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Introductory Notes

In this paper a number of advanced techniques for solving sequential logic cir-
cuit design problems are developed. Special methods are presented for taking
a problem from its initial statement to a fully implemented solution. The ob-
jective is to find practical solutions for a variety of typical sequential circuit
problems. Each problem begins with a problem statement and proceeds with
a flow table description of the desired behavior, the derivation of the circuit
equations, and the implementation of those equations using standard logic de-
vices. A typical solution will be constructed from some family of logic gates
and inverters. See [Huff 54, Cald 58] for complete information on the flow table
method of synthesis. Many of the problems posed here yield solutions which
will be familiar to the reader. The emphasis is more on ‘how to get there’ than
on whether anyone has been there before. Some complex problems with novel
solutions are also treated, however, and others can be readily developed.

It is assumed that the reader is already familiar with combinational logic
problems and solutions using Boolean algebra and with the use of Karnaugh
maps. See [Karn 53] for details. A thorough understanding of DeMorgan’s
theorem and its application to logic devices is also assumed.

Some experience with state machines would be helpful, but not necessary, as
we will exclusively use flow tables to specify sequential circuit behavior. Thus,
any previous experience in generating flow table descriptions of logic blocks will
aid materially in getting through the various exercises. Other synthesis methods
can be found in [Moore 54, Maley 63, Mealey 55].

The reader should be advised that this paper deals with design at the low-
est logic level; i.e., we will be designing logic circuits using NAND gates, NOR
gates, etc. We will not address the higher level problem of building counters
from flip-flops or state machines from counters. Nor will we deal with the lower
level (analog) problem of designing NAND or NOR gates using discrete compo-
nents. Typical problems will be the design of flip-flops, arbitraters, synchronous
switches and a variety of other sequential circuit blocks which are used in com-
plex digital systems. Treatments of synthesis using higher level logic blocks can
be found in many digital design texts and in [Maley 63, Marc 62, Cald 58].

The terms synchronous and asynchronous are used in a context sensitive
manner. In general, the terms are used to distinguish between logic circuits
which only change external states following changes in a particular input (clocked
or ‘synchronous’ behavior) from those whose external states may change follow-
ing changes in any or all inputs (‘asynchronous’ behavior). The circuits we
will design are ‘input driven’, which means that the internal states will change
following changes in inputs, and output states may or may not change. An
external clock will not be required to trigger state changes, although there is
nothing to prevent us from designating one of the circuit inputs as a clock.
When designing circuits intended for use in synchronous (clocked) systems, we
will often take one of the inputs as the ‘synchronizer’ (clock) and develop the
behavioral description accordingly.
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For example, the ‘D’ flip-flop is a standard logic storage element in syn-
chronous systems where one input is designated as a clock input. Even though
the internals of the flip-flop are asynchronous, the outputs are synchronous with
the clock. However, in the discussions of the flip-flop set and clear signals, we
will refer to those inputs as asynchronous, since they drive the output directly,
independent of the clock. In reality, these inputs are neither more nor less asyn-
chronous than any other part of the circuit. It is purely a matter of convenience
at a higher level that we create these distinctions.1

One caution should be mentioned. There are no detailed discussions in this
paper about device timing requirements. Specifications for gate delays, rise and
fall times, setup and hold time, etc. are beyond the scope of this paper. In
fact, such timing issues are crucial in any sequential circuit and it is not always
possible to guarantee performance when multiple input changes occur at or
about the same time. Specific timing requirements are entirely implementation
dependent and are best determined on completion of the design. No functional
problems should arise if all gates have approximately the same delay or, as a
minimum condition, if the longest gate delay through a single gate is less than
the shortest delay through two gates. For the most part, the only restriction on
rise and fall times is that they should be less than the shortest gate delay.

Plan to review the circuits after they are finished to determine the minimum
setup and hold time requirements for each input. Optimization techniques for
logic minimization and layer reduction should be considered, as well.

Most of the designs have been implemented with NAND gates. There is
no requirement for this, except that it often simplifies the descriptions of the
implementation techniques. In some cases, there will be good reasons to make
use of other logic blocks, and in those cases we will not hesitate to do so.

