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Pinhole cameras

Abstract camera model - box
with a small hole in it

Py
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Pinhole cameras work in practice
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Real Pinhole Cameras

Pinhole too big -
many directions are
averaged, blurring the
image

Pinhole too small-
diffraction effects blur
the image

Generally, pinhole
cameras are dark, because
a very small set of rays
from a particular point
hits the screen.
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The reason for lenses

I

Lenses gather and
focus light, allowing
for brighter images.
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The thin lens
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Thin Lens Properties:
1. Aray entering parallel to optical axis
goes through the focal point. 1 1 1
2. Aray emerging from focal point is parallel o
to optical axis ' T
3. Aray through the optical center is unaltered < < f
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The thin lens
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—_——— = Note that, if the image plane is very
V4 V4 f small and/or z >> Z', then Z’ is about f
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Field of View

» The effective diameter of alens (d) is the portion of a lens actually
reachable by light rays.

+ The effective diameter and the focal length determine the field of view:
tanw=d/(2f)
* wiis the half the total angular “view” of a lens system.

* Another fact is that in practice points at different distances are imaged,
leading to so-called “circles of confusion” of size d/z | z’-z| where z is the
nominal image plane and z’ is the focusing distance given by the thin
lens equation.

* The “depth of field” is the range of distances that produce acceptably
focused images. Depth of field varies inversely with focal length and
lens diameter.
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Lens Realities

Real lenses have a finite depth of field, and usually
suffer from a variety of defects

A S

Spherical Aberration

vignetting
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Standard Camera Coordinates

* By convention, we place the image in front of the optical center
— typically we approximate by saying it lies one focal distance from the center
— in reality this can’t be true for a finite size chip!

» Optical axis is z axis pointing outward
+ X axis is parallel to the scanlines (rows) pointing to the right!
» By the right hand rule, the Y axis must point downward

* Note this corresponds with indexing an image from the upper left to the
lower right, where the X coordinate is the column index and the Y
coordinate is the row index.
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The equation of projection

* Equating Z’ and f X .y
— We have, by similar triangles, (xxy,2)—=>(f—=.f=)
that (x, y, z) -> (-f x/z, -f y/z, ) Z Z
— Ignore the third coordinate, and
flip the image around to get:
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Distant objects are smaller
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Parallel lines meet
common to draw film plane
] t of the focal point
in fron p //,_) 0

A Good Exercise: Show this is the case!
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Some Useful Geometry

* In 3D space
— points:
+ Cartesian point (x,y,z)
+ Projective pt (x,y,z,w) with convention that w is a scale factor
— lines:
« a point p on the line and unit vector v for direction
— for minimal parameterization, p is closest point to origin
+ Alternative, a line is the intersection of two planes (see below)
— planes
+ apoint p on the plane and a unit normalnst.n.(p’-p)=0
« multiplying through, also n.p’ - d = 0, where d is distance of closest pt to
origin.
« any vectorn.q =0 where qis a projective pt

— note, for two planes, the intersection is two equations in 4 unknowns up to
scale --- i.e. a one-dimensional subspace, or a line

* Note that planes and points are dual --- in the above, | can equally think
of n or q as the normal (resp. point).
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Some Useful Geometry

* In 2D space
— points:
+ Cartesian point (x,y)
* Projective pt (x,y,w) with convention that w is a scale factor
— lines
+ apoint p on the line and a unit normalnst.n.(p’-p)=0
« multiplying through, also n.p’ - d = 0, where d is distance of closest pt to
origin.
« any vectorn.q =0 where qis a projective pt

— note, for two lines, the intersection is two equations in 3 unknowns up to scale
--- i.e. a one-dimensional subspace, or a point

* note that points and lines are dual --- | can think of n or g as the normal
(resp. point)
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Some Projective Concepts

* The vector p = (x,y,z,w)’ is equivalent to the vector k p for nonzero k
— note the vector p = 0 is disallowed from this representation

» The vector v = (x,y,z,0)’ is termed a “point at infinity”; it corresponds to a
direction

