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Objectives 
 
This lab covers simple logic design using familiar building blocks.  From your previous coursework, you 
should already be familiar with flip flops, counters, and multiplexers.  The goal of this lab is for you to 
implement a circuit that generates square waves at specific frequencies based on user input.  When you 
successfully complete this lab, you will have developed a piece of intellectual property that you might be 
able to re-use in the future. 
 

 
Figure 1: Mechanical Music Player 

Now that you are familiar with the tools from Laboratory Assignment #1, you should be able to concern 
yourself with digital design.  Figure 2 shows a symbol of the module you will create. 
 

 
Figure 2: Symbolic Representation 

Bibliography 
 
This lab draws heavily from the Spartan-3E Starter Kit User Guide.  For convenience, I have reproduced 
portions of the text and figures in this document where applicable. 
 
Module Description and Requirements 
 
In this design, you are not allowed to use latches.  You are allowed to use only one clock and only one 
asynchronous reset signal.  The clock must be the 50 MHz clock signal available from the oscillator on the 
Spartan-3E Starter Kit board.  You will receive zero points if you do not follow these requirements. 
 



As shown in Figure 2, the module has four inputs.  There are clock and reset inputs, plus a four-bit input to 
select one of 16 tones and an additional input to silence the audio output.  There is a single output signal, 
which is intended to be connected to some form of audio output device. 
 
clk  clock signal, 50 MHz from oscillator 
rst  reset signal 
note[3:0] frequency select 
hush  stop toggling; be silent 
speaker  audio output 
 
The module must drive the speaker output to generate a square wave at the frequencies specified in the next 
section.  The speaker output must stop toggling in response to the assertion of the hush signal.  The hush 
signal is to be treated as an active low enable signal for the speaker output.  Assertion of hush should 
simply disable future transitions – it should not cause the speaker signal to change value.  The reset signal, 
on the other hand, certainly disables transitions on the speaker output, but it also forces the speaker output 
to a known initial value. 
 
Designing the Module 
 
There are many different techniques for creating audio output.  The simplest technique for creating 
elementary tones is to generate a periodic waveform and then send that waveform to a speaker.  For 
example, if you take a function generator (available in most analog laboratory courses) and connect the 
output to a speaker, you can actually hear the output when it is in the range of human hearing.  This range 
is approximately 20 Hz to 20,000 Hz.  With the function generator, you can control: 
 
• The frequency – which your brain interprets as the pitch, or note heard. 
• The amplitude – which your brain interprets as the volume, or loudness heard. 
• The waveshape – which your brain interprets as a timbral characteristic, or “instrument” heard. 
 
You are probably familiar with frequency and amplitude.  The waveshape changes the quality of the note 
you hear, because the waveshape changes the number and amplitude of harmonics associated with the 
fundamental frequency of the waveform.  A sinusoidal waveshape gives a perfect tone; that is, if you were 
to look at the Fourier transform of the time domain signal, you would see a spike at the fundamental 
frequency of the waveform itself, and no other frequency components.  On the other hand, if you were to 
look at the Fourier transform of a square, saw tooth, or triangle waveshape, you would still see the largest 
spike at the fundamental frequency of the waveform, but you would see other, smaller spikes at multiples 
of the fundamental frequency.  These are called overtones, or harmonics. 
 
Without the aid of digital to analog converters or other analog circuitry, it is cumbersome to produce 
anything other than a square wave with digital logic, so we will create square waves as output.  Square 
waves are simple to create; you can periodically toggle a signal, and then send that signal to a speaker to 
create audio output.  For the amplitude parameter, we will simply use the output of the FPGA device 
directly, with no provision for controlling the amplitude. 
 
The final parameter is the frequency parameter.  In designs that only require a buzzer, such as an alarm, any 
audible frequency will suffice.  In this lab, however, the frequency is important since we will later use the 
resulting tones to play music that was intended for a keyboard instrument, such as a piano.  Keyboard 
instruments are tuned using what is called the equal tempered music scale.  In short, what this means is that 
the frequency of each note is related to the frequency of the adjacent notes by a constant multiple.  The 
result is that music can be played equally well, or equally badly, in any key.  Figure 3 shows a keyboard of 
sixteen notes.  The piano design will be capable of playing any note on this keyboard. 
 