Although the primary objective of this paper is to develop design methods,
in Part II a method for analyzing existing circuits is presented. The techniques
used to derive circuit equations from existing sequential circuits are not generally
covered in existing texts and appear to be unknown to many designers. For some
readers this section will provide a useful complement to the core material.

I wish to thank Frank Brown for his many suggestions which have resulted
in a materially improved paper.

1Perhaps the term non-sequential would be better than asynchronous.

6



Chapter 1

Development of Methods
and Techniques

1.1 Derivation and Construction of a ‘T’ Flip-
Flop

The ‘T’ (toggle) flip-flop has a single input, T , and a single output, Q. It
serves as a divide-by-two circuit in counter and control applications and can be
constructed from simple gates, as will be shown in the following paragraphs.

1.1.1 The Flow Table

For this device, the output changes state, or toggles, each time the input goes
positive. A flow table, which provides a concise description of its behavior, is in
Table 1.1. The flow table is organized with the input (externally controlled) sig-

T
0 1 Q

(1) 2 0
3 (2) 1

(3) 4 1
1 (4) 0

Table 1.1: Flow Table for ‘T’ Flip-Flop

nals labeling the columns. Responses are indicated by providing rows associated
with critical output signals.

To see that this table provides a complete circuit description, begin by con-
sidering state (1). Stable states are represented by bold numbers surrounded
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by parentheses, and unstable or transitional states are represented by ordinary
numbers. Notice that in state (1), the input, T , is zero and the output, Q, is
also zero. When T changes state to a one, the circuit enters the transitional
state indicated with a ‘2’ and then drops into stable state 2 in the next row.
The required value of Q is now one. When T changes back to a zero, the circuit
responds by moving to state 3, with no change in Q. The next change of T
(to a one) causes Q to go to zero with the circuit entering state (4). Finally,
another change of T returns the circuit to its original state. Note that changes
of the input variable cause movement from column to column, and internal state
changes cause movement along the rows. See [Huff 54].

For most flow tables the next step would be to attempt a state reduction,
but in this case no reduction is possible because none of the rows in the table
can be ‘merged’ with any of the others. (Other examples in this paper will deal
with state reduction.)

After constructing the flow table, we associate each row with an internal
state which can be identified with some combination of internal variables. Since
there are four rows in the table, two binary symbols will be required.1 There
is considerable freedom in assigning the internal (secondary) variables, and it is
customary to do so in a way which will simplify the derived equations. We will
set the values of the secondaries in the first row to zero, and use a gray code for
subsequent rows to assure that only one internal variable will change when the
circuit moves from any row to an adjacent row. See Table 1.2.

T
y1 y2 0 1 Q
00 (1) 2 0
01 3 (2) 1
11 (3) 4 1
10 1 (4) 0

Table 1.2: Flow Table with Secondary Variable Assignments

Note that with the secondary variable assignments we have chosen, the value
of y2 follows the output, Q. When we construct the gate which generates y2,
which will be labeled Y2, we can equate it with Q.

A stable state is defined as a state in which the secondary variables have
settled; i.e., no transitions are occurring internally. To make use of the table,
we replace the state numbers with their Boolean equivalent row assignments.
For example, the stable state cell in row 1, with secondary assignment 00 will
contain 00. The unstable state in row 1, which leads to row 2, will contain the
assignment 01. Continuing in this manner, we arrive at Figure 1.3. For the
table, we are not concerned with which cells represent stable states and which

1Since the symbols are binary, we use: ceil(log2 number of states) = number of variables.
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do not. We are only concerned with deriving a truth table from which we can
extract the equations for the secondary (internal) circuit elements.

T
y1 y2 0 1 Q
00 00 01 0
01 11 01 1
11 11 10 1
10 00 10 0

Table 1.3: Flow Table with Boolean State Entries

The leftmost entries of each cell in Figure 1.3 represent the truth table for
y1 and the rightmost entries represent y2. To simplify the derivation of the
corresponding equations, we will split the table into two separate tables, one for
each element. This done in Table 1.4.