+ InP?
— given two points p; and p,, | = p4 £ p, is the line containing them
— given two lines, I;, and I, p = I; £, is point of intersection

— Apointpliesonalinelif p ¢ | =0 (note this is a consequence of the triple
product rule)

— 1=(0,0,1) is the “line at infinity”

— it follows that, for any point p at infinity, I¢ p = 0, which implies that points at
infinity lie on the line at infinity.
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Some Projective Concepts

* The vector p = (x,y,z,w)’ is equivalent to the vector k p for nonzero k
— note the vector p = 0 is disallowed from this representation

» The vector v = (x,y,z,0)’ is termed a “point at infinity”; it corresponds to a
direction

* InP3,
— Anpoint p lies on a plane | if p ¢ | = 0 (note this is a consequence of the triple
product rule; there is an equivalent expression in determinants)
— 1=(0,0,0,1) is the “plane at infinity”

— it follows that, for any point p at infinity, I¢ p = 0, which implies that points at
infinity lie on the line at infinity.
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Some Projective Concepts

» The vector p = (x,y,z,w)’ is equivalent to the vector k p for nonzero k

note the vector p = 0 is disallowed from this representation

* The vector v = (x,y,z,0) is termed a “point at infinity”; it corresponds to a direction

*  Plucker coordinates

10/15/04

In general, a representation for a line through points p, and p, is given by all possible 2x2
determinants of [p, p,] (an n by 2 matrix)
U= (Ig1l41, l3:23.13 1514 2) @re the Pl_cker coordinates of the line passing through the two points.

+ if the points are not at infinity, then this is also the same as (p, - p;, Py X p,)
The first 3 coordinates are the direction of the line
The second 3 are the normal to the plane (in R3) containing the origin and the points
In general, a representation for a plane passing through three points p,, p, and p, are the
determinants of all 3 by 3 submatrices [p, p, p]

* letl;; mean the determinant of the matrix of matrix formed by the rows i and j

P = (234 l134: 142, 123)
+ Note the three points are colinear if all four of these values are zero (hence the original 3x4 matrix
has rank 2, as we would expect).

Two lines are colinear if we create the 4x4 matrix [p,,p,,p’;,p’,] where the p’s come from
one line, and the p’s come from another.
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Parallel lines meet

» First, show how lines project to images.

» Second, consider lines that have the same direction (are parallel)

» Third, consider the degenerate case of lines parallel in the image

10/15/04

(by convention, the vanishing point is at infinity!)

A Good Exercise: Show this is the case!
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Vanishing points

» Another good exercise (really follows from the
previous one): show the form of projection of *lines*
into images.

» Each set of parallel lines (=direction) meets at a
different point
— The vanishing point for this direction

» Sets of parallel lines on the same plane lead to
collinear vanishing points.
— The line is called the horizon for that plane
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The Camera Matrix

Homogenous coordinates for 3D
— four coordinates for 3D point
— equivalence relation (X,Y,Z,T) isthesameas (kX,kY,kZkT)
» Turn previous expression into HC’s
— HC’s for 3D point are (X,Y,Z,T)
— HC’s for point in image are (U,V,W)

X
U\ |(10 0 0\|(Y\| oy
VJ=|01 10 0|Z (U,V,W)%(W,W)#u,v)
w) 00 Y o)
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Orthographic projection
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Suppose | let f go to infinity; then
y = y
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The model for orthographic
projection

(X

(UY (1 0 0 0)
ML
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Weak perspective

Issue Uu=:s5x
— perspective effects, but not over
the scale of individual objects V= Sy
— collect points into a group at
about the same depth, then
divide each point by the depth of S = f / Z *
its group
— Adv: easy
— Disadv: wrong o J 24 T,
o
k
o
P I
10/15/04 CS 441, Copyright G.D. Hager

The model for weak perspective
projection

0
0

Z*f

-
S — O
S o O
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The Affine Camera

