Computer Vision Projective Geometry and Calibration

Professor Hager

http://www.cs.jhu.edu/~hager

Jason Corso

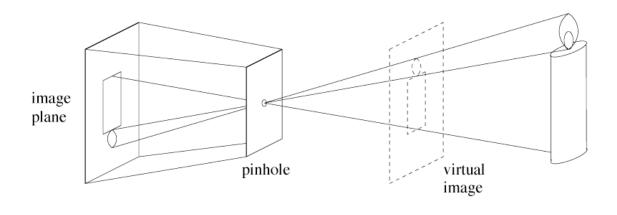
http://www.cs.jhu.edu/~jcorso

10/15/04

CS 441, Copyright G.D. Hager

Pinhole cameras

- Abstract camera model box with a small hole in it
- Pinhole cameras work in practice



Real Pinhole Cameras

Pinhole too big many directions are averaged, blurring the image

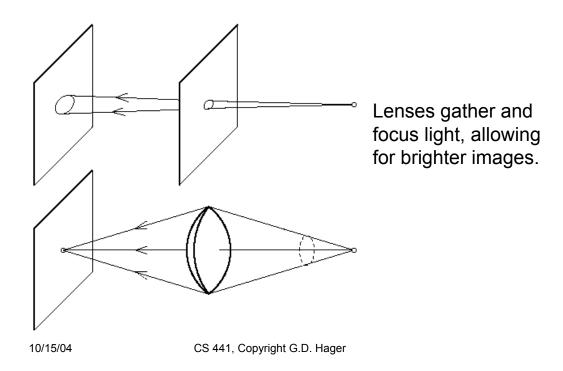
Pinhole too smalldiffraction effects blur the image

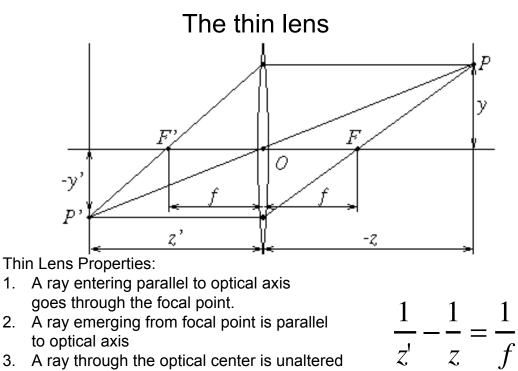
Generally, pinhole cameras are *dark*, because a very small set of rays from a particular point hits the screen.

10/15/04

CS 441, Copyright G.D. Hager

The reason for lenses





- 2. A ray emerging from focal point is parallel to optical axis
- 3. A ray through the optical center is unaltered

10/15/04



Field of View

- The *effective diameter* of a lens (d) is the portion of a lens actually reachable by light rays.
- The effective diameter and the focal length determine the field of view:

$$\tan w = d/(2f)$$

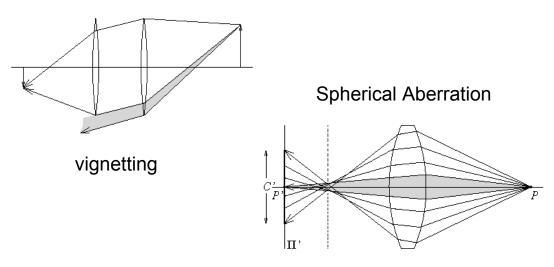
- w is the half the total angular "view" of a lens system.
- Another fact is that in practice points at different distances are imaged, leading to so-called "circles of confusion" of size d/z | z'-z| where z is the nominal image plane and z' is the focusing distance given by the thin lens equation.
- The "depth of field" is the range of distances that produce acceptably focused images. Depth of field varies inversely with focal length and lens diameter.

10/15/04

CS 441, Copyright G.D. Hager

Lens Realities

Real lenses have a finite depth of field, and usually suffer from a variety of defects



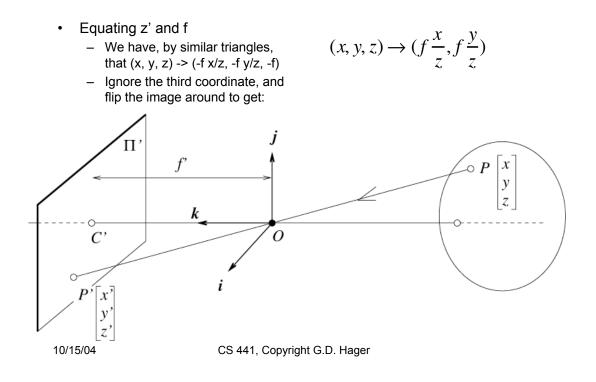
Standard Camera Coordinates

- By convention, we place the image in front of the optical center
 - typically we approximate by saying it lies one focal distance from the center
 - in reality this can't be true for a finite size chip!
- Optical axis is z axis pointing outward
- X axis is parallel to the scanlines (rows) pointing to the right!
- By the right hand rule, the Y axis must point downward
- Note this corresponds with indexing an image from the upper left to the lower right, where the X coordinate is the column index and the Y coordinate is the row index.

