provides the ability to:

• Create and edit source code using the built-in editor.
• Assemble, compile and link source code.
• Debug the executable logic by watching program flow with the built-in

simulator or in real time with in-circuit emulators or in-circuit debuggers.
• Make timing measurements with the simulator or emulator.
• View variables in Watch windows.
• Program firmware into devices with device programmers (for details, consult

the User's Guide for the specific device programmer).

Note: Selected third party tools are also supported by MPLAB IDE. Check the release notes
or readme files for details.

System Requirements

The following minimum configuration is required to run MPLAB IDE (6.20):

• PC-compatible Pentium class system
• Microsoft Windows 98 SE, Windows 2000 SP2, Windows NT 4.0 SP6,

Windows ME, Windows XP
• 64 MB memory (128MB recommended)
• 85 MB of hard disk space
• Internet Explorer 5.0 or greater

Install/Uninstall MPLAB IDE

To install MPLAB IDE on your system:

Note: For some Windows OS's, administrative access is required in order to install software on a PC.

• If installing from a CD-ROM, place the disk into a CD drive. Follow the on-
screen menu to install MPLAB IDE. If no on-screen menu appears, use
Windows Explorer to find and execute the CD-ROM menu, menu.exe.

 2

• If downloading MPLAB IDE from the Microchip web site
(www.microchip.com), locate the download (.zip) file and click on it to save
it to your PC. Then, unzip it and execute the resulting file to install.

To uninstall MPLAB IDE:

• Select Start>Settings>Control Panel to open the Control Panel.
• Double-click on Add/Remove Programs. Find MPLAB IDE on the list and

click on it.
• Click Change/Remove to remove the program from your system.

Running MPLAB IDE

To start the IDE, double click on the icon installed on the desktop after installation or
select Start>Programs>Microchip MPLAB IDE vx.x>MPLAB IDE vx.x. A screen will
display the MPLAB IDE logo followed by the MPLAB IDE desktop.

Tutorial Overview
In order to create code that is executable by the target PICmicro MCU, source files
need to be put into a project and then the code is built into executable code using
selected language tools (assemblers, compilers, linkers, etc.). In MPLAB IDE, the
project manager controls this process.

All projects will have these basic steps:

• Select Device. The capabilities of MPLAB IDE vary according to which
device is selected. Device selection should be done before doing anything else
on a project.

• Create Code. Then source code will be written to the file.
• Create Project. MPLAB Project Wizard will be used to Create a Project.
• Select Language Tools. In the Project Wizard the language tools will be

selected. For this tutorial, the built-in assembler will be used. For other
projects built-in linker or one of the Microchip compilers or other third party
tools might be set.

• Put Files in Project. Only one file will be put into the project, a source file.
• Build Project. The project will be built - causing our source files to be

assembled into machine code that can run on the selected PICmicro MCU.
• Test Code with Simulator. And finally, the code will be tested with the

simulator.

The Project Wizard will guide us through most of these steps and will make this series
of tasks easy.

Note: Some aspects of the user interface will change in future releases and the screen shots in this
tutorial may not exactly match the appearance of the MPLAB IDE desktop in later releases.

 3

Select Device
To show menu selections in this document, the menu item from the top row in
MPLAB IDE will be shown after the menu name like this MenuName>MenuItem. So
to choose the Select Device entry in the Configure menu, it would be written as
Configure>Select Device.

Choose Configure>Select Device.

Figure: Configure>Select Device

 4

In the Device dialog, select the PIC16F84 from the list if it's not already selected.

Figure: Select Device Dialog

The "lights" indicate which MPLAB IDE components support this device.

• A green light indicates full support.
• A yellow light indicates minimal support for an upcoming part that might not

be fully supported in this release by the particular MPLAB IDE component.
Usage of components with a yellow light instead of a green light is often
intended for early adopters of new parts who need quick support and
understand that some operations or functions may not be available.

• A red light indicates no support for this device. Support may be forthcoming or
inappropriate for the tool, e.g., dsPIC devices cannot be supported on MPLAB
ICE 2000.