» Choose a nominal point x,, Y,, Z, and describe projection relative
to that point

o u="fXyzg+ (X-Xo)zg - Xo/2%; (2 —2p) ] =f(a; x +a,z + d,)
© VEFlyolzo (Y = YolZo — Yoz (2= 2p) = f(asy + @,z + dy)

* gathering up

alternatively:
« A=J[a,;0a, 0aza,) X
.« d=1[d dy] U a 0 a, d v
Vi=l0 a, a, d,
© U=AP+d wllo 0 0 1/f “
T
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Geometric Transforms

In general, a point in n-D space transforms by
P’ = rotate(point) + translate(point)

In 2-D space, this can be written as a matrix equation:

x"\ (Cos(0) —Sin(0) Y x N tx
y' | | Sin(@) Cos(®) |y | |ty

In 3-D space (or n-D), this can generalized as a matrix equation:
pPP=Rp+T or p=Ri(p'-T)
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Geometric Transforms

Now, using the idea of homogeneous transforms,
we can write:

R T
0 0 0 1

'

p:

R and T both require 3 parameters. These correspond
to the 6 extrinsic parameters needed for camera calibration
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Intrinsic Parameters

Intrinsic Parameters describe the conversion from
unit focal length metric to pixel coordinates (and the reverse)

Xmm = = (Xpix - ox) Sy -~ '1/Sx Xmm + Oy = Xpix

Yom = - (ypix - Oy) Sy --> '1/Sy Ymm Oy = ypix

or
X —~1/s, 0 o, \x
y| = 0 =l/s, o |y| =Kyup
W) 0 0 1w

It is common to combine scale and focal length together

as the are both scaling factors; note projection is unitless in this case!
10/15/04 CS 441, Copyright G.D. Hager



The Camera Matrix

* Homogenous coordinates for 3D
— four coordinates for 3D point
— equivalence relation (X,Y,Z,T) isthesameas (kX,kY,kZkT)
» Turn previous expression into HC’s
— HC’s for 3D point are (X,Y,Z,T)
— HC’s for point in image are (U,V,W)

10/15/04

0 UV e(%,%:(u,v)
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Camera parameters

« Summary:

— points expressed in external frame
— points are converted to canonical camera coordinates
— points are projected

— points are converted to pixel units

X
U Transformation Transformation Y Transformation v
V' |=|| representing representing representing P
w intrinsic parameters | projection model ]| extrinsic parameters T
point in pixel point in metric point in cam. _
. point in
coords. image coords. coords.

10/15/04
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world coords.



Lens Distortion

* In general, lens introduce minor irregularities into images, typically
radial distortions:

X = X4(1 + k,r2+ k,rt)
y = y4(1 + k2 kré)
r2 = Xd2 + yd2

* The values k, and k, are additional parameters that must be
estimated in order to have a model for the camera system.
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Summary: Other Models

» The orthographic and scaled orthographic cameras (also called weak
perspective)
— simply ignore z
— differ in the scaling from x/y to u/v coordinates
— preserve Euclidean structure to a great degree

» The affine camera is a generalization of orthographic models.
— u=Ap+d
— Ais2x3anddis 2x1

— This can be derived from scaled orthography or by linearizing perspective
about a point not on the optical axis

» The projective camera is a generalization of the perspective camera.
— uU=Mp
— M is 3x4 nonsingular defined up to a scale factor
— This just a generalization (by one parameter) from “real” model

Both have the advantage of being linear models on real and projective

spaces, respectively. ,
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Related Transformation Models

+ Euclidean models (homogeneous transforms); °p =°T_ 2 p
+ Similarity models: °p =s T, 2p
+ Affine models:’p =°K,2p, K=[At;000 1], A2 GL(3)

* Projective models: °p =M, 2 p, M 2 GL(4)
— Ray models
— Affine plane
— Sphere

10/15/04 CS 441, Copyright G.D. Hager

Model Stratification

Euclidean | Similarity | Affine | Projective
Transforms
rotation X X X X
translation X X X X
uniform scaling X X X
nonuniform scaling X X
shear X X
perspective X
composition of proj. X
Invariants
length X
angle X X
ratios X X
parallelism X X X
incidence/cross rat. | x X X X
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Why Projective (or Affine or ...)