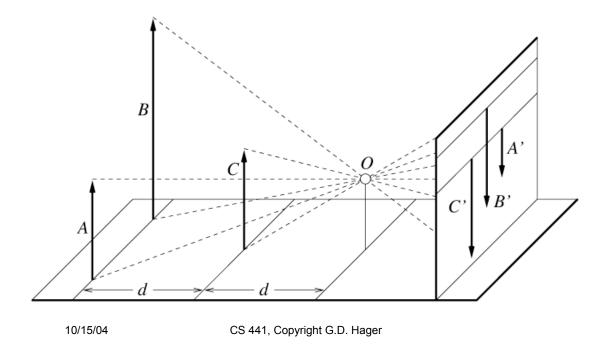
10/15/04

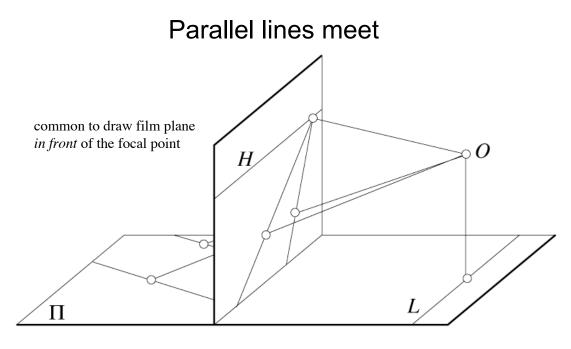
CS 441, Copyright G.D. Hager

The equation of projection



Distant objects are smaller





A Good Exercise: Show this is the case!

Some Useful Geometry

- In 3D space
 - points:
 - Cartesian point (x,y,z)
 - Projective pt (x,y,z,w) with convention that w is a scale factor
 - lines:
 - a point p on the line and unit vector v for direction
 - for minimal parameterization, p is closest point to origin
 - Alternative, a line is the intersection of two planes (see below)
 - planes
 - a point p on the plane and a unit normal n s.t. n . (p' p) = 0
 - multiplying through, also n.p' d = 0, where d is distance of closest pt to origin.
 - any vector n . q = 0 where q is a projective pt
 - note, for two planes, the intersection is two equations in 4 unknowns up to scale --- i.e. a one-dimensional subspace, or a *line*
 - Note that planes and points are *dual* --- in the above, I can equally think of n or q as the normal (resp. point).

10/15/04

CS 441, Copyright G.D. Hager

Some Useful Geometry

- In 2D space
 - points:
 - Cartesian point (x,y)
 - Projective pt (x,y,w) with convention that w is a scale factor
 - lines
 - a point p on the line and a unit *normal* n s.t. n . (p' p) = 0
 - multiplying through, also n.p' d = 0, where d is distance of closest pt to origin.
 - any vector n . q = 0 where q is a projective pt
 - note, for two lines, the intersection is two equations in 3 unknowns up to scale
 --- i.e. a one-dimensional subspace, or a *point*
 - note that points and lines are *dual* --- I can think of n or q as the normal (resp. point)

Some Projective Concepts

- The vector p = (x,y,z,w)' is equivalent to the vector k p for nonzero k
 note the vector p = 0 is disallowed from this representation
- The vector v = (x,y,z,0)' is termed a "point at infinity"; it corresponds to a
 direction
- In P²,
 - given two points p_1 and p_2 , $I = p_1 \pounds p_2$ is the line containing them
 - given two lines, I_1 , and I_2 , $p = I_1 \pounds I_2$ is point of intersection
 - A point p lies on a line I if p ¢ I = 0 (note this is a consequence of the triple product rule)
 - I = (0,0,1) is the "line at infinity"
 - it follows that, for any point p at infinity, l¢ p = 0, which implies that points at infinity lie on the line at infinity.

10/15/04

CS 441, Copyright G.D. Hager

Some Projective Concepts

- The vector p = (x,y,z,w)' is equivalent to the vector k p for nonzero k
 note the vector p = 0 is disallowed from this representation
- The vector v = (x,y,z,0)' is termed a "point at infinity"; it corresponds to a
 direction
- In P³,
 - A point p lies on a plane I if p ¢ I = 0 (note this is a consequence of the triple product rule; there is an equivalent expression in determinants)
 - I = (0,0,0,1) is the "plane at infinity"
 - it follows that, for any point p at infinity, l¢ p = 0, which implies that points at infinity lie on the line at infinity.

Some Projective Concepts

- The vector p = (x,y,z,w)' is equivalent to the vector k p for nonzero k
 note the vector p = 0 is disallowed from this representation
- The vector v = (x,y,z,0)' is termed a "point at infinity"; it corresponds to a direction
- Plucker coordinates
 - In general, a representation for a line through points p₁ and p₂ is given by all possible 2x2 determinants of [p₁ p₂] (an n by 2 matrix)
 - $u = (I_{4,1}, I_{4,3}, I_{2,3}, I_{3,1}, I_{1,2})$ are the PI_cker coordinates of the line passing through the two points.
 - if the points are not at infinity, then this is also the same as $(\underline{p}_2 \underline{p}_1, \underline{p}_1 \times \underline{p}_2)$
 - The first 3 coordinates are the direction of the line
 - The second 3 are the normal to the plane (in R³) containing the origin and the points
 - In general, a representation for a plane passing through three points p₁, p₂ and p₃ are the determinants of all 3 by 3 submatrices [p₁ p₂ p₃]
 - · let I_{ij} mean the determinant of the matrix of matrix formed by the rows i and j
 - $P = (I_{234}, I_{134}, I_{142}, I_{123})$
 - Note the three points are colinear if all four of these values are zero (hence the original 3x4 matrix has rank 2, as we would expect).
 - Two lines are colinear if we create the 4x4 matrix [p₁,p₂,p'₁,p'₂] where the p's come from one line, and the p's come from another.

