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Pinhole cameras

• Abstract camera model - box

with a small hole in it

• Pinhole cameras work in practice
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Real Pinhole Cameras

Pinhole too big -

  many directions are

  averaged, blurring the

  image

Pinhole too small-

  diffraction effects blur

  the image

Generally, pinhole 

cameras are dark, because

a very small set of rays

from a particular point

hits the screen.
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The reason for lenses

Lenses gather and

focus light, allowing

for brighter images.
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The thin lens
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Thin Lens Properties:

1. A ray entering parallel to optical axis

goes through the focal point.

2. A ray emerging from focal point is parallel

to optical axis

3. A ray through the optical center is unaltered
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The thin lens
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Note that, if the image plane is very

small and/or z >> z’, then z’ is about f
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Field of View

• The effective diameter of a lens  (d) is the portion of a lens actually
reachable by light rays.

• The effective diameter and the focal length determine the field of view:

•  w is the half the total angular “view” of a lens system.

• Another fact is that in practice points at different distances are imaged,
leading to so-called “circles of confusion” of size d/z | z’-z|  where z is the
nominal image plane and z’ is the focusing distance given by the thin
lens equation.

• The “depth of field” is the range of distances that produce acceptably
focused images.  Depth of field varies inversely with focal length and
lens diameter.

)2/(tan fdw =
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Lens Realities

Real lenses have a finite depth of field, and usually

suffer from a variety of defects

vignetting

Spherical Aberration
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Standard Camera Coordinates

• By convention, we place the image in front of the optical center

– typically we approximate by saying it lies one focal distance from the center

– in reality this can’t be true for a finite size chip!

• Optical axis is z axis pointing outward

• X axis is parallel to the scanlines (rows) pointing to the right!

• By the right hand rule, the Y axis must point downward

• Note this corresponds with indexing an image from the upper left to the

lower right, where the X coordinate is the column index and the Y

coordinate is the row index.
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The equation of projection

• Equating z’ and f

– We have, by similar triangles,

that (x, y, z) -> (-f x/z, -f y/z, -f)

– Ignore the third coordinate, and

flip the image around to get:

(x, y, z)! ( f
x

z
, f
y

z
)
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Distant objects are smaller
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Parallel lines meet

common to draw film plane

in front of the focal point

A Good Exercise: Show this is the case!
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Some Useful Geometry

• In 3D space

– points:

• Cartesian point (x,y,z)

• Projective pt (x,y,z,w) with convention that w is a scale factor

– lines:

• a point p on the line and unit vector v for direction

– for minimal parameterization, p is closest point to origin

• Alternative, a line is the intersection of two planes (see below)

– planes

• a point p on the plane and a unit normal n s.t. n . (p’ - p) = 0

• multiplying through, also n.p’ - d = 0, where d is distance of closest pt to

origin.

• any vector n . q = 0  where q is a projective pt

– note, for two planes, the intersection is two equations in 4 unknowns up to

scale --- i.e. a one-dimensional subspace, or a line

• Note that planes and points are dual --- in the above, I can equally think

of n or q as the normal (resp. point).
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Some Useful Geometry

• In 2D space

– points:

• Cartesian point (x,y)

• Projective pt (x,y,w) with convention that w is a scale factor

– lines

• a point p on the line and a unit normal n s.t. n . (p’ - p) = 0

• multiplying through, also n.p’ - d = 0, where d is distance of closest pt to

origin.

• any vector n . q = 0  where q is a projective pt

– note, for two lines, the intersection is two equations in 3 unknowns up to scale

--- i.e. a one-dimensional subspace, or a point

• note that points and lines are dual --- I can think of n or q as the normal

(resp. point)
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Some Projective Concepts

• The vector p = (x,y,z,w)’  is equivalent to the vector k p for nonzero k

– note the vector p = 0 is disallowed from this representation

• The vector v = (x,y,z,0)’ is termed a “point at infinity”; it corresponds to a

direction

• In P2,

– given two points p1 and p2, l = p1 £ p2 is the line containing them

– given two lines, l1, and l2, p = l1 £ l2 is point of intersection

– A point p lies on a line l if p ¢ l = 0 (note this is a consequence of the triple

product rule)

– l = (0,0,1) is the “line at infinity”

– it follows that, for any point p at infinity, l¢ p = 0, which implies that points at

infinity lie on the line at infinity.