T
y1 y2 0 1
00 0 0
01 1 0
11 1 1
10 0 1

Y1

T
y1 y2 0 1
00 0 1
01 1 1
11 1 0
10 0 0

Y2

Table 1.4: Split Internal State Tables

1.1.2 The Secondary Equations

There is now a truth table for each internal element. These elements are capable
of distinguishing between internal states by providing unique codes for each row
in the state table. We are now able to write the circuit equations, which can be
taken directly from the tables.2

Y1 = Ty2 + y1y2 + Ty1 (1.1)

Y2 = Ty2 + y1y2 + Ty1 (1.2)

A note about the symbols used in forming circuit equations is in order. It
is customary to label the logic elements used to implement the equations with

2The redundancy in these expressions will be taken up later.
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upper case letters, e.g. Y1, Y2. These elements (gates) can also by regarded
as synonymous with their output function or signal, i.e. y1, y2, since there is
a one-to-one correspondence here. The standard practice is to use the upper
case label on the left side of circuit equations to emphasize the fact that we
are connecting devices together to implement our solutions. Some caution is in
order in adopting these conventions, because the equations are then not strictly
reciprocal mathematical relations, but are more like process flow statements or
cause and effect relations. In general, no problems should arise from mixing
device labels with circuit function, but keep in mind that Y1 is not strictly
identical with y1. Where circuit feedback exists, be sure to verify the signal
flow.

Part of the challenge in the implementation phase of the design is in carefully
selecting and including redundant terms. Generally, it is advisable to include
the terms which tie row elements together even if they are already included in
vertical tie sets. We have done this with the y1y2 term in the equation for Y1
and the y1y2 term in the equation for Y2. The intent is to eliminate critical
hazards associated with column movement in the resulting circuit.3

The next challenge is to group the terms in each equation for easy assignment
to standard logic devices. We will choose NAND gates and group the minterms
with them in mind. By grouping the terms of the equation as the sum of two
products, an application of DeMorgan’s theorem will produce the input terms
required for a two input gate.

Y1 = y2(T + y1) + Ty1 (1.3)

Y2 = y2(T + y1) + Ty1 (1.4)

1.1.3 Implementing the ‘T’ Flip-Flop

Now we are in a position to construct the circuit. Figure 1.1 shows Y1 with its
output and two input equations labeled.

�
T+ y1

y2 +Ty1
y1Y1

Figure 1.1: NAND Implementation of Y1

The upper input is a part of the memory (feedback) loop for Y1 and is
satisfied by the configuration in Figure 1.1, in which we have also begun the
construction of the Y2 element. The memory loop for this variable is completely
specified by the first term on the right side of Equation 1.4. We can assign Y2

3There are situations in which this redundancy can be avoided without causing problems,
so each design should be treated as unique and the implemented circuit should be analyzed
carefully.

10



to a two-input NAND gate and generate the feedback term, y2(T + y2), with
another two-input NAND.

�

�

�

�

•

•

•
Y1

Y2

y1

y2

T

T+ y1

y2 +Ty1

T+ y1

Figure 1.2: Partial Construction of “T” Flip-Flop

Before proceeding with the rest of the construction, some potential problems
with our design approach should be mentioned. First, there is some risk in
assuming that signal inverted twice can be treated the same as the original
signal. The inversions generate delays which may (and often will) affect the
circuit behavior. All assumed equivalences should be carefully verified. Second,
some of the signals we create will be formed by the cancellation of literals, e.g.
when we combine a signal with its inverse. This can produce glitches (races,
hazards, etc.) caused by timing differences between switching of the signal and
the corresponding change of state of its inverse. This subject will be taken up
in detail later.

With these cautions in mind, we proceed as shown in Figure 1.2. Here we
find that the upper input to Y2 can be obtained by combining the existing signals
T(T + y1) to form Ty1 and inverting the result.