10/15/04

CS 441, Copyright G.D. Hager

Parallel lines meet

- First, show how lines project to images.
- Second, consider lines that have the same direction (are parallel)
- Third, consider the degenerate case of lines parallel in the image
 (by convention, the vanishing point is at infinity!)

A Good Exercise: Show this is the case!

Vanishing points

- Another good exercise (really follows from the previous one): show the form of projection of *lines* into images.
- Each set of parallel lines (=direction) meets at a different point
 - The vanishing point for this direction
- Sets of parallel lines on the same plane lead to *collinear* vanishing points.
 - The line is called the *horizon* for that plane

10/15/04

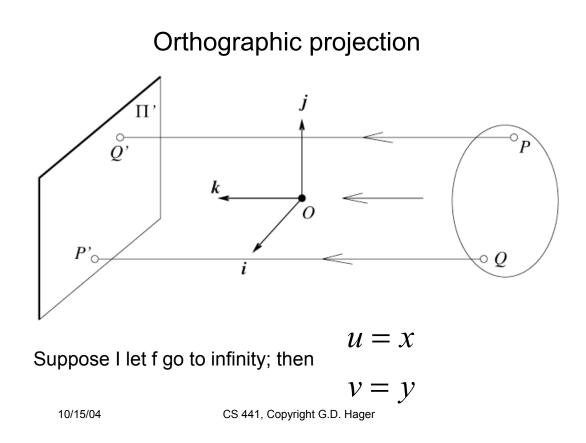
CS 441, Copyright G.D. Hager

The Camera Matrix

- Homogenous coordinates for 3D
 - four coordinates for 3D point
 - equivalence relation (X,Y,Z,T) is the same as (k X, k Y, k Z, k T)
- Turn previous expression into HC's
 - HC's for 3D point are (X,Y,Z,T)
 - HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

$$(U,V,W) \rightarrow (\frac{U}{W},\frac{V}{W}) = (u,v)$$



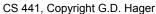
The model for orthographic projection

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Weak perspective

u = sxIssue - perspective effects, but not over the scale of individual objects v = sy- collect points into a group at about the same depth, then $s = f / Z^*$ divide each point by the depth of its group - Adv: easy Disadv: wrong j -Z 0 Q k ð Q i

10/15/04



The model for weak perspective projection

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & Z^* / f \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

The Affine Camera

- Choose a nominal point x₀, y₀, z₀ and describe projection relative to that point
- $u = f[x_0/z_0 + (x-x_0)/z_0 x_0/z_0^2 (z z_0)] = f(a_1 x + a_2 z + d_1)$
- $v = f [y_0/z_0 + (y y_0)/z_0 y_0/z_0^2 (z z_0) = f (a_3 y + a_4 z + d_2)$
- gathering up

alternatively:

• A = $[a_1 0 a_2; 0 a_3 a_4]$				(X)
• d = [d ₁ ; d ₂]	$\begin{pmatrix} U \end{pmatrix} \begin{pmatrix} a_1 \end{pmatrix}$	0	a_2	$d_1 \Big) \Big _{V}^{T} \Big $
• u = A P + d	$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} a_1 \\ 0 \\ 0 \end{pmatrix}$	$a_{3} \\ 0$	$a_4 \\ 0$	$ \begin{array}{c} d_2 \\ 1/f \\ T \end{array} \right) $

10/15/04

CS 441, Copyright G.D. Hager

Geometric Transforms

In general, a point in n-D space transforms by

P' = rotate(point) + translate(point)

In 2-D space, this can be written as a matrix equation:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} Cos(\theta) & -Sin(\theta) \\ Sin(\theta) & Cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} tx \\ ty \end{pmatrix}$$

In 3-D space (or n-D), this can generalized as a matrix equation:

$$p' = R p + T$$
 or $p = R^{t} (p' - T)$

10/15/04

Geometric Transforms

Now, using the idea of homogeneous transforms, we can write:

$$p' = \begin{pmatrix} R & T \\ 0 & 0 & 0 & 1 \end{pmatrix} p$$

R and T both require 3 parameters. These correspond to the 6 *extrinsic parameters* needed for camera calibration

10/15/04

CS 441, Copyright G.D. Hager

Intrinsic Parameters

Intrinsic Parameters describe the conversion from unit focal length metric to pixel coordinates (and the reverse)

or

$$\begin{pmatrix} x \\ y \\ w \end{pmatrix}_{pix} = \begin{pmatrix} -1/s_x & 0 & o_x \\ 0 & -1/s_y & o_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}_{mm} = K_{int} p$$