10/15/04 CS 441, Copyright G.D. Hager

Some Projective Concepts

• The vector p = (x,y,z,w)’  is equivalent to the vector k p for nonzero k

– note the vector p = 0 is disallowed from this representation

• The vector v = (x,y,z,0)’ is termed a “point at infinity”; it corresponds to a

direction

• In P3,

– A point p lies on a plane l if p ¢ l = 0 (note this is a consequence of the triple

product rule; there is an equivalent expression in determinants)

– l = (0,0,0,1) is the “plane at infinity”

– it follows that, for any point p at infinity, l¢ p = 0, which implies that points at

infinity lie on the line at infinity.
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Some Projective Concepts

• The vector p = (x,y,z,w)’  is equivalent to the vector k p for nonzero k
– note the vector p = 0 is disallowed from this representation

• The vector v = (x,y,z,0)’ is termed a “point at infinity”; it corresponds to a direction

• Plucker coordinates
– In general, a representation for a line through points p1 and p2 is given by all possible 2x2

determinants of [p1 p2] (an n by 2 matrix)
• u = (l4,1,l4,1, l4,3,l2,3,l3,1,l1,2) are the Pl_cker coordinates of the line passing through the two points.

• if the points are not at infinity, then this is also the same as (p2 - p1, p1 x p2)

– The first 3 coordinates are the direction of the line

– The second 3 are the normal to the plane (in R3) containing the origin and the points

– In general, a representation for a plane passing through three points p1, p2 and p3 are the
determinants of all 3 by 3 submatrices [p1 p2 p3]

• let li,j mean the determinant of the matrix of matrix formed by the rows i and j

• P = (l234,l134,l142,l123)

• Note the three points are colinear if all four of these values are zero (hence the original 3x4 matrix
has rank 2, as we would expect).

– Two lines are colinear if we create the 4x4 matrix [p1,p2,p’1,p’2] where the p’s come from
one line, and the p’s come from another.
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Parallel lines meet

• First, show how lines project to images.

• Second, consider lines that have the same direction (are parallel)

• Third, consider the degenerate case of lines parallel in the image

– (by convention, the vanishing point is at infinity!)

A Good Exercise: Show this is the case!
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Vanishing points

• Another good exercise (really follows from the

previous one): show the form of projection of *lines*

into images.

• Each set of parallel lines (=direction) meets at a

different point

– The vanishing point for this direction

• Sets of parallel lines on the same plane lead to

collinear vanishing points.

– The line is called the horizon for that plane

10/15/04 CS 441, Copyright G.D. Hager

The Camera Matrix

• Homogenous coordinates for 3D

– four coordinates for 3D point

– equivalence relation  (X,Y,Z,T)  is the same as  (k X, k Y, k Z,k T)

• Turn previous expression into HC’s

– HC’s for 3D point are (X,Y,Z,T)

– HC’s for point in image are (U,V,W)
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Orthographic projection

yv

xu

=

=
Suppose I let f go to infinity; then
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The model for orthographic

projection
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Weak perspective

• Issue

– perspective effects, but not over

the scale of individual objects

– collect points into a group at

about the same depth, then

divide each point by the depth of

its group

– Adv: easy

– Disadv: wrong

*/ Zfs
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The model for weak perspective

projection
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The Affine Camera

• Choose a nominal point x0, y0, z0 and describe projection relative

to that point

• u = f [x0/z0 + (x-x0)/z0 - x0/z
2

0 (z – z0) ] = f (a1 x + a2 z + d1)