To confirm the circuit behavior we must consider the problems cited previ-
ously with the implementation method and examine any potentially troublesome
details. Note that the gate marked with ‘*’ in Figure 1.2 is responsible for a
static hazard. The hazard is generated whenever y1 is high and the input T
goes positive. But, from the flow table in Table 1.2, the circuit must then be in
state 3 with y2 also positive. Under these conditions, there will be a transition
to state 4, whether the hazard occurs or not. A detailed timing analysis will
show that the flip-flop does behave as expected, given reasonable assumptions
about the elements used.4

It may be a small comfort that in this case the hazard does not cause a
malfunction, so for this and more serious cases we will provide a method for
eliminating the hazard entirely. Although the method is not discussed until
later, a version of the ‘T’ flip-flop with hazard suppression is shown in Figure
1.3.

4The usual assumptions are that the longest gate delay is less than twice the shortest gate
delay, and that rise and fall times are less than a gate delay.

11



�

�

�

�

�

�

•

•

•

•
•
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T

*

Y1

Y2

y1

y2 = Q

T+ y1

T+ y1

y2 +Ty1

Figure 1.3: Construction of ‘T’ Flip-Flop

1.2 ‘D’ Flip-Flop

In this section we will derive equations for an edge-triggered ‘D’ type flip-
flop. We will also develop the method mentioned earlier for eliminating hazards
caused by cancellation of literals. To complete the section, we will show how to
implement asynchronous set and clear lines in an otherwise synchronous device.

1.2.1 The Flow Table

We start with a flow table representing the desired circuit behavior. Now, there
are some more or less standard conventions used in constructing the table which
deserve comment. First, we will adopt the rule that only one input to a circuit
may change at a time. This rule is not always necessary or desirable, but it can
result in simplification by permitting the use of don’t care entries (designated by
hyphens) in the table. Second, we will attempt to ‘merge’ rows in the resulting
table to reduce the number of secondary state assignments required to specify
each unique internal state. Both of these rules will be invoked in the treatment
of the ‘D’ flip-flop. Note that there are situations in which these simplifying
assumptions are not appropriate and we will forego them when necessary.

The following two tables show the initial (primitive) and merged versions of
the flow table for a ‘D’ flip-flop, Tables 1.5 and 1.6, respectively.

Merging rows is facilitated using the method described by Mealey,[Mealey 55].
Briefly, we can merge two internal states (rows) if there are no conflicting states
in the cells, if they have the same output value, and if all possible next states
for each of them have the same output value. Don’t cares (hyphens) will be
overridden by any numbered entry after merging. Merging can be repeated un-
til it is no longer possible. Using this method, the original (primitive) flow table
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T

Y1
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Q

Figure 1.4: Implementation of ‘T’ Flip-Flop with Hazard Suppression

can be reduced from eight rows to four. Consequently, the number of internal
secondary variables is reduced from three to two.

Once the table has been reduced, the row assignments can be made. For this
table the gray-coded secondary assignments in Table 1.6 are suitable. Note that
our assignment selection allows us to identify the secondary labeled y1 with the
required Q output. This identification will simplify the circuit implementation.

Using Table 1.6 we now can develop the state maps for the required secon-
daries. Table 1.7 shows the combined map with all secondary variables entered.

Table 1.8 shows the same information in two individual maps — one for each
secondary.

DC
00 01 11 10 Q
(1) 2 – 4 0
1 (2) 3 – 0
– 2 (3) 4 0
1 – 7 (4) 0

(5) 2 – 8 1
5 (6) 7 – 1
– 6 (7) 8 1
5 – 7 (8) 1

Table 1.5: Primitive Flow Table for ‘D’ Flip-Flop
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DC
y1y2 00 01 11 10 Q
00 (1) (2) (3) 4 0
01 1 – 7 (4) 0
11 5 (6) (7) (8) 1
10 (5) 2 – 8 1

Table 1.6: Merged Flow Table with Secondary Assignments

DC
y1 y2 00 01 11 10 Q
00 00 00 00 01 0
01 00 – 11 01 0
11 10 11 11 11 1
10 10 00 – 11 1

Table 1.7: Completed Composite Flow Table for ‘D’ Flip-Flop

1.2.2 The Circuit Equations

The equations corresponding to the maps in Table 1.8 are:

Y1 = y1y2 + y2C + y1C (1.5)