It is common to combine scale and focal length together as the are both scaling factors; note projection is unitless in this case! 10/15/04 CS 441, Copyright G.D. Hager

The Camera Matrix

- Homogenous coordinates for 3D
 - four coordinates for 3D point
 - equivalence relation (X,Y,Z,T) is the same as (k X, k Y, k Z,k T)
- Turn previous expression into HC's
 - HC's for 3D point are (X,Y,Z,T)
 - HC's for point in image are (U,V,W)

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \\ 0 & 0 & 1/f & 0 \\ \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

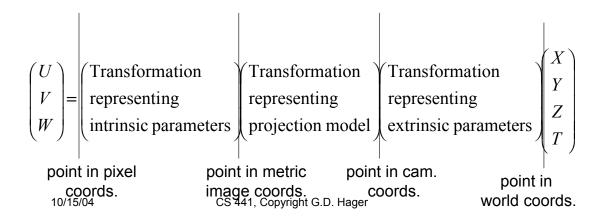
$$(U,V,W) \rightarrow (\frac{U}{W},\frac{V}{W}) = (u,v)$$

10/15/04

CS 441, Copyright G.D. Hager

Camera parameters

- Summary:
 - points expressed in external frame
 - points are converted to canonical camera coordinates
 - points are projected
 - points are converted to pixel units



Lens Distortion

 In general, lens introduce minor irregularities into images, typically radial distortions:

> $x = x_d(1 + k_1r^{2+}k_2r^4)$ y = y_d(1 + k_1r^{2+}k_2r^4) r^2 = x_d^2 + y_d^2

• The values k₁ and k₂ are additional parameters that must be estimated in order to have a model for the camera system.

10/15/04

CS 441, Copyright G.D. Hager

Summary: Other Models

- The orthographic and scaled orthographic cameras (also called *weak* perspective)
 - simply ignore z
 - differ in the scaling from x/y to u/v coordinates
 - preserve Euclidean structure to a great degree
- The affine camera is a generalization of orthographic models.
 - u = A p + d
 - A is 2×3 and d is 2×1
 - This can be derived from scaled orthography or by linearizing perspective about a point not on the optical axis
- The *projective camera* is a generalization of the perspective camera.

– u' = M p

- M is 3x4 nonsingular defined up to a scale factor
- This just a generalization (by one parameter) from "real" model
- Both have the advantage of being linear models on real and projective spaces, respectively.
 10/15/04 CS 441, Copyright G.D. Hager

Related Transformation Models

- Euclidean models (homogeneous transforms); ^bp = ^bT_a ^a p
- Similarity models: ^bp = s ^bT_a ^a p
- Affine models:^bp = ^bK_a ^a p, K = [A,t;0 0 0 1], A 2 GL(3)
- Projective models: ^bp = ^bM_a ^a p, M 2 GL(4)
 - Ray models
 - Affine plane
 - Sphere

10/15/04

CS 441, Copyright G.D. Hager

	Euclidean	Similarity	Affine	Projective
Transforms				
rotation	x	x	x	x
translation	x	x	x	x
uniform scaling		x	x	x
nonuniform scaling			x	x
shear			x	x
perspective				х
composition of proj.				x
Invariants				
length	x			
angle	x	x		
ratios	x	x		
parallelism	x	x	x	
incidence/cross rat.	x	x	x	x

Model Stratification

Why Projective (or Affine or ...)

- Recall in Euclidean space, we can define a change of coordinates by choosing a new origin and three orthogonal unit vectors that are the new coordinate axes
 - The class of all such transformation is SE(3) which forms a group
 - One rendering is the class of all homogeneous transformations
 - This does not model what happens when things are imaged (why?)
- If we allow a change in scale, we arrive at similarity transforms, also a group
 - This sometimes can model what happens in imaging (when?)
- If we allow the 3x3 rotation to be an arbitrary member of GL(3) we arrive at affine transformations (yet another group!)
 - This also sometimes is a good model of imaging
 - The basis is now defined by three arbitrary, non-parallel vectors
- The process of perspective projection **does not** form a group
 - $\,$ that is, a picture of a picture cannot in general be described as a perspective projection
- Projective systems include perspectivities as a special case and do form a group
 - We now require 4 basis vectors (three axes plus an additional independent vector)
 - A model for linear transformations (also called collineations or homographies) on Pⁿ is GL(n+1) which is, of course, a group

10/15/04

CS 441, Copyright G.D. Hager

Camera calibration

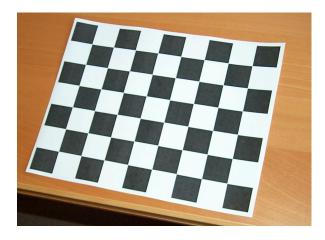
- Issues:
 - what are intrinsic parameters of the camera?
 - what is the camera matrix? (intrinsic+extrinsic)
- · General strategy:
 - view calibration object
 - identify image points
 - obtain camera matrix by minimizing error
 - obtain intrinsic parameters from camera matrix
- Most modern systems employ the multi-plane method
 - avoids knowing absolute coordinates of calibration poitns

- Error minimization:
 - Linear least squares
 - · easy problem numerically
 - solution can be rather bad
 - Minimize image distance
 - more difficult numerical problem
 - solution usually rather good, but can be hard to find
 - start with linear least squares
 - Numerical scaling is an issue

Calibration – Problem Statement

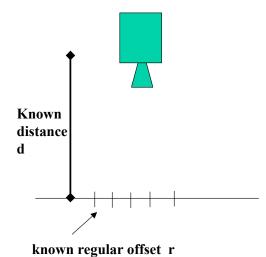
The problem:

Compute the camera intrinsic (4 or more) and extrinsic parameters (6) using only observed camera data.