• v = f [y0/z0 + (y – y0)/z0 – y0/z
2
0 (z – z0) = f (a3 y + a4 z + d2)

• gathering up

• A = [a1 0 a2; 0 a3 a4]

• d = [d1; d2]

• u = A P + d
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Geometric Transforms

In general, a point in n-D space transforms by

P’ = rotate(point) + translate(point)

In 2-D space, this can be written as a matrix equation:
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In 3-D space (or n-D), this can generalized as a matrix equation:

 p’ = R p + T     or    p = Rt (p’ – T)
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Geometric Transforms

Now, using the idea of homogeneous transforms,

 we can write:

p
TR

p !!
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R and T both require 3 parameters.  These correspond

 to the 6 extrinsic parameters needed for camera calibration
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Intrinsic Parameters

Intrinsic Parameters describe the conversion from

unit focal length metric to pixel coordinates (and the reverse)

  xmm = - (xpix – ox) sx   -->   -1/sx xmm + ox = xpix

 ymm = - (ypix – oy) sy   -->  -1/sy ymm + oy = ypix
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It is common to combine scale and focal length together

as the are both scaling factors; note projection is unitless in this case!
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The Camera Matrix

• Homogenous coordinates for 3D

– four coordinates for 3D point

– equivalence relation  (X,Y,Z,T)  is the same as  (k X, k Y, k Z,k T)

• Turn previous expression into HC’s

– HC’s for 3D point are (X,Y,Z,T)

– HC’s for point in image are (U,V,W)
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Camera parameters

• Summary:

– points expressed in external frame

– points are converted to canonical camera coordinates

– points are projected

– points are converted to pixel units
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Lens Distortion

• In general, lens introduce minor irregularities into images, typically

radial distortions:

 x = xd(1 + k1r
2 + k2r

4)

 y = yd(1 + k1r
2 + k2r

4)

 r2 = xd
2 + yd

2

• The values k1 and k2 are additional parameters that must be

estimated in order to have a model for the camera system.
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Summary: Other Models

• The orthographic and scaled orthographic cameras (also called weak
perspective)

– simply ignore z

– differ in the scaling from x/y to u/v coordinates

– preserve Euclidean structure to a great degree

• The affine camera is a generalization of orthographic models.

– u = A p + d

– A is 2 x 3 and d is 2x1

– This can be derived from scaled orthography or by linearizing perspective
about a point not on the optical axis

• The projective camera is a generalization of the perspective camera.

– u’ = M p

– M is 3x4 nonsingular defined up to a scale factor

– This just a generalization (by one parameter) from “real” model

• Both have the advantage of being linear models on real and projective
spaces, respectively.
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Related Transformation Models

• Euclidean models (homogeneous transforms); bp = bTa 
a p

• Similarity models: bp = s bTa 
a p

• Affine  models:bp = bKa 
a p, K = [A,t;0 0 0 1], A 2 GL(3)

• Projective models: bp = bMa 
a p, M 2 GL(4)

– Ray models

– Affine plane

– Sphere
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Model Stratification

xxxxincidence/cross rat.

xxxparallelism

xxratios

xxangle

xlength

Invariants

xcomposition of proj.

xperspective

xxshear

xxnonuniform scaling

xxxuniform scaling

xxxxtranslation

xxxxrotation

Transforms

ProjectiveAffineSimilarityEuclidean
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Why Projective (or Affine or ...)

• Recall in Euclidean space, we can define a change of coordinates by choosing a new origin

and three orthogonal unit vectors that are the new coordinate axes

– The class of all such transformation is SE(3) which forms a group

– One rendering is the class of all homogeneous transformations

– This does not model what happens when things are imaged (why?)

• If we allow a change in scale, we arrive at similarity transforms, also a group

– This sometimes can model what happens in imaging (when?)

• If we allow the 3x3 rotation to be an arbitrary member of GL(3) we arrive at affine

transformations (yet another group!)

