
San Jose State University
Department of Electrical Engineering
EE178, Fall 2007, Crabill

Laboratory Assignment #2

Objectives

This lab covers simple logic design using familiar building blocks. From your previous coursework, you
should already be familiar with flip flops, counters, and multiplexers. The goal of this lab is for you to
implement a circuit that generates square waves at specific frequencies based on user input. When you
successfully complete this lab, you will have developed a piece of intellectual property that you might be
able to re-use in the future.

Figure 1: Mechanical Music Player

Now that you are familiar with the tools from Laboratory Assignment #1, you should be able to concern
yourself with digital design. Figure 2 shows a symbol of the module you will create.

Figure 2: Symbolic Representation

Bibliography

This lab draws heavily from the Spartan-3E Starter Kit User Guide. For convenience, I have reproduced
portions of the text and figures in this document where applicable.

Module Description and Requirements

In this design, you are not allowed to use latches. You are allowed to use only one clock and only one
asynchronous reset signal. The clock must be the 50 MHz clock signal available from the oscillator on the
Spartan-3E Starter Kit board. You will receive zero points if you do not follow these requirements.

As shown in Figure 2, the module has four inputs. There are clock and reset inputs, plus a four-bit input to
select one of 16 tones and an additional input to silence the audio output. There is a single output signal,
which is intended to be connected to some form of audio output device.

clk clock signal, 50 MHz from oscillator
rst reset signal
note[3:0] frequency select
hush stop toggling; be silent
speaker audio output

The module must drive the speaker output to generate a square wave at the frequencies specified in the next
section. The speaker output must stop toggling in response to the assertion of the hush signal. The hush
signal is to be treated as an active low enable signal for the speaker output. Assertion of hush should
simply disable future transitions – it should not cause the speaker signal to change value. The reset signal,
on the other hand, certainly disables transitions on the speaker output, but it also forces the speaker output
to a known initial value.

Designing the Module

There are many different techniques for creating audio output. The simplest technique for creating
elementary tones is to generate a periodic waveform and then send that waveform to a speaker. For
example, if you take a function generator (available in most analog laboratory courses) and connect the
output to a speaker, you can actually hear the output when it is in the range of human hearing. This range
is approximately 20 Hz to 20,000 Hz. With the function generator, you can control:

• The frequency – which your brain interprets as the pitch, or note heard.
• The amplitude – which your brain interprets as the volume, or loudness heard.
• The waveshape – which your brain interprets as a timbral characteristic, or “instrument” heard.

You are probably familiar with frequency and amplitude. The waveshape changes the quality of the note
you hear, because the waveshape changes the number and amplitude of harmonics associated with the
fundamental frequency of the waveform. A sinusoidal waveshape gives a perfect tone; that is, if you were
to look at the Fourier transform of the time domain signal, you would see a spike at the fundamental
frequency of the waveform itself, and no other frequency components. On the other hand, if you were to
look at the Fourier transform of a square, saw tooth, or triangle waveshape, you would still see the largest
spike at the fundamental frequency of the waveform, but you would see other, smaller spikes at multiples
of the fundamental frequency. These are called overtones, or harmonics.

Without the aid of digital to analog converters or other analog circuitry, it is cumbersome to produce
anything other than a square wave with digital logic, so we will create square waves as output. Square
waves are simple to create; you can periodically toggle a signal, and then send that signal to a speaker to
create audio output. For the amplitude parameter, we will simply use the output of the FPGA device
directly, with no provision for controlling the amplitude.

The final parameter is the frequency parameter. In designs that only require a buzzer, such as an alarm, any
audible frequency will suffice. In this lab, however, the frequency is important since we will later use the
resulting tones to play music that was intended for a keyboard instrument, such as a piano. Keyboard
instruments are tuned using what is called the equal tempered music scale. In short, what this means is that
the frequency of each note is related to the frequency of the adjacent notes by a constant multiple. The
result is that music can be played equally well, or equally badly, in any key. Figure 3 shows a keyboard of
sixteen notes. The piano design will be capable of playing any note on this keyboard.