* Recall in Euclidean space, we can define a change of coordinates by choosing a new origin
and three orthogonal unit vectors that are the new coordinate axes
— The class of all such transformation is SE(3) which forms a group
— One rendering is the class of all homogeneous transformations
— This does not model what happens when things are imaged (why?)
* If we allow a change in scale, we arrive at similarity transforms, also a group
— This sometimes can model what happens in imaging (when?)
* If we allow the 3x3 rotation to be an arbitrary member of GL(3) we arrive at affine
transformations (yet another group!)
—  This also sometimes is a good model of imaging
— The basis is now defined by three arbitrary, non-parallel vectors

«  The process of perspective projection does not form a group
— thatis, a picture of a picture cannot in general be described as a perspective projection

*  Projective systems include perspectivities as a special case and do form a group

— We now require 4 basis vectors (three axes plus an additional independent vector)

— A model for linear transformations (also called collineations or homographies) on P" is GL(n+1) which is,
of course, a group
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Camera calibration

* Issues: * Error minimization:
— what are intrinsic parameters of — Linear least squares
the camera?

i . * easy problem numerically
— what is the camera matrix? .

(intrinsic+extrinsic)
* General strategy:
— view calibration object

solution can be rather bad

— Minimize image distance
» more difficult numerical problem
+ solution usually rather good, but

— identify image points can be hard to find
— obtain camera matrix by — start with linear least squares
minimizing error — Numerical scaling is an issue

— obtain intrinsic parameters from
camera matrix

* Most modern systems employ
the multi-plane method

— avoids knowing absolute
coordinates of calibration poitns
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Calibration — Problem Statement

The problem:
Compute the camera intrinsic (4 or more)

and extrinsic parameters (6) using only observed

camera data.

10/15/04
CAMERA CALIBRATION: A WARMUP
rk.
1 -= (xi _Ox)Sx
d
K r
dilsltoavlvllcle - = ('xz+1 - xz )Sx
d d
[

known regular offset r

A simple way to get scale parameters; we can
compute the optical center as the numerical center
and therefore have the intrinsic parameters
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Calibration: Another Warmup

* Suppose we want to calibrate the affine camera and we know
u, = A p, + d for many pairs i

* mismeanofu’sandqis meanofp’s;notem=Aq+d
« U=[u,-mu,-m,..u,-m] and P =1[p,-q,p,-q, ... p,- 4]

-« U=APOUP (PP)Y'=A

d is now mean of u,— A p;
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Types of Calibration

* Photogrammetric Calibration
+ Self Calibration
* Multi-Plane Calibration
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Photogrammetric Calibration

» Calibration is performed through imaging a pattern whose
geometry in 3d is known with high precision.

* PRO: Calibration can be performed very efficiently

* CON: Expensive set-up apparatus is required; multiple
orthogonal planes.

* Approach 1: Direct Parameter Calibration
* Approach 2: Projection Matrix Estimation

10/15/04 CS 441, Copyright G.D. Hager

The General Case

+ Affine is “easy” because it is linear and unconstrained (note
orthographic is harder because of constraints)

» Perspective case is also harder because it is both nonlinear and
constrained

» Observation: optical center can be computed from the orthocenter
of vanishing points of orthogonal sets of lines.
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Basic Equations
CTUJ — (Til?a Tya TZ)/

CRw — (RCCa Ry7 RZ)/

Cp — CRw"lUp _I_C Tw

. Rap + Tk

uw=-f
R.p+ T
R T

v=—f yP + Ty
R.p+ T
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Basic Equations

1
Upjge = —U + Og
T
1
Upiz = —V + 0y
Sy
T=u, —op = —f Ryp + T
e ; szp+Tz
R T
V= Upig — 0y = —fy wp + Ty

Rzp + T,
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Basic Equations

Wi fy(Rypi + Ty) = 0 fo(Repi + Tx)
Efi(RyPi - Ty) — ;o Rep; +T2) =0

r = aR; and w = a7y
one of these for each point

\

A; = (wpi. uj, —vip;, —v;) and Alt, s, w,r]’ =0

10/15/04 CS 441, Copyright G.D. Hager

Properties of SVD

* Recall the singular values of a matrix are related to its rank.