 
Figure 3: Our Virtual Keyboard 

For those of you who play instruments, some of this may be familiar.  I do not play an instrument, by the 
way, and I still made this circuit work correctly!  While generating the data shown in Figure 4, I was 
running under the following assumptions: 
 
1. Sixteen keys cover more than one octave, which should be sufficient. 
2. The frequency of a key called “Concert A” or A4 is 440 Hz. 
3. The twelfth root of two relates the frequency of adjacent keys. 
4. The single clock used in this design is running at a nominal 50 MHz. 
 
Oscillator Frequency 50000000     
Oscillator Period 0.00000002     

Binary Keyboard Desired Note Half Period Rounded Terminal 
Note Code Note Frequency Period Clk Cycles Clk Cycles Count 

0000 A4 440.00 0.002273 56818.18 56818 16'hDDF1 
0001 A#/Bb 466.16 0.002145 53629.22 53629 16'hD17C 
0010 B/Cb 493.88 0.002025 50619.25 50619 16'hC5BA 
0011 C/B# 523.25 0.001911 47778.21 47778 16'hBAA1 
0100 C#/Db 554.37 0.001804 45096.62 45097 16'hB028 
0101 D 587.33 0.001703 42565.54 42566 16'hA645 
0110 D#/Eb 622.25 0.001607 40176.52 40177 16'h9CF0 
0111 E/Fb 659.26 0.001517 37921.59 37922 16'h9421 
1000 F/E# 698.46 0.001432 35793.21 35793 16'h8BD0 
1001 F#/Gb 739.99 0.001351 33784.29 33784 16'h83F7 
1010 G 783.99 0.001276 31888.13 31888 16'h7C8F 
1011 G#/Ab 830.61 0.001204 30098.38 30098 16'h7591 
1100 A5 880.00 0.001136 28409.09 28409 16'h6EF8 
1101 A#/Bb 932.33 0.001073 26814.61 26815 16'h68BE 
1110 B/Cb 987.77 0.001012 25309.62 25310 16'h62DD 
1111 C/B# 1046.50 0.000956 23889.10 23889 16'h5D50 

Figure 4: Calculating Half-Period Cycle Counts 

The terminal count column contains integer values that will be used in conjunction with a counter to create 
the sixteen different notes.  In addition, we will also need some method of telling the tone generator to be 
silent.  This is useful for creating short pauses between notes; otherwise, you could not distinguish between 
two repeated notes and one long note. 
 
Before you begin writing any code, you must sit down with scratch paper and draw a block diagram of a 
circuit that will satisfy the design requirements.  As a hint, consider that one possible implementation of 
this module can be realized using a counter, a multiplexer, and a toggle flip flop.  Once you have a possible 
solution, write a description of it in Verilog-HDL and proceed to test it in simulation. 
 



To facilitate re-use of your completed design, you must implement it in a single module – you are not 
allowed to use hierarchical design with sub-modules for this assignment.  If you have further questions, or 
need clarification, consult the instructor. 
 
Testing the Module 
 
You must perform some minimal functional simulation of the design.  This is important for two reasons.  
First, it will give you confidence your design is working properly before you implement it.  Second, if the 
design does not behave as expected, you will have a mechanism to quickly create additional test cases to 
help debug the problem.  The instructor will not help you debug logic problems (incorrect design behavior) 
unless you have a block diagram and are able to run a simulation. 
 
In order to help you get started, here is a template for a test bench that works with the module you are 
designing.  Feel free to enhance this basic test bench as you see fit. 
 
// File:  testbench.v 
// This is the top level testbench for EE178 Lab #2. 
 
// The `timescale directive specifies what the 
// simulation time units are (1 ns here) and what 
// the simulator timestep should be (1 ps here). 
 