 5

Creating Source Code with the Editor
Select File>New to open an empty editor window in which to type your source code.
For more on using the editor, see MPLAB Editor Help.

Enter the following, or copy and paste:

list p=16f84
include <p16f84.inc>

c1 equ 0x0c ; Set temp variable counter c1 at address 0x0c

org 0x00 ; Set program memory base at reset vector 0x00
reset

goto start ; Go to start of the main program

org 0x04 ; Set program memory base to beginning of user code
start

movlw 0x09 ; Initialize counter to arbitrary value greater than zero
movwf c1 ; Store value in temp variable a defined above

loop
incfsz c1,F ; Increment counter, place results in file register
goto loop ; Loop until counter overflows

goto bug ; When counter overflows, got to start to re-initialize
end

This code is a very simple program that increments a counter and resets to a
predetermined value when the counter rolls over to zero.

Once you have completed entering the code, select File>Save and save the file as
tutor84.asm. You may save it to any directory; you will move it, if necessary, into
the project directory in the next step.

Create Project
Next, we'll create a project using the Project Wizard. A project is the way your files
are organized to be compiled and assembled. We will use a single assembly file for
this project. Choose the Project>Project Wizard.

From the Welcome dialog, click on Next> to advance in the Project Wizard.

The next dialog (Step One) allows you to change the device, which we've already
done. Make sure that it says PIC16F84. If it does not, select the PIC16F84 with the
menu.

 6

Select Language Tools
Step Two of the Project Wizard sets up the language tools that are used with this
project. Select Microchip MPASM Toolsuite in the top pulldown. Then you should see
MPASM, MPLINK and MPLIB show up in the Toolsuite Contents box. You can click on
each one to see its location. If you installed MPLAB IDE into the default directory,
the MPASM assembler executable will be:

C:\Program Files\MPLAB IDE\MCHIP_Tools\mpasmwin.exe

the MPLINK linker executable will be:

C:\Program Files\MPLAB IDE\MCHIP_Tools\mplink.exe

and the MPLIB librarian executable will be:

C:\Program Files\MPLAB IDE\MCHIP_Tools\mplib.exe

If these do not show up correctly, use the browse button to set them to the proper files
in the MPLAB IDE subfolders.

Figure: Project Wizard - Select Language Tools

 7

Put Files in Project
Step Three of the wizard allows you to name the project and put it into a folder. This
sample project will be called tutor84, and using the Browse button, the project will
be placed in a folder named My Documents.

Figure: Project Wizard - Name Project

Step Four of the Project Wizard allows us to select files for the project. Choose the file
named tutor84.asm. The full path to the file will be:

C:\My Documents\tutor84.asm

Figure: Project Wizard - Select File

 8

Press the Add>> button to move the file name to the right panel, and click on the check
box at the start of the line with the file name to enable this file to be copied to our
project directory.

Make sure that your dialog looks like the picture above, with check box checked, then
press the Next> button to finish the Project Wizard.

The final screen of the Project Wizard is a summary showing the selected device, the
toolsuite, and the new project file name.

After pressing the Finish button, look at the Project Window on the MPLAB IDE
desktop. It should look like this. If the Project Window is not open, select
View>Project.

Figure: Project Window

Files can be added and projects saved by using the right mouse button in the project window. In case
of error, files can be manually deleted by selecting them and using the right mouse click menu.

 9

Build the Project
Assembling the file can be accomplished in several ways. The method described here uses the
Project>Build All menu item. This will execute the MPASM assembler in the background.
Once the assembly process is complete, the Output Window will appear.

Figure: output window – Build Failed

You have intentionally entered at least one error if you entered the code as written in
previously. The last goto in the program references a nonexistent label called bug.
Since this label has not been defined before, the assembler reports an error. You may
have other errors as well.

Using the mouse, double click on the error message. This will bring the cursor to the line in
the source code that contains the error. Change bug to start. Use the Output window to help
find the errors, and repair any other bugs in your source code. Reassemble by executing the
Project>Build All menu function. This process may take a couple of iterations.