– This also sometimes is a good model of imaging

– The basis is now defined by three arbitrary, non-parallel vectors

• The process of perspective projection does not form a group

– that is, a picture of a picture cannot in general be described as a perspective projection

• Projective systems include perspectivities as a special case and do form a group

– We now require 4 basis vectors (three axes plus an additional independent vector)

– A model for linear transformations (also called collineations or homographies) on Pn is GL(n+1) which is,

of course, a group
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Camera calibration

• Issues:

– what are intrinsic parameters of
the camera?

– what is the camera matrix?
(intrinsic+extrinsic)

• General strategy:

– view calibration object

– identify image points

– obtain camera matrix by
minimizing error

– obtain intrinsic parameters from
camera matrix

• Most modern systems employ
the multi-plane method

– avoids knowing absolute
coordinates of calibration poitns

• Error minimization:

– Linear least squares

• easy problem numerically

• solution can be rather bad

– Minimize image distance

• more difficult numerical problem

• solution usually rather good, but

can be hard to find

– start with linear least squares

– Numerical scaling is an issue
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The problem:

Compute the camera intrinsic (4 or more)

and extrinsic parameters (6) using only observed

camera data.

Calibration – Problem Statement
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CAMERA CALIBRATION: A WARMUP

Known

distance

d

known regular offset  r
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A simple way to get scale parameters; we can 

compute the optical center as the numerical center

and therefore have the intrinsic parameters
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Calibration: Another Warmup

• Suppose we want to calibrate the affine camera and we know

ui = A pi + d for many pairs i

• m is mean of u’s and q is mean of p’s; note m = A q + d

• U = [u1 - m,u2 - m, ... un-m]  and P = [p1 - q,p2 -q, ... pn - q]

• U = A P ! U P’ (P P’)-1 = A

• d  is now mean of ui – A pi
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Types of Calibration

• Photogrammetric Calibration

• Self Calibration

• Multi-Plane Calibration
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Photogrammetric Calibration

• Calibration is performed through imaging a pattern whose

geometry in 3d is known with high precision.

• PRO:  Calibration can be performed very efficiently

• CON:  Expensive set-up apparatus is required; multiple

orthogonal planes.

• Approach 1:  Direct Parameter Calibration

• Approach 2:  Projection Matrix Estimation
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The General Case

• Affine is “easy” because it is linear and unconstrained (note

orthographic is harder because of constraints)

• Perspective case is also harder because it is both nonlinear and

constrained

• Observation: optical center can be computed from the orthocenter

of vanishing points of orthogonal sets of lines.
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Basic Equations
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Basic Equations
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Basic Equations

one of these for each point
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Properties of SVD

• Recall the singular values of a matrix are related to its rank.

• Recall that Ax = 0 can have a nonzero x as solution only if A is

singular.

• Finally, note that the matrix V of the SVD is an orthogonal basis

for the domain of A; in particular the zero singular values are the

basis vectors for the null space.

• Putting all this together, we see that A must have rank 7 (in this

particular case) and thus x must be a vector in this subspace.

• Clearly, x is defined only up to scale.
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Basic Equations
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Basic Equations

We now know Rx and Ry up to a sign and ".

Rz = Rx x Ry

We will probably use another SVD to orthogonalize

this system (R = U D V’; set D to I and multiply).
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Last Details

• We still need to compute the correct sign.

– note that the denominator of the original equations must be positive

(points must be in front of the cameras)

– Thus, the numerator and the projection must disagree in sign.

– We know everything in numerator and we know the projection, hence

we can determine the sign.