* Recall that Ax = 0 can have a nonzero x as solution only if A is
singular.

* Finally, note that the matrix V of the SVD is an orthogonal basis
for the domain of A; in particular the zero singular values are the
basis vectors for the null space.

* Putting all this together, we see that A must have rank 7 (in this
particular case) and thus x must be a vector in this subspace.

* Clearly, x is defined only up to scale.
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Basic Equations

A; = (uip;, ug, —vip;, —v;) and
Alt,s,w,r] = Am =0

Note that m is defined up a scale factor!

A =UDV’' and choose m as column of V cor-
responding to the smallest singular value
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Basic Equations

A; = (ups, ug, —v;p;, —v;) and
Alt,s,w,r]’ = Am =0

It|| = |y| gives scale factor for solution
|w]] = |v|a

We now know R, and R, up to a sign and y.
R,=RXR,

We will probably use another SVD to orthogonalize
this system (R = U D V’; set D to | and multiply).
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No oD~

Last Details

*  We still need to compute the correct sign.

— note that the denominator of the original equations must be positive
(points must be in front of the cameras)

— Thus, the numerator and the projection must disagree in sign.

— We know everything in numerator and we know the projection, hence
we can determine the sign.

+ We still need to compute T, and f,

— we can formulate this as a least squares problem on those two
values using the first equation.

—- Rap+T:
U= f.fl? RZp-I_TZ

ﬂ(RZP + Tz) — _fa:(R:cp + Tg:)
fe(Rep + Tx) + uT> = —uR:p
A(f, T2) = b = (fo, To) = (A'A)~1 A
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Direct Calibration: The Algorithm

Compute image center from orthocenter
Compute the A matrix (6.8)

Compute solution with SVD

Compute gamma and alpha

Compute R (and normalize)

Compute f,and and T,

If necessary, solve a nonlinear regression to get distortion
parameters
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Indirect Calibration: The Basic Idea

*  We know that we can also just write
- u,= M P
— x=(uw)andy = (viw), u, = (u,v,1)
— As before, we can multiply through (after plugging in for u,v, and w)

Once again, we can write
- Am=0

Once again, we use an SVD to compute m up to a scale factor.
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Getting The Camera Parameters

—f:cR:U + oz R —facT:r; + 02T,

M = | —fyRy + oyR: —fyTy + oyT:
RZ TZ
We'll write
q1
M= ¢
43
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Getting The Camera Parameters

_fa:Rx + oz R _f:vTac + o1 .
R T , ,
, _ lgs| is scale up to sign;
We'll write divide by this value
a1
M= { a2 4 ] M, , is T, up to sign, but
a3 T, must be positive; if not
THEN divide M by -1
0,=4q, -
R, = (g, — 0, R/, > g; | gz
R)(:RyXRZ fy= (Q1 -q1—02)1/2
T, = -(qy4 — 0y T/, fx =(q, . G, — OX2)1/2
Ty = '(q4,2 oy Tz)/fy Y 2 2 Y

Finally, use SVD to orthogonalize the rotation,
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Self-Calibration

» Calculate the intrinsic parameters solely from point
correspondences from multiple images.

» Static scene and intrinsics are assumed.

* No expensive apparatus.

« Highly flexible but not well-established.