To build the project, select either:

• Project>Build All
• Right-click on the project name in the project window and select Build All
• Click the Build All icon on the Project toolbar. Hover the mouse over icons to

see pop-up text of what they represent.

The Output window shows the result of the build process. When you’ve fixed all
errors in the source code, the Output window will display “BUILD SUCCEEDED”.

Figure: output window – Build Succeeded

You now have a complete project that can be executed using the simulator.

 10

Upon a successful build, the output file generated by the language tool will be loaded.
This file contains the object code that can be programmed into a PICmicro MCU and
debugging information so that source code can be debugged and source variables can
be viewed symbolically in Watch windows.

Note: The real power of projects is evident when there are many files to be compiled/assembled and
linked to form the final executable application - as in a real application. Projects keep track of all
of this. Build options can be set for each file that access other features of the language tools,
such as report outputs and compiler optimizations.

Test Code with Simulator
In order to test the code, we need some kind of software or hardware that will execute
the PICmicro instructions. A debug execution tool is a hardware or software tool that
is used to inspect code as it executes a program (in this case tutor84.asm). Hardware
tools such as MPLAB ICE or MPLAB ICD 2 can execute code in real devices, but if
we don't have hardware yet, the MPLAB simulator can be used to test the code. For
this tutorial use MPLAB SIM simulator.

The simulator is a software program that runs on the PC to simulate the instructions of
the PICmicro MCU. It does not run in "real time," since the simulator program is
dependent upon the speed of the PC, the complexity of the code, overhead from the
operating system and how many other tasks are running. However, the simulator
accurately measures the time it would take to execute the code if it were operating in
real time in an application.

Note: Other debug execution tools include MPLAB ICE 2000, MPLAB ICE 4000 and MPLAB ICD 2.
These are optional hardware tools to test code on the application PC board. Most of the MPLAB
IDE debugging operations are the same as the simulator, but unlike the simulator, these tools
allow the target PICmicro MCU to run at full speed in the actual target application.

Select the simulator as the debug execution tool. This is done from the
Debugger>Select Tool pull down menu. After selecting MPLAB SIM, the following
changes should be seen.

1. The status bar on the bottom of the MPLAB IDE window should change to
MPLAB SIM.

2. Additional menu items should now appear in the Debugger menu.
3. Additional toolbar icons should appear in the Debug Tool Bar.

TIP: Position the mouse cursor over a toolbar button to see a brief description of the
button's function.

 11

Figure: MPLAB IDE DESKTOP WITH MPLAB SIM AS DEBUGGER

Next we select Debugger>Reset and a green arrow shows us where our program will
begin. The first instruction in memory jumps to the label called Start, where we put
our code. This instruction jumps over the PIC16F84 vector areas in lower memory.

Figure: Debug>Reset

To single step through the application program, select Debugger>Step Into. This will
execute the currently indicated line of code and move the arrow to the next line of
code to be executed.

There are shortcuts for these commonly used functions in the Debug Tool Bar.

 12

TABLE: DEBUG SHORT CUT ICONS
Debugger Menu Toolbar Button Hot Key

Run F9

Halt F5

Animate

Step Into F7

Step Over F8

Step Out Of

Reset F6

Now press the Step Into icon or select Debugger>Step Into to single step to our code
at Start.

Figure: DEbug>Step Into

Opening Other Windows for Debugging
There are many ways to look at your program and its execution using MPLAB IDE. For
example, this program is intended to increment a temporary counter, but how do you know
for sure that is happening? One way is to open and inspect the file register window. Do this
by executing the View>File Registers menu item. A small window with all of the file
registers, or RAM, of the PIC16F84 will appear. All special registers can be inspected by
selecting View>Special Function Registers menu item.

Click on the appropriate icon on the toolbar or use the hot key shown next to the menu item. This is
usually the best approach for repeated stepping.

 13

Press <F7> (Execute Single-Step) a few times and watch the values update in the file register
window. We put the counter variable at address location 0x0C. As the temporary counter is
incremented, this is reflected in the file register window. File registers change colors when
their value changes so that they can easily be noticed on inspection. However, in very
complex programs, many values may change, making it difficult to focus on one or two
variables. This problem can be solved by using a Watch window.