• We still need to compute Tz and fx
– we can formulate this as a least squares problem on those two

values using the first equation.
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Direct Calibration: The Algorithm

1. Compute image center from orthocenter

2. Compute the A matrix (6.8)

3. Compute solution with SVD

4. Compute gamma and alpha

5. Compute R (and normalize)

6. Compute fx and and Tz

7. If necessary, solve a nonlinear regression to get distortion

parameters
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Indirect Calibration: The  Basic Idea

• We know that we can also just write

– uh = M ph

– x = (u/w) and y = (v/w), uh = (u,v,1)’

– As before, we can multiply through (after plugging in for u,v, and w)

• Once again, we can write

– A m = 0

• Once again, we use an SVD to compute m up to a scale factor.
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Getting The Camera Parameters
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Getting The Camera Parameters

FIRST:

|q3|  is scale up to sign;

divide by this value

M3,4 is Tz up to sign, but 

Tz must be positive; if not 

divide M by -1

ox = q1 . q3

oy = q2 . q3

fx = (q1 . q1 – ox
2)1/2

fy = (q2 . q2 – oy
2)1/2

THEN:

Ry = (q2 – oy Rz)/fy
Rx = Ry x Rz

Tx = -(q4,1 – ox Tz)/fx
Ty = -(q4,2 – oy Tz)/fy

Finally, use SVD to orthogonalize the rotation,
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Self-Calibration

• Calculate the intrinsic parameters solely from point

correspondences from multiple images.

• Static scene and intrinsics are assumed.

• No expensive apparatus.

• Highly flexible but not well-established.

• Projective Geometry – image of the absolute conic.
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Model Examples: Points on a Plane

• Normal vector n =(nx,ny,nz,0)’; point P = (px,py,pz,1)
plane equation: n ¢ P = d

– w/o loss of generality, assume nz # 0

– Thus, pz = a px + b py + c; let B = (a, b, 0, c)

– Define P’ = (px,py,0,1)

– P = P’ + (0,0,B P’,0)

• Affine: u  = A P, A a 3 by 4 matrix

– u = A1,2,4 P’ + A3 B P’ = A3x3 P3£1

– Note that we can now *reproject* the points u and group the projections --- in
short projection of projections stays within the affine group

• Projective p = M P, M a 4 by 3 matrix

– p = M1,2,4 P’ + M3 B P’ = M P3£1

– Note that we can now *reproject* the points p and group the resulting
matrices --- in short projections of projections stays within the projective
group
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Multi-Plane Calibration

• Hybrid method:  Photogrammetric and Self-Calibration.

• Uses a planar pattern imaged multiple times (inexpensive).

• Used widely in practice and there are many implementations.

• Based on a group of projective transformations called

homographies.

•  m be a 2d point [u v 1]’ and M be a 3d point [x y z 1]’.

• Projection is
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Review: Projection Model
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Review: Projection Model
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Result

• We know that

• From one homography, how many constraints on the intrinsic

parameters can we obtain?

– Extrinsics have 6 degrees of freedom.

– The homography supplies 8 values.

– Thus, we should be able to obtain 2 constraints per homography.

• Use the constraints on the rotation matrix columns…
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Planar Homographies

• First Fundamental Theorem of Projective Geometry:

– There exists a unique homography that performs a change of basis

between two projective spaces of the same dimension.

– Notice that the homography is defined up to scale (s).

• In P(2), we have

– p’ = H p for points p

– u’ = Ht u  for lines u

• Note to define the homography, we need three basis vectors

*plus* the unit point!
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Planar Homographies

• First Fundamental Theorem of Projective Geometry:

– There exists a unique homography that performs a change of basis

between two projective spaces of the same dimension.

– Projection Becomes

– Notice that the homography is defined up to scale (s).
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Estimating A Homography

• Here is what looks like a reasonable recipe for computing

homographies:

– Planar pts (x1;y1;1, x2; y2; 1, .... xn;yn;1)  = X

– Corresponding pts (u1;v1;1,u2;v2;1,...un;vn;1)  = U

– U = H X

– U X’ (X X’)-1 = H

• The problem is that X will not be full rank (why?).  So we’ll have to

work a little harder ...
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Computing Intrinsics

• Rotation Matrix is orthogonal….

• Write the homography in terms of its columns…
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Computing Intrinsics

• Derive the two constraints:
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Closed-Form Solution

• Notice B is symmetric, 6 parameters can be written as a vector b.

