PRECISION 3.3 VOLT LOW KNEE CURRENT VOLTAGE REFERENCE

ISSUE 5 - JANUARY 2003

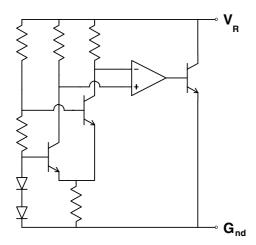
ZRC330

DEVICE DESCRIPTION

The ZRC330 uses a bandgap circuit design to achieve a precision micropower voltage reference of 3.3 volts. The device is available in a small outline surface mount package, ideal for applications where space saving is important.

The ZRC330 design provides a stable voltage without an external capacitor and is stable with capacitive loads. The ZRC330 is recommended for operation between $20\mu A$ and 5mA and so is ideally suited to low power and battery powered applications.

Excellent performance is maintained to an absolute maximum of 25mA, however the rugged design and 20 volt processing allows the reference to withstand transient effects and currents up to 200mA. Superior switching capability allows the device to reach stable operating conditions in only a few microseconds.


FEATURES

- Small outline SOT23 and TO92 style packages
- No stabilising capacitor required
- Low knee current, 15μA typical
- Typical slope resistance 0.6Ω
- ± 3%, 2% and 1% tolerance
- Industrial temperature range
- Operating current 20μA to 5mA

APPLICATIONS

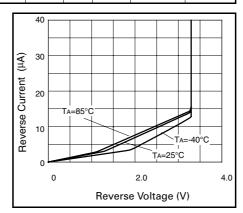
- Battery powered and portable equipment.
- Metering and measurement systems.
- Instrumentation.
- Test equipment.
- Data acquisition systems.
- Precision power supplies.
- Crystal oscillators

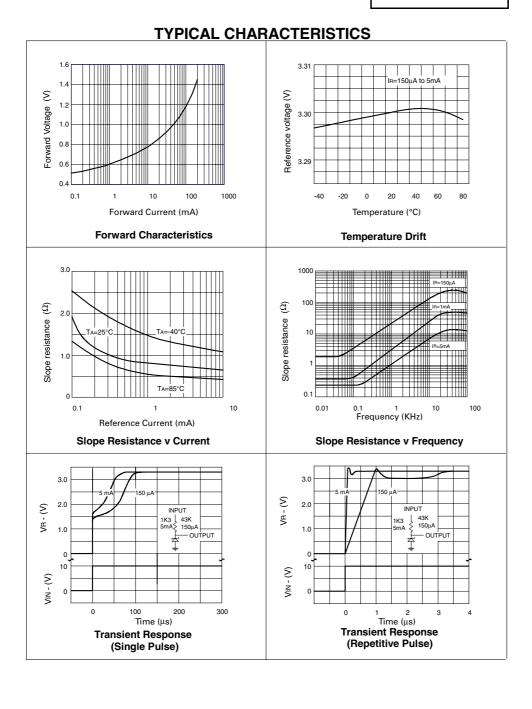
SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATING

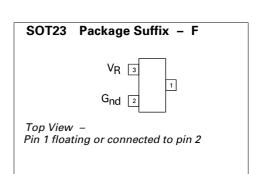
Power Dissipation (T_{amb}=25°C) Reverse Current 330mW SOT23 **Forward Current** 25mA 500mW E-Line, 3 pin (TO92)

-40 to 85°C **Operating Temperature** Storage Temperature -55 to 125°C


ELECTRICAL CHARACTERISTICS


TEST CONDITIONS (Unless otherwise stated) Tamb=25°C

SYMBOL	PARAMETER	CONDITIONS	LIMITS		TOL.%	UNITS	
			MIN	TYP	MAX		
V _R	Reverse Breakdown Voltage	I _R =150μA	3.27 3.234 3.2	3.3 3.3 3.3	3.33 3.366 3.4	1 2 3	>
I _{MIN}	Minimum Operating Current			15	20		μΑ
I _R	Recommended Operating Current		0.02		5		mA
T _C †	Average Reverse Breakdown Voltage Temp. Co.	I _{R(min)} to I _{R(max)}		15	50		ppm/°C
R _S §	Slope Resistance			0.6	2		Ω
Z _R	Reverse Dynamic Impedance	I _R = 1mA f = 100Hz I _{AC} = 0.1 I _R		0.5	1.2		Ω
E _N	Wideband Noise Voltage	I _R = 150μA f = 10Hz to 10kHz		75			μV(rms)


†
$$T_C = \frac{(V_{R(max)} - V_{R(min)}) \times 1000000}{V_R \times (T_{(max)} - T_{(min)})}$$

Note: $V_{R(max)}$ - $V_{R(min)}$ is the maximum deviation in reference voltage measured over the full operating temperature range.

E-Line, 3 pin Package Suffix - A VR 2 o Gnd 3 o Bottom View Pin 1 floating or connected to pin 3

ORDERING INFORMATION

Part No	Tol%	Package	Partmark	
ZRC330A03	3	E-Line •	ZRC33003	
ZRC330A02	2	E-Line •	ZRC33002	
ZRC330A01	1	E-Line •	ZRC33001	
ZRC330F03	3	SOT23	33A	
ZRC330F02	2	SOT23	33B	
ZRC330F01	1	SOT23	33C	

[•] E-Line 3 pin