Select View>Watch to bring up an empty Watch Window. There are two pull downs
on the top of the Watch Window. The one on the left labelled "Add SFR" can be used
to add the Special Function Register, WREG, into the watch. Select WREG from the list
and then click Add SFR to add it to the window.

Figure: Watch - Select WREG

The pull down on the right, allows us to add symbols from our program. Use that pull
down to add the c1 variable into the Watch Window. Select c1 from the list and then
click Add Symbol to add it to the window.

Figure: Watch - Select variable "c1"

The watch window should now show the address, value and name of the two registers.

Note: You also may add items to the watch window by either dragging them from the SFR, File
Register or Editor window or directly in the window under symbol name and typing in the item.

 14

We could continue single stepping through this code, but instead we'll set a breakpoint
just before the first increment of the temporary counter c1. Set a breakpoint by putting
the cursor on the line and clicking the right mouse button.

Figure: Debug Context Menu (Right Mouse Click on Line)

Select Set Breakpoint from the context menu. A red "B" will show on the line.

Figure: Editor Window - Set Breakpoint

 15

Select Debugger>Run to run the application. A text message "Running..." will briefly
appear on the status bar before the application halts at this first breakpoint.

The watch window should now show that the variable c1 was incremented by one.
This would seem to indicate that the program is working as designed. You can single
step through the code, or run more times to verify that things are acting properly.

It would be interesting to calculate time spent in loop. We could use the data book to
determine how long each instruction would take in our loop and come up with a pretty
accurate number. Or we could use the MPLAB StopWatch to measure the time. We're
interested in the time our whole loop takes to execute, so if we set another breakpoint
on the instruction goto Start, we can measure the time between breakpoints.

Use Debugger>StopWatch to bring up the StopWatch dialog. Make sure that a two
breakpoints are set at the incfsz c1,F and at the goto Start instruction, and then
press Debug>Reset and then Debug>Run to halt at the incfsz c1,F instruction. With
the default processor frequency of 4 MHz, the StopWatch should show that it took 4
microseconds to reach the first breakpoint.

Figure: Stopwatch - at first breakpoint

Now press Zero button in StopWatch window and disable or remove breakpoint at
incfsz c1,F instruction. Execute Run again to go around the loop, and note that the
StopWatch shows that it took about 740 milliseconds. To change this, you can change
the initial value in the c1.

Figure: Stopwatch - after delay

 16

Using Trace
To view which instructions are executed from a Run to a Halt or Break, use the trace
function.

• Select Debugger>Settings and click the Trace/Pins tab. "Trace Enable" should
be checked by default. If it is not checked, click to check it now. Click OK.

• Select View>Simulator Trace to open the Trace window.
• If "Trace Enable" had been checked by default, there will be data in this

window when you open it. These are the instructions that executed when you
ran to the breakpoint in the previous topic.

• If "Trace Enable" had not been checked by default, there will be no data in this
window when you open it. To fill the window with data, repeat the "Using
Breakpoints" procedure from the previous topic. When the breakpoint halts the
program, click on the Trace window to make it active and view the instructions
that executed when you ran to the breakpoint.

For more on the meaning of the data in this window, go to the topic on the Trace
window.

Close the Trace window when you are done.

Using Pin Stimulus
To better simulate real-world conditions, such as high/low input to a pin, the simulator
provides a mechanism known as stimulus. The first type of stimulus is called pin
stimulus which provides synchronous or asynchronous stimulus on I/O pins.

• Select Debugger>Stimulus Controller and click the Pin Stimulus tab.
• Click Add Row to add a row for data entry.
• Click in the added row to select it for data entry. Then select "Asynch" for

"Type", "RB7" for "Pin" and "Toggle" for "Action".
• Click Fire under Enable. Then perform a "Step Into" and see the value of the

PORTB change to 0x80 in the Special Function Registers (SFR) window.
• Click Fire under Enable again. Then perform a "Step Into" and see the value of

the PORTB change to back to 0x00 in the SFR window.