* Projective Geometry — image of the absolute conic.
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Model Examples: Points on a Plane

*Normal vector n =(n,,n,,n,,0)’; point P = (p,,p,.p,,1)
plane equation:n ¢ P =d
— w/o loss of generality, assume n, # 0
— Thus,p,=ap,+bp,+c;letB=(a b, 0,c)
— Define P’ = (p,,p,,0,1)
- P=P +(0,0BP,0)

+ Affine:u =AP, Aa 3 by 4 matrix
— U= AP +A;BP = Ags Pagy
— Note that we can now *reproject* the points u and group the projections --- in
short projection of projections stays within the affine group

* Projective p=M P, M a 4 by 3 matrix
= P=Miy, P+ MyBP =M Py,

— Note that we can now *reproject* the points p and group the resulting
matrices --- in short projections of projections stays within the projective

group
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Multi-Plane Calibration

* Hybrid method: Photogrammetric and Self-Calibration.
* Uses a planar pattern imaged multiple times (inexpensive).
* Used widely in practice and there are many implementations.

» Based on a group of projective transformations called
homographies.

* mbe a2dpoint[uv 1] and M be a 3d point [xy z 17’

* Projection is

si=A[R T|\M

10/15/04 CS 441, Copyright G.D. Hager



Review: Projection Model

X
(U\|(1ooo\||(y\| U foooi(
Vi=0 1 0 0 =
B T R
| /50, wj) oo 10)
U s, 0 o (U
Vi =0 s o |V =Ap
W pix O 0 1 W mm
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Review: Projection Model
U f 00O );
% 0O f 0O . :>
w 0 01O
-
U 10 00 )\f );
Vi=|0 100 =I[R,T]
Z Z
w 0 010
T T
U 0, o« v u,|(U
V| =0 fsv o, |V =10 B v, ||V |Ap
w o 0 1 /)\W o 0 1)\W

pix mm
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Result

*  We know that —
[y hy hy| =sdlry oy 1]
* From one homography, how many constraints on the intrinsic
parameters can we obtain?
— Extrinsics have 6 degrees of freedom.

— The homography supplies 8 values.
— Thus, we should be able to obtain 2 constraints per homography.

» Use the constraints on the rotation matrix columns...

10/15/04 CS 441, Copyright G.D. Hager

Planar Homographies

» First Fundamental Theorem of Projective Geometry:

— There exists a unique homography that performs a change of basis
between two projective spaces of the same dimension.

sm=HM
— Notice that the homography is defined up to scale (s).
* InP(2), we have
— p’ = H p for points p

— U’ =Htu forlinesu

* Note to define the homography, we need three basis vectors
*plus* the unit point!
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Planar Homographies

» First Fundamental Theorem of Projective Geometry:

— There exists a unique homography that performs a change of basis
between two projective spaces of the same dimension.

s v 11" = Ay o, o X Y Z 1)
s v 1)1 = A, v, oy X Y 0 1]
sju v T = Al o, fx Y 1)

su v 1)1 = HX v 17

— Projection Becomes

st = HM

— Notice that the homography is defined up to scale (s).
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Estimating A Homography

* Here is what looks like a reasonable recipe for computing
homographies:
— Planar pts (X;;y4;1, Xo; Y3 1, oo X3y 1) =X
— Corresponding pts (uq;v,;1,u5v,;1,...u v, 1) =U
- U=HX
- UX (XX)"=H

» The problem is that X will not be full rank (why?). So we’ll have to
work a little harder ...
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Computing Intrinsics

* Rotation Matrix is orthogonal....

r. _
rir; =70
r., T

» Write the homography in terms of its columns...

hy = sdr,
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Computing Intrinsics

« Derive the two constraints:

hy = sdr,
1
A7, = r
S I "
1
—A"'hy = r
S 2 )
rlTrz =
MaTath, =
A = i,
A T4, = nlaTa'n,

10/15/04 CS 441, Copyright G.D. Hager



Closed-Form Solution

€1 Y
o2 o

VoYt
o?f3 o
4T 41 _ 7 a 1 CYr—uB)) v
LetB=A4""4"" = o2p a2p2 Jrﬁz azﬁf i B2
vo¥r—toB  Yar—ugB))  ve  (r—ueB)” L%
2B 2B B2 o2p2 B2
[ ]

Notice B is symmetric, 6 parameters can be written as a vector b
From the two constraints, we have /1?3/1 i= V:‘I}

vl }
1 b=0:;
[ (Vi) — sz)T

Stack up n of these for n images and build a 2n*6 system.
Solve with SVD (yet again).