10/15/04

CAMERA CALIBRATION: A WARMUP



 $\frac{rk_i}{d} = (x_i - o_x)s_x$ $\frac{r}{d} = (x_{i+1} - x_i)s_x$

A simple way to get scale parameters; we can compute the optical center as the numerical center and therefore have the intrinsic parameters

Calibration: Another Warmup

- Suppose we want to calibrate the affine camera and we know u_i = A p_i + d for many pairs i
- m is mean of u's and q is mean of p's; note m = A q + d
- $U = [u_1 m, u_2 m, ..., u_n m]$ and $P = [p_1 q, p_2 q, ..., p_n q]$
- U = A P ◊ U P' (P P')⁻¹ = A
- d is now mean of $u_i A p_i$

10/15/04

CS 441, Copyright G.D. Hager

Types of Calibration

- Photogrammetric Calibration
- Self Calibration
- Multi-Plane Calibration

Photogrammetric Calibration

- Calibration is performed through imaging a pattern whose geometry in 3d is known with high precision.
- PRO: Calibration can be performed very efficiently
- CON: Expensive set-up apparatus is required; multiple orthogonal planes.
- Approach 1: Direct Parameter Calibration
- Approach 2: Projection Matrix Estimation

10/15/04

CS 441, Copyright G.D. Hager

The General Case

- Affine is "easy" because it is linear and unconstrained (note orthographic is harder because of constraints)
- Perspective case is also harder because it is both nonlinear and constrained
- Observation: optical center can be computed from the *orthocenter* of vanishing points of orthogonal sets of lines.

Basic Equations ${}^{c}T_{w} = (T_{x}, T_{y}, T_{z})'$ ${}^{c}R_{w} = (R_{x}, R_{y}, R_{z})'$ ${}^{c}p = {}^{c}R_{w}{}^{w}p + {}^{c}T_{w}$ $u = -f\frac{R_{x}p + T_{x}}{R_{z}p + T_{z}}$ $v = -f\frac{R_{y}p + T_{y}}{R_{z}p + T_{z}}$ $v = -f\frac{R_{y}p + T_{y}}{R_{z}p + T_{z}}$

10/15/04

Basic Equations

$$u_{pix} = \frac{1}{s_x}u + o_x$$
$$v_{pix} = \frac{1}{s_y}v + o_y$$

$$\bar{u} = u_{pix} - o_x = -f_x \frac{R_x p + T_x}{R_z p + T_z}$$
$$\bar{v} = v_{pix} - o_y = -f_y \frac{R_y p + T_y}{R_z p + T_z}$$

CS 441, Copyright G.D. Hager

10/15/04

Basic Equations

$$\overline{u}_i f_y (R_y p_i + T_y) = \overline{v}_i f_x (R_x p_i + T_x)$$

$$\overline{u}_i (R_y p_i - T_y) - \overline{v}_i \alpha (R_x p_i + T_x) = 0$$

 $r = \alpha R_x$ and $w = \alpha T_x$ $t = R_y$ and $s = T_y$

one of these for each point

$$A_i = (u_i p_i, u_i, -v_i p_i, -v_i)$$
 and $A[t, s, w, r]' = 0$

10/15/04

CS 441, Copyright G.D. Hager

Properties of SVD

- Recall the singular values of a matrix are related to its rank.
- Recall that Ax = 0 can have a nonzero x as solution only if A is singular.
- Finally, note that the matrix V of the SVD is an orthogonal basis for the domain of A; in particular the zero singular values are the basis vectors for the null space.
- Putting all this together, we see that A must have rank 7 (in this particular case) and thus x must be a vector in this subspace.
- Clearly, x is defined only up to scale.

Basic Equations

$$A_i = (u_i p_i, u_i, -v_i p_i, -v_i)$$
 and
 $A[t, s, w, r]' = Am = 0$

Note that m is defined up a scale factor!

A = UDV' and choose m as column of V corresponding to the smallest singular value

10/15/04

CS 441, Copyright G.D. Hager

Basic Equations

$$A_i = (u_i p_i, u_i, -v_i p_i, -v_i)$$
 and
 $A[t, s, w, r]' = Am = 0$

 $||t|| = |\gamma|$ gives scale factor for solution $||w|| = |\gamma|\alpha$

We now know R_x and R_y up to a sign and γ . $R_z = R_x \times R_y$

We will probably use another SVD to orthogonalize this system (R = U D V; set D to I and multiply).