`timescale 1 ns / 1 ps 
 
// Declare the module and its ports. This is 
// using Verilog-2001 syntax. 
 
module testbench; 
 
  // Generate a free running 50 MHz clock 
  // signal to mimic what is on the board 
  // provided for prototyping. 
 
  reg clk; 
 
  always 
  begin 
    clk = 1'b1; 
    #10; 
    clk = 1'b0; 
    #10; 
  end 
 
  // Now, generate a reset assertion that 
  // takes place at time zero and then 
  // deasserts 100 ns later.  In this block, 
  // also include a mechanism to exercise 
  // the design and then finally stop the 
  // simulation. 
 
  reg rst; 
  reg [3:0] note; 
  reg hush; 
  integer loopvar; 
 
  initial 



  begin 
    $display("Simulation starting..."); 
    rst = 1'b1; 
    note = 4'h0; 
    hush = 1'b1; 
    #100; 
    $display("Reset signal released."); 
    rst = 1'b0; 
    // Loop through all 16 possible notes 
    // and also exercise the hush signal. 
    for (loopvar = 0; loopvar < 16; loopvar = loopvar + 1) 
    begin 
      hush = 1'b0; // make noise 
      note = loopvar[3:0]; // assign note 
      #10000000; // allow it to run 
      hush = 1'b1; // go quiet 
      #1000000; // allow it to run 
     end 
    $display("Simulation finished."); 
    $stop; 
  end 
 
  // Now instantiate the top level design. 
 
  wire speaker; 
 
  piano piano_inst ( 
    .rst(rst), 
    .clk(clk), 
    .hush(hush), 
    .note(note), 
    .speaker(speaker) 
    ); 
 
endmodule 
 
Figure 5 shows what you might expect to see after running this testbench.  At this zoom level, the 
waveform display does not show the clock or speaker signals toggling; instead, it shows a cross-hatch 
pattern indicating that the signal is active. 
 



 
Figure 5: Simulation Results 

To confirm the circuit operates properly, you can zoom in and measure the period of the output waveform 
for each value of the note input.  You should also visually confirm that the output waveform stops toggling 
when hush is asserted. 
 
Synthesizing the Module 
 
Synthesize your design exactly as you did in the tutorial.  Do not forget to review the synthesis report.  This 
report will tell you how many clocks exist in your design, under the “clock information” summary.  If you 
have more than one clock, you need to go back and correct your design.  Also check to see if any latches 
were used, you should not have any.  These can be found in the “cell usage” summary.  If you see anything 
starting with LD (Latch, D-type) then you need to go back and correct your design. 
 
Implementing the Module 
 
Before you implement your design, you will need to add a constraints file and edit the I/O locations and 
properties using PACE.  Use the details in Figure 6 when entering your constraints. 
 

 
Figure 6: Details, Details… 

The clock input is assigned to the correct location to receive the 50 MHz clock signal from the on-board 
oscillator.  The note inputs are assigned to the switches, and the reset and hush inputs are assigned to 
buttons.  Review the pin assignments in Figure 6, and then inspect the annotations on your board to find the 
location of each button and switch. 



 
The speaker output pin assignment is not immediately obvious.  Locate the 6-pin accessory header named 
J4.  This header is shown in Figure 7 and has 6 pins – four signal pins, plus power and ground.  You should 
be able to identify which pin on this header is used for the speaker output.  You will connect your audio 
output device between this pin and ground. 
 

 
Figure 7: Speaker Connection Location 

Once you have entered the pin assignments, save the constraint file, exit PACE, and implement the design.  
After a successful design implementation, generate a programming file and launch iMPACT to test the 
design in hardware.  When you are satisfied with your result, program it into the PROM. 
 
Laboratory Hand-In Requirements 
 
Once you have completed a working design, prepare for the submission process.  You are required to 
demonstrate a working design which has been programmed into the PROM.  Within nine hours of your 
demonstration, you are required to submit your entire project directory in the form of a compressed ZIP 
archive.  Use WinZIP to archive the entire project directory, and name the archive l2_yourlastname.zip.  
That is “l2” as in Lab 2, not “12” as in twelve.  For example, if I were to make a submission, it would be 
l2_crabill.zip.  Then email the archive to the instructor.  Only WinZIP archives will be accepted.  If your 
archive is too large, you may remove the subdirectories in the project folder. 
 
Demonstrations must be made on the due date.  If your circuit is not completely functional by the due date, 
you should demonstrate and submit what you have to receive partial credit. 
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