Although this tutorial program does not require pin I/O to function, your own
application may require, for example, the pushing of a button to activate a procedure.
By using pin stimulus, you can simulate a button push to test your code.

• Save your pin stimulus to a file by selecting Save under "Pin Stimulus file".

You may load this pin stimulus file into another project by using Load under "Pin
Stimulus file".

Note: Despite its listing in the drop-down list, you cannot load old clock stimulus files (*.sti).

 17

Using File Stimulus
The second type of stimulus is called file stimulus which provides triggered stimulus
on I/O pins or file registers, set up from files. There are three types of files used in file
stimulus. The hierarchy of these files is as follows:

• File Stimulus file (*.fsti) - composed of one or more Synchronous Stimulus
files.

• Synchronous Stimulus file (*.ssti) - contains information on triggers used for
applying stimulus to either a pin or register.

• Register Stimulus file (*.rsti) - specifies register stimulus.

When you are creating file stimulus, you should proceed as follows:

Creating a Register Stimulus File

To create a Register Stimulus file:

• Select File>New to open a new edit window.
• In the window, enter the following: B0.
• Select File>Save and save the file as reg1.rsti.
• Select File>Close to close the file.

You will next create a Synchronous Stimulus file which will make use of this Register
Stimulus file.

Creating a Synchronous Stimulus File

To create a Synchronous Stimulus file:

• Click the File Stimulus tab of the Simulator Stimulus dialog
(Debugger>Stimulus).

• Click Add under "Input Files". Enter stim1 for "File Name" and click OK in
the Open dialog. The file name should appear in the file list box, i.e.,
C:\My Documents\stim1.ssti.

• Click on the file name to select the file. Click Edit under "Input Files". This
will disable some "Input Files" buttons and enable the "Edit Controls" buttons.

• Click Add Row under "Edit Controls". A row will appear for entering data.
• Set up the row for file injection into a register as follows:

o Select "PC" under "Trigger On".

Note: You must use PC with register stimulus.

o Enter 0x1a under "Trig Value".
o Select TRISB under "Pin/Register".

Note: You cannot inject file values into port registers, e.g., PORTB. Use pin values
(explained next.) Also, you cannot inject file values into the W register.

 18

o Select "File" under "Value". This will open a dialog to select a register
stimulus file. Select reg1.rsti and click Open to enter this file under
"Value".

• Click Add Row under "Edit Controls". Another row will appear for entering
data.

• Set up the row for pin injection as follows:
o Select "Cycle" under "Trigger On".

Note: You must use Cycle with pin stimulus.

o Enter 14 under "Trig Value".
o Select "Pin:RB4" under "Pin/Register".
o Select "1" under "Value".

• Click Save under "Input Files" to save your work. This will disable the "Edit
Controls" buttons and enable the "Input Files" buttons.

You will now create a File Stimulus file including just this Synchronous Stimulus file.

Creating a File Stimulus File

To create a File Stimulus file:

• Click Save Setup under "File Stimulus". This will save all the files in the file
list box as part of a master stimulus file. In this case, there is only one file.
Enter file1 for "File name" and click Save.

You will now run your program again and observe the affects of the stimulus.

Note: Do Not Close the Simulator Stimulus dialog. You may move it almost off the screen if you need
to view other dialogs.

Running with Stimulus

First, you will need to add TRISB to the watch window. Do this by clicking on the
watch window, selecting TRISB from the SFR list, and then clicking Add SFR.

To run your program and inject the stimulus:

• Select Debugger>Reset to reset your application.
• Select Debugger>Step Into (or click the equivalent toolbar icon) until the PC

on the status bar shows a value of 0x1a.
• Step once more to execute the instruction at pc:0x1a and trigger the register

stimulus. The value of TRISB should now be 0xB0 instead of 0xF0.
• Step once more to execute the instruction at cycle=14 and trigger the pin

stimulus. The value of PORTB should now be 0x11 instead of 0x01.

You could add another row to the ssti file that would toggle the RB4 pin, i.e., "Trigger
On" = "Cycles", "Trig Value" = 15, "Pin/Register" = "Pin:RB4", "Value" = 0.