Figure 3: Our Virtual Keyboard

For those of you who play instruments, some of this may be familiar. I do not play an instrument, by the
way, and I still made this circuit work correctly! While generating the data shown in Figure 4, I was
running under the following assumptions:

1. Sixteen keys cover more than one octave, which should be sufficient.
2. The frequency of a key called “Concert A” or A4 is 440 Hz.
3. The twelfth root of two relates the frequency of adjacent keys.
4. The single clock used in this design is running at a nominal 50 MHz.

Oscillator Frequency 50000000
Oscillator Period 0.00000002

Binary Keyboard Desired Note Half Period Rounded Terminal
Note Code Note Frequency Period Clk Cycles Clk Cycles Count

0000 A4 440.00 0.002273 56818.18 56818 16'hDDF1
0001 A#/Bb 466.16 0.002145 53629.22 53629 16'hD17C
0010 B/Cb 493.88 0.002025 50619.25 50619 16'hC5BA
0011 C/B# 523.25 0.001911 47778.21 47778 16'hBAA1
0100 C#/Db 554.37 0.001804 45096.62 45097 16'hB028
0101 D 587.33 0.001703 42565.54 42566 16'hA645
0110 D#/Eb 622.25 0.001607 40176.52 40177 16'h9CF0
0111 E/Fb 659.26 0.001517 37921.59 37922 16'h9421
1000 F/E# 698.46 0.001432 35793.21 35793 16'h8BD0
1001 F#/Gb 739.99 0.001351 33784.29 33784 16'h83F7
1010 G 783.99 0.001276 31888.13 31888 16'h7C8F
1011 G#/Ab 830.61 0.001204 30098.38 30098 16'h7591
1100 A5 880.00 0.001136 28409.09 28409 16'h6EF8
1101 A#/Bb 932.33 0.001073 26814.61 26815 16'h68BE
1110 B/Cb 987.77 0.001012 25309.62 25310 16'h62DD
1111 C/B# 1046.50 0.000956 23889.10 23889 16'h5D50

Figure 4: Calculating Half-Period Cycle Counts

The terminal count column contains integer values that will be used in conjunction with a counter to create
the sixteen different notes. In addition, we will also need some method of telling the tone generator to be
silent. This is useful for creating short pauses between notes; otherwise, you could not distinguish between
two repeated notes and one long note.

Before you begin writing any code, you must sit down with scratch paper and draw a block diagram of a
circuit that will satisfy the design requirements. As a hint, consider that one possible implementation of
this module can be realized using a counter, a multiplexer, and a toggle flip flop. Once you have a possible
solution, write a description of it in Verilog-HDL and proceed to test it in simulation.

To facilitate re-use of your completed design, you must implement it in a single module – you are not
allowed to use hierarchical design with sub-modules for this assignment. If you have further questions, or
need clarification, consult the instructor.

Testing the Module

You must perform some minimal functional simulation of the design. This is important for two reasons.
First, it will give you confidence your design is working properly before you implement it. Second, if the
design does not behave as expected, you will have a mechanism to quickly create additional test cases to
help debug the problem. The instructor will not help you debug logic problems (incorrect design behavior)
unless you have a block diagram and are able to run a simulation.

In order to help you get started, here is a template for a test bench that works with the module you are
designing. Feel free to enhance this basic test bench as you see fit.

// File: testbench.v
// This is the top level testbench for EE178 Lab #2.

// The `timescale directive specifies what the
// simulation time units are (1 ns here) and what
// the simulator timestep should be (1 ps here).