Last Details

- We still need to compute the correct sign.
 - note that the denominator of the original equations must be positive (points must be in front of the cameras)
 - Thus, the numerator and the projection must disagree in sign.
 - We know everything in numerator and we know the projection, hence we can determine the sign.
- We still need to compute T_z and f_x
 - we can formulate this as a least squares problem on those two values using the first equation.

$$\bar{u} = -f_x \frac{R_x p + T_x}{R_z p + T_z} \rightarrow$$

$$\bar{u}(R_z p + T_z) = -f_x(R_x p + T_x)$$

$$f_x(R_x p + T_x) + \bar{u}T_z = -\bar{u}R_z p$$

$$A(f_x, T_z)' = b \rightarrow (f_x, T_z)' = (A'A)^{-1}A'b$$

10/15/04

CS 441, Copyright G.D. Hager

Direct Calibration: The Algorithm

- 1. Compute image center from orthocenter
- 2. Compute the A matrix (6.8)
- 3. Compute solution with SVD
- 4. Compute gamma and alpha
- 5. Compute R (and normalize)
- 6. Compute f_x and and T_z
- 7. If necessary, solve a nonlinear regression to get distortion parameters

Indirect Calibration: The Basic Idea

- We know that we can also just write
 - **u**_h = M **p**_h
 - x = (u/w) and y = (v/w), $u_h = (u,v,1)'$
 - As before, we can multiply through (after plugging in for u,v, and w)
- Once again, we can write

– A m = 0

• Once again, we use an SVD to compute m up to a scale factor.

10/15/04

CS 441, Copyright G.D. Hager

Getting The Camera Parameters

$$M = \begin{bmatrix} -f_x R_x + o_x R_z & -f_x T_x + o_x T_z \\ -f_y R_y + o_y R_z & -f_y T_y + o_y T_z \\ R_z & T_z \end{bmatrix}$$

We'll write

$$M = \begin{bmatrix} q_1 \\ q_2 & q'_4 \\ q_3 \end{bmatrix}$$

Getting The Camera Parameters

$$M = \begin{bmatrix} -f_x R_x + o_x R_z & -f_x T_x + o_x T_z \\ -f_y R_y + o_y R_z & -f_y T_y + o_y T_z \\ R_z & T_z \end{bmatrix}$$

We'll write

$$M = \left[\begin{array}{c} q_1 \\ q_2 \\ q_3 \end{array} \right]$$

THEN:

$$R_{y} = (q_{2} - o_{y} R_{z})/f_{y}$$

$$R_{x} = R_{y} x R_{z}$$

$$T_{x} = -(q_{4,1} - o_{x} T_{z})/f_{x}$$

$$T_{y} = -(q_{4,2} - o_{y} T_{z})/f_{y}$$

FIRST:

 $|q_3|$ is scale up to sign; divide by this value

 $M_{3,4}$ is T_z up to sign, but T_z must be positive; if not divide M by -1

$$o_{x} = q_{1} \cdot q_{3}$$

$$o_{y} = q_{2} \cdot q_{3}$$

$$f_{x} = (q_{1} \cdot q_{1} - o_{x}^{2})^{1/2}$$

$$f_{y} = (q_{2} \cdot q_{2} - o_{y}^{2})^{1/2}$$

Finally, use SVD to orthogonalize the rotation,

10/15/04

CS 441, Copyright G.D. Hager

Self-Calibration

- Calculate the intrinsic parameters solely from point correspondences from multiple images.
- Static scene and intrinsics are assumed.
- No expensive apparatus.
- Highly flexible but not well-established.
- Projective Geometry image of the absolute conic.

Model Examples: Points on a Plane

- Normal vector n =(n_x,n_y,n_z,0)'; point P = (p_x,p_y,p_z,1) plane equation: n ¢ P = d
 - w/o loss of generality, assume $n_z \neq 0$
 - Thus, $p_z = a p_x + b p_y + c$; let B = (a, b, 0, c)
 - Define P' = $(p_x, p_y, 0, 1)$
 - P = P' + (0,0,BP',0)
- Affine: **u** = A P, A a 3 by 4 matrix
 - u = A_{1.2.4} P' + A₃ B P' = A_{3x3} P_{3£1}
 - Note that we can now *reproject* the points u and group the projections --- in short projection of projections stays within the affine group
- Projective **p** = M **P**, M a 4 by 3 matrix
 - $p = M_{1,2,4} P' + M_3 B P' = M P_{3 \Sigma 1}$
 - Note that we can now *reproject* the points p and group the resulting matrices --- in short projections of projections stays within the projective group

10/15/04

CS 441, Copyright G.D. Hager

Multi-Plane Calibration

- Hybrid method: Photogrammetric and Self-Calibration.
- Uses a planar pattern imaged multiple times (inexpensive).
- Used widely in practice and there are many implementations.
- Based on a group of projective transformations called homographies.
- m be a 2d point [u v 1]' and M be a 3d point [x y z 1]'.
- Projection is

$$s\tilde{m} = A[R \quad T]\tilde{M}$$

Review: Projection Model

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix} \longrightarrow \begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

$$\begin{pmatrix} U \\ V \\ W \end{pmatrix}_{pix} = \begin{pmatrix} s_u & 0 & o_u \\ 0 & s_v & o_v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \end{pmatrix}_{mm} = Ap$$

10/15/04

Result

- We know that $\begin{bmatrix} h_1 & h_2 & h_3 \end{bmatrix} = sA[r_1 \quad r_2 \quad t]$
- From one homography, how many constraints on the intrinsic parameters can we obtain?
 - Extrinsics have 6 degrees of freedom.
 - The homography supplies 8 values.
 - Thus, we should be able to obtain 2 constraints per homography.
- Use the constraints on the rotation matrix columns...