Y2 = y2C + y2D + DC (1.6)

The following regrouping eases the implementation problem:

Y1 = y1(y2 + C) + y2C (1.7)

DC
y1 y2 00 01 11 10 Q
00 0 0 0 0 0
01 0 – 1 0 0
11 1 1 1 1 1
10 1 0 – 1 1

Y1

DC
y1 y2 00 01 11 10 Q
00 0 0 0 1 0
01 0 – 1 1 0
11 0 1 1 1 1
10 0 0 – 1 1

Y2

Table 1.8: Completed Maps for ‘D’ Flip-Flop Secondaries

14



Y2 = D(y2 + C) + y2C (1.8)

As in the earlier treatment of the ‘T’ flip-flop, we will construct our circuit
starting from the explicit secondary gates. Since we will be using this example
to develop methods for the elimination of hazards as well as for implementing
asynchronous set and clear control modes, the step by step creation of the ‘D’
flip-flop is left to the reader. No new techniques beyond those shown already
are needed. Some ingenuity, however, will always be required. Our result is
shown in Figure 1.5 with the internal gates numbered for reference.

�

�

�

�

�

�
�

@

@

@

�@

•

•

•

•

•

•

C

D

G1

G2

G3

G4

Y2 Y1 Q

Q

Figure 1.5: Implementation of ‘D’ Flip-Flop

1.2.3 A Digression on Hazards

The circuit implementation in Figure 1.5 harbors a serious hazard which we
would like to eliminate. The hazard, as in the previous ‘T’ flip-flop implementa-
tion, is caused by attempting to cancel terms which do not occur simultaneously.
The consequence is incomplete cancellation and spurious transient excursions of
the affected signal line. See [Huff 55, Ung 59] for a full treatment of static and
dynamic hazards.

A logic diagram and timeline representation of the problem is shown in
Figure 1.6. In this figure, a signal and it (derived) inverse are combined at the
input of an AND gate. Note that the result expected from the raw equations5

does not suggest the glitch which actually occurs. Part of the reason for this
discrepancy is that the raw equations do not have provisions for keeping track
of time delays, i.e. they are intrinsically static. Rather than developing a more

5In Boolean algebra, a + a = 1 and a · a = 0.
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elaborate algebra to include time explicitly we will simply make use of heuristic
methods to eliminate the problem.

�

�

••
A A

A ·A

Logic Diagram

C
C �

�

�
� C

C

�
� C
C

A

A

A ·A

Timing Diagram

Figure 1.6: Combining a Signal with its Inverse

The method uses the fact that the undesired glitch noted above can be
suppressed by combining a further delayed version of the original signal (or
its equivalent). We can illustrate the concepts in detail by using subscripted
variables to show time placement, as in Figure 1.7.

All this may seem like an exercise in futility, since in this example we have
only succeeded in creating a signal which never changes. But the point of this
discussion is not to find ways to cancel the only term in an expression, it is to
find some way to completely cancel one of the unwanted terms in an SOP (Sum
Of Products) expression, without disrupting the others.
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Figure 1.7: Suppressing a Hazard by Cancellation

In the next section, these concepts will be applied to a more complex circuit,
which illustrates their use in real, non-trivial problems.

Example of Hazard Suppression

Suppose we are given three input signals, A, B, and C. We require a signal
C + A · B, which must be free of transients when A changes state. As stated,
this example is basically a combinational problem with dynamic behavior con-
straints.
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Consequently, we take the following approach. First, note that the behavior
of the signal of interest is only important during the time that A switches. This
means that the inputs B and C can be considered static during the analysis.
Second, if we keep track of propagating signals by using subscripts for time
intervals, only the signal A needs to be subscripted.

Here is one candidate solution to the combinational part of the problem with
the desired signal appearing at the output of Q3.

�

�

�
A

B

C

Q1

Q2

Q3

•
A+B

A+B

C +A ·B

Figure 1.8: Combinational Circuit with Undesired Transient

Of course, the signal C +A ·B, could be generated by other choices of gates
without creating the transient problem we are called upon to solve. But we can
suppose that the other signals from Q1 and Q2 are already needed for other
purposes and are therefore available for use without additional hardware.