Extrinsics “fall-out” of the result easily.

10/15/04 CS 441, Copyright G.D. Hager

Non-linear Refinement

Closed-form solution minimized algebraic distance.
Since full-perspective is a non-linear model

— Can include distortion parameters (radial, tangential)

— Use maximum likelihood inference for our estimated parameters.

m

n
A 2
Z 2 Hmzj _m(Aka7 Tk%)“
i=1j=1
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Multi-Plane Approach In Action

» ...if we can get matlab to work...
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Calibration Summary

» Two groups of parameters:

— internal (intrinsic) and external (extrinsic)
* Many methods

— direct and indirect, flexible/robust

* The form of the equations that arise here and the way they are
solved is common in vision:
— bilinear forms
- Ax=0
— Orthogonality constraints in rotations

*  Most modern systems use the method of multiple planes (matlab
demo)

— more difficult optimization over a large # of parameters
— more convenient for the user
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An Example Using Homographies

» Image rectification is the computation of an image as seen by a
rotated camera
— The computation of the planar reprojection is a homography
— we’ll show later that depth doesn’t matter when rotating; for now we’ll
just use intuition

<« Original image plane

New image plane
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Rectification Using Homographies

* Pick a rotation matrix R from old to new image

» Consider all points in the image you want to compute; then
— construct pixel coordinates x = (u,v,1)
— K'maps unit focal length metric coordinates to pixel (normalized
camera)
- X=KRtK'x O¢x =Hx

pixel coordinates .
_ rotation - ixel to euclidean coords
euclidean to pixel coords

+ Sample a point X’ in the original image for each point x in the new.
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Bilinear Interpolation

* A minor detail --- new value x’ = (u’,v’,1) may not be integer
o letu' =i+f, and Vv’ =j+,

- New image value b = (1-f,)(1-f,)I(j,i) + f, I(i+1,0)) +
F((F)IG+1) + 1, 1G+1,i+1)

10/15/04 CS 441, Copyright G.D. Hager

Rectification: Basic Algorithm

1. Create a mesh of pixel coordinates for the rectified image
2. Turn the mesh into a list of homogeneous points

3. Project *backwards* through the intrinsic parameters to get unit
focal length values

4. Rotate these values back to the current camera coordinate
system.

5. Project them *forward* through the intrinsic parameters to get
pixel coordinates again.

— Note equivalently this is the homography K Rt K-' where K is the
intrinsic parameter matrix

6. Sample at these points to populate the rectified image
— typically use bilinear interpolation in the sampling
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Rectification Results
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“Homework” Problems

» Derive the relationship between the Plucker coordinates of a line
in space and its projection in Plucker coordinates

» Show that the projection of parallel lines meet at a point (and
show how to solve for the point)

+ Given two sets of points that define two projective bases, show
how to solve for the homography that relates them.

» Describe a simple algorithm for calibrating an affine camera given
known ground truth points and their observation --- how many
points do you need?
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Two-Camera Geometry
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E matrix derivation

®-T)-(TxP)=0
P'R(TxP)=0
P'EP,=0

where E = R sk(T)

0-T, T,
sk(T)= T, 0 -T,
-T, T, 0
The matrix E is called the essential

matrix and completely describes the
epipolar geometry of the stereo pair
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Fundamental Matrix Derivation

Note that E is invariant to the scale
of the points, therefore we also have prt Ep= 0

where p denotes the (metric) image
projection of P

Now if K denotes the internal
calibration, converting from metric
to pixel coordinates, we have further
that

rfKEK'r=r!Fr=0

P.=R(P,-T)

where r denotes the pixel coordinates
of p. F is called the fundamental matrix
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