10/15/04

CS 441, Copyright G.D. Hager

Planar Homographies

- First Fundamental Theorem of Projective Geometry:
 - There exists a unique homography that performs a change of basis between two projective spaces of the same dimension.

$$s\tilde{m} = H\tilde{M}$$

- Notice that the homography is defined up to scale (s).
- In P(2), we have
 - p' = H p for points p
 - u' = H^t u for lines u
- Note to define the homography, we need three basis vectors *plus* the unit point!

Planar Homographies

- First Fundamental Theorem of Projective Geometry:
 - There exists a unique homography that performs a change of basis between two projective spaces of the same dimension.

s[u]	V	$[1]^{T}$	=	$A[r_1$	r_2	r_3	t][X	Y	Ζ	$[1]^{T}$
s[u]	v	$[1]^{T}$	=	$A[r_1$	r_2	r_3	t][X	Y	0	$[1]^{T}$
s[u]	V	$[1]^{T}$	=	$A[r_1$	r_2	t][2	Y Y	$[1]^{T}$,	
s[u]	V	$[1]^{T}$	=	H[X	Y	$[1]^T$				
_	Proj	ection B	ecome	s			~			

$$s\tilde{m} = H\tilde{M}$$

- Notice that the homography is defined up to scale (s).

10/15/04

CS 441, Copyright G.D. Hager

Estimating A Homography

- Here is what looks like a reasonable recipe for computing homographies:
 - Planar pts $(x_1;y_1;1, x_2; y_2; 1, ..., x_n;y_n;1) = X$
 - Corresponding pts $(u_1;v_1;1,u_2;v_2;1,...u_n;v_n;1) = U$
 - U = H X
 - U X' (X X')-1 = H
- The problem is that X will not be full rank (why?). So we'll have to work a little harder ...

Computing Intrinsics

• Rotation Matrix is orthogonal....

$$r_i^T r_j = 0$$
$$r_i^T r_i = r_j^T r_j$$

• Write the homography in terms of its columns...

$$h_1 = sAr_1$$

$$h_2 = sAr_2$$

$$h_3 = sAt$$

10/15/04

CS 441, Copyright G.D. Hager

Computing Intrinsics

• Derive the two constraints:

$$h_1 = sAr_1$$

$$\frac{1}{s}A^{-1}h_1 = r_1$$

$$\frac{1}{s}A^{-1}h_2 = r_2$$

$$r_1^T r_2 = 0$$

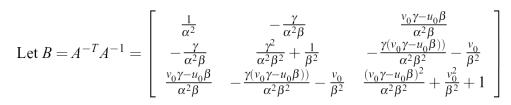
$$h_1^T A^{-T}A^{-1}h_2 = 0$$

$$r_1^T r_2 = r_2$$

$$r_1^T r_1 = r_2^T r_2$$

$$h_1^T A^{-T} A^{-1} h_1 = h_2^T A^{-T} A^{-1} h_2$$

Closed-Form Solution



- Notice B is symmetric, 6 parameters can be written as a vector b.
- From the two constraints, we have $h_i^T B h_i = v_{ii}^T$

$$\begin{bmatrix} v_{ij}^T \\ (v_{11} - v_{22})^T \end{bmatrix} b = 0;$$

- Stack up n of these for n images and build a 2n*6 system.
- Solve with SVD (yet again).
- Extrinsics "fall-out" of the result easily.

10/15/04

CS 441, Copyright G.D. Hager

Non-linear Refinement

- · Closed-form solution minimized algebraic distance.
- Since full-perspective is a non-linear model
 - Can include distortion parameters (radial, tangential)
 - Use maximum likelihood inference for our estimated parameters.

$$\sum_{i=1}^{n} \sum_{j=1}^{m} ||m_{ij} - \hat{m}(A, R_k, T_k, M_j)||^2$$

Multi-Plane Approach In Action

• ...if we can get matlab to work...