• From the two constraints, we have

• Stack up n of these for n images and build a 2n*6 system.

• Solve with SVD (yet again).

• Extrinsics “fall-out” of the result easily.
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Non-linear Refinement

• Closed-form solution minimized algebraic distance.

• Since full-perspective is a non-linear model

– Can include distortion parameters (radial, tangential)

– Use maximum likelihood inference for our estimated parameters.
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Multi-Plane Approach In Action

• …if we can get matlab to work…
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Calibration Summary

• Two groups of parameters:

– internal (intrinsic) and external (extrinsic)

• Many methods

– direct and indirect, flexible/robust

• The form of the equations that arise here and the way they are
solved is common in vision:

– bilinear forms

– Ax = 0

– Orthogonality constraints in rotations

• Most modern systems use the method of multiple planes (matlab
demo)

– more difficult optimization over a large # of parameters

– more convenient for the user



10/15/04 CS 441, Copyright G.D. Hager

An Example Using Homographies

• Image rectification is the computation of an image as seen by a

rotated camera

– The computation of the planar reprojection is a homography

– we’ll show later that depth doesn’t matter when rotating; for now we’ll

just use intuition

Original  image plane

New image plane
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Rectification Using Homographies

• Pick a rotation matrix R from old to new image

• Consider all points in the image you want to compute; then

– construct pixel coordinates x = (u,v,1)

– K maps unit focal length metric coordinates to pixel (normalized

camera)

– x’ = K Rt K-1 x    ! x’ = H x

• Sample a point x’ in the original image for each point x in the new.

pixel coordinates

pixel coordinates
pixel to euclidean coords

euclidean to pixel coords
rotation
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Bilinear Interpolation

• A minor detail --- new value x’ = (u’,v’,1) may not be integer

• let u’ = i + fu  and v’ = j+fv

• New image value b = (1-fu)((1-fv)I(j,i) + fv I(j+1,i)) +

    fu((1-fv)I(j,i+1) + fv I(j+1,i+1))
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Rectification: Basic Algorithm

• 1. Create a mesh of pixel coordinates for the rectified image

• 2. Turn the mesh into a list of homogeneous points

• 3. Project *backwards* through the intrinsic parameters to get unit

focal length values

• 4. Rotate these values back to the current camera coordinate

system.

• 5. Project them *forward* through the intrinsic parameters to get

pixel coordinates again.

– Note equivalently this is the homography K Rt K-1 where K is the

intrinsic parameter matrix

• 6. Sample at these points to populate the rectified image

– typically use bilinear interpolation in the sampling
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Rectification Results

.2 rad

.4 rad

.6 rad
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“Homework” Problems

• Derive the relationship between the Plucker coordinates of a line

in space and its projection in Plucker coordinates

• Show that the projection of parallel lines meet at a point (and

show how to solve for the point)

• Given two sets of points that define two projective bases, show

how to solve for the homography that relates them.

• Describe a simple algorithm for calibrating an affine camera given

known ground truth points and their observation --- how many

points do you need?
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Two-Camera Geometry
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PlPr

T

Pr = R(Pl – T)

(Pl – T) ·(T x Pl) = 0

Pr
t
 R (T x Pl) = 0

Pr
t
 E Pl = 0

where E = R sk(T)

                0  -Tz  Ty

sk(T) =   Tz   0  -Tx

                     -Ty    Tx   0

The matrix E is called the essential

matrix and completely describes the

epipolar geometry of the stereo pair

E matrix derivation
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PlPr

T

Pr = R(Pl – T)

pr
t
 E pl = 0

Note that E is invariant to the scale

of the points, therefore we also have

where p denotes the (metric) image

projection of P

Now if  K denotes the internal

calibration, converting from metric

to pixel coordinates, we have further

that

rr
t K-t

 E K-1 rl = rr
t F rl = 0

where r denotes the pixel coordinates

of p.  F is called the fundamental matrix

Fundamental Matrix Derivation