`timescale 1 ns / 1 ps

// Declare the module and its ports. This is
// using Verilog-2001 syntax.

module testbench;

 // Generate a free running 50 MHz clock
 // signal to mimic what is on the board
 // provided for prototyping.

 reg clk;

 always
 begin
 clk = 1'b1;
 #10;
 clk = 1'b0;
 #10;
 end

 // Now, generate a reset assertion that
 // takes place at time zero and then
 // deasserts 100 ns later. In this block,
 // also include a mechanism to exercise
 // the design and then finally stop the
 // simulation.

 reg rst;
 reg [3:0] note;
 reg hush;
 integer loopvar;

 initial

 begin
 $display("Simulation starting...");
 rst = 1'b1;
 note = 4'h0;
 hush = 1'b1;
 #100;
 $display("Reset signal released.");
 rst = 1'b0;
 // Loop through all 16 possible notes
 // and also exercise the hush signal.
 for (loopvar = 0; loopvar < 16; loopvar = loopvar + 1)
 begin
 hush = 1'b0; // make noise
 note = loopvar[3:0]; // assign note
 #10000000; // allow it to run
 hush = 1'b1; // go quiet
 #1000000; // allow it to run
 end
 $display("Simulation finished.");
 $stop;
 end

 // Now instantiate the top level design.

 wire speaker;

 piano piano_inst (
 .rst(rst),
 .clk(clk),
 .hush(hush),
 .note(note),
 .speaker(speaker)
);

endmodule

Figure 5 shows what you might expect to see after running this testbench. At this zoom level, the
waveform display does not show the clock or speaker signals toggling; instead, it shows a cross-hatch
pattern indicating that the signal is active.

Figure 5: Simulation Results

To confirm the circuit operates properly, you can zoom in and measure the period of the output waveform
for each value of the note input. You should also visually confirm that the output waveform stops toggling
when hush is asserted.

Synthesizing the Module

Synthesize your design exactly as you did in the tutorial. Do not forget to review the synthesis report. This
report will tell you how many clocks exist in your design, under the “clock information” summary. If you
have more than one clock, you need to go back and correct your design. Also check to see if any latches
were used, you should not have any. These can be found in the “cell usage” summary. If you see anything
starting with LD (Latch, D-type) then you need to go back and correct your design.

Implementing the Module

Before you implement your design, you will need to add a constraints file and edit the I/O locations and
properties using PACE. Use the details in Figure 6 when entering your constraints.

Figure 6: Details, Details…

The clock input is assigned to the correct location to receive the 50 MHz clock signal from the on-board
oscillator. The note inputs are assigned to the switches, and the reset and hush inputs are assigned to
buttons. Review the pin assignments in Figure 6, and then inspect the annotations on your board to find the
location of each button and switch.

The speaker output pin assignment is not immediately obvious. Locate the 6-pin accessory header named
J4. This header is shown in Figure 7 and has 6 pins – four signal pins, plus power and ground. You should
be able to identify which pin on this header is used for the speaker output. You will connect your audio
output device between this pin and ground.

Figure 7: Speaker Connection Location

Once you have entered the pin assignments, save the constraint file, exit PACE, and implement the design.
After a successful design implementation, generate a programming file and launch iMPACT to test the
design in hardware. When you are satisfied with your result, program it into the PROM.

Laboratory Hand-In Requirements

Once you have completed a working design, prepare for the submission process. You are required to
demonstrate a working design which has been programmed into the PROM. Within nine hours of your
demonstration, you are required to submit your entire project directory in the form of a compressed ZIP
archive. Use WinZIP to archive the entire project directory, and name the archive l2_yourlastname.zip.
That is “l2” as in Lab 2, not “12” as in twelve. For example, if I were to make a submission, it would be
l2_crabill.zip. Then email the archive to the instructor. Only WinZIP archives will be accepted. If your
archive is too large, you may remove the subdirectories in the project folder.

Demonstrations must be made on the due date. If your circuit is not completely functional by the due date,
you should demonstrate and submit what you have to receive partial credit.

	Laboratory Assignment #2
	Objectives
	Bibliography
	Module Description and Requirements
	Designing the Module
	Testing the Module
	Synthesizing the Module
	Implementing the Module
	Laboratory Hand-In Requirements