10/15/04

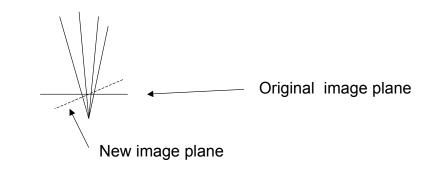
CS 441, Copyright G.D. Hager

Calibration Summary

- Two groups of parameters:
 - internal (intrinsic) and external (extrinsic)
- Many methods
 - direct and indirect, flexible/robust
- The form of the equations that arise here and the way they are solved is common in vision:
 - bilinear forms
 - Ax = 0
 - Orthogonality constraints in rotations
- Most modern systems use the method of multiple planes (matlab demo)
 - more difficult optimization over a large # of parameters
 - more convenient for the user

An Example Using Homographies

- Image rectification is the computation of an image as seen by a rotated camera
 - The computation of the planar reprojection is a homography
 - we'll show later that depth doesn't matter when rotating; for now we'll just use intuition

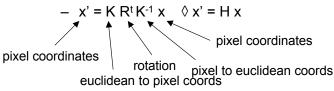


10/15/04

CS 441, Copyright G.D. Hager

Rectification Using Homographies

- Pick a rotation matrix R from old to new image
- Consider all points in the image you want to compute; then
 - construct pixel coordinates x = (u,v,1)
 - K maps unit focal length metric coordinates to pixel (normalized camera)



• Sample a point x' in the original image for each point x in the new.

Bilinear Interpolation

- A minor detail --- new value x' = (u',v',1) may not be integer
- let u' = i + f_u and v' = j+ f_v
- New image value $b = (1-f_u)((1-f_v)I(j,i) + f_v I(j+1,i)) + f_u((1-f_v)I(j,i+1) + f_v I(j+1,i+1))$

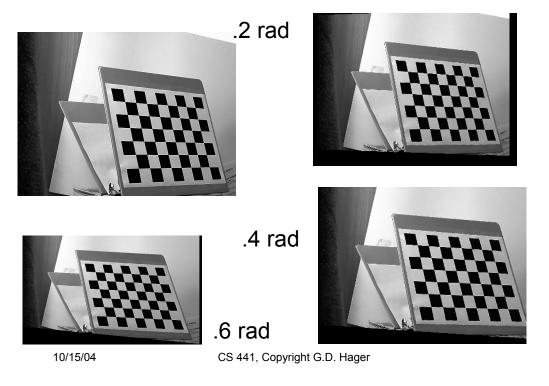
10/15/04

CS 441, Copyright G.D. Hager

Rectification: Basic Algorithm

- 1. Create a mesh of pixel coordinates for the rectified image
- 2. Turn the mesh into a list of homogeneous points
- 3. Project *backwards* through the intrinsic parameters to get unit focal length values
- 4. Rotate these values back to the current camera coordinate system.
- 5. Project them *forward* through the intrinsic parameters to get pixel coordinates again.
 - Note equivalently this is the homography K R^t K⁻¹ where K is the intrinsic parameter matrix
- 6. Sample at these points to populate the rectified image
 - typically use bilinear interpolation in the sampling

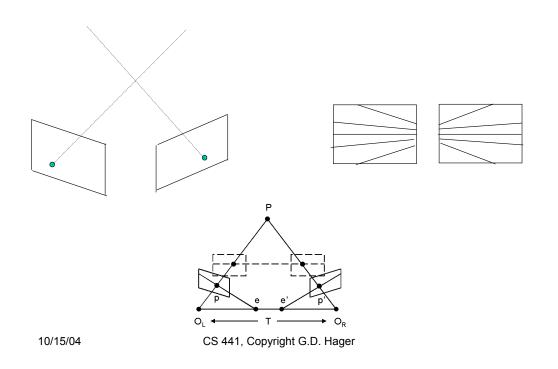
Rectification Results



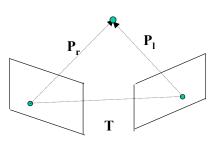
"Homework" Problems

- Derive the relationship between the Plucker coordinates of a line in space and its projection in Plucker coordinates
- Show that the projection of parallel lines meet at a point (and show how to solve for the point)
- Given two sets of points that define two projective bases, show how to solve for the homography that relates them.
- Describe a simple algorithm for calibrating an affine camera given known ground truth points and their observation --- how many points do you need?

Two-Camera Geometry



E matrix derivation



 $\mathbf{P}_{\mathrm{r}} = \mathbf{R}(\mathbf{P}_{\mathrm{l}} - \mathbf{T})$

 $(P_1 - T) \cdot (T \times P_1) = 0$ $P_r^t R (T \times P_1) = 0$ $P_r^t E P_1 = 0$

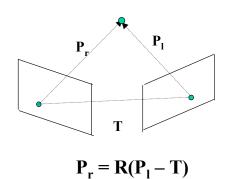
where **E** = **R** sk(**T**)

$$sk(T) = \begin{array}{c} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{array}$$

The matrix E is called the *essential* matrix and completely describes the epipolar geometry of the stereo pair

Fundamental Matrix Derivation

Note that E is invariant to the scale of the points, therefore we also have



 $\mathbf{p}_{r}^{t} \mathbf{E} \mathbf{p}_{l} = \mathbf{0}$

where p denotes the (metric) image projection of P

Now if K denotes the internal calibration, converting from metric to pixel coordinates, we have further that

$$\mathbf{r}_{r}^{t} \mathbf{K}^{-t} \mathbf{E} \mathbf{K}^{-1} \mathbf{r}_{l} = \mathbf{r}_{r}^{t} \mathbf{F} \mathbf{r}_{l} = \mathbf{0}$$

where r denotes the *pixel* coordinates of p. F is called the *fundamental matrix*

10/15/04