The glitch appears at the output of Q2 when B is high and A goes from low
to high. It is caused by the attempt to produce A ·B at the input side of Q2 by
canceling the A term in A+ B. It propagates through Q3 when C is high and
disturbs the target signal.

We now use subscripts to identify the time periods (delays) as a change of
state of A propagates through the circuit. Since B and C are static during the
time interval under consideration, there is neither any benefit nor motive for
subscripting them.

Since the transient begins at the input of Q2, we turn our attention to
eliminating it here. We hoped to create a serviceable version ofA·B at this point.
Instead, we created A0A1+A0 ·B. From the previous discussion, we are tempted
to look for another signal approximating AB, but with later delays. The output
of Q3 contains such a signal and might serve to eliminate the spurious A0 ·A1.
If a third input is added to Q2 the expression for the combined input then
becomes,

A0 · (C +A2 ·A3 +A2 ·B) · (A1 +B).

This expands to,

A0A1C +A0A1A2A3 +A0A1A2B +A0BC +A0A2A3B +A0A2B
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Figure 1.9: Combinational Circuit with Subscripted Signal

where we have omitted the AND dot multipliers for compactness.

Examination of the above expressions reveals that, 1) the second and third
terms, are completely eliminated by the previous results, 2) the last two terms
can be combined into a single term.6 Rearranging the surviving terms yields,

C(A0A1 +A0B) +A0A2B.

We have now arrived at the following result: When the signal C is low, no
transient can propagate through Q3 because the gate is disabled. When C is
high (true), C is low, so the only term which survives to propagate through Q2

is A0 · A2 · B. This signal is a slightly trimmed version of our intended A · B
and solves the problem posed. The circuit is shown below.
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Figure 1.10: Circuit Solution Providing Hazard Suppression

Having presented the method, we must report that analysis by subscripting

6A0A2A3B + A0A2B = A0A2B(1 + A3) = A0A2B.
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is error-prone and often prohibitively difficult. It is best suited for automated or
computer driven solvers. Fortunately, there are simpler techniques for solving
similar problems with pencil and paper. These will be developed in following
paragraphs.

Suppressing the ‘D’ Flip-Flop Hazard

Let’s examine our implementation of the ‘D’ flip-flop more closely. The hazard
occurs at the output of gate G3 when Y2 is positive and the C input rises. The
gate is implementing the term Cy2 on the input side to produce C + y2 at its
output. Cy2 is constructed from the combination C(y2+C), and the cancellation
of C is the cause of the problem.

We need to locate (or generate) another signal which contains the term Cy2
where the C term is delayed. That signal may contain other terms summed with
this term if certain cautions are observed. On searching through the existing
signal set we find, at the output of G2 the signal D + Cy2. This signal satisfies
those requirements which have been articulated so far.7

The requirement is that the candidate signal must be false at the time the
hazard would occur and must be true when a legitimate Cy2 signal appears at
the input of G3. Our choice meets this requirement. There are several ways to
verify our modification. One way is to construct a detailed timing chart for the
circuit, or submit it to a computerized simulation. Another is to examine the
circuit Karnaugh maps.

How do we use the maps to analyze hazards? We start with the following:

1. Each stable state represents a specific combination of Primary and Sec-
ondary variables,

2. No circuit action takes place until an input (Primary) variable changes,

3. The stable state entries in the merged flow table represent the defined
circuit behavior; the other (unstable) entries define the transitory behavior
from the time a Primary changes until the circuit settles into a stable state.

From the maps we can identify those stable states for which C is false and Y2
is true. Since y2 is true,8 the term Cy2 should remain false during changes of
the Primary, C. The skeletal flow tables in Table 1.9 are maps of the indicated
expressions using the form of the merged flow table and show that there are
only two stable states where C is false and y2 is true — in the rightmost column
of the table. It is here that we need to maintain the zero state of Cy2 when the
C input rises.

It is clear that our chosen hazard suppression signal will be zero at this time,
and that it will prevent any other signals from activating the gate G3. What
may not be clear is that the gate will still be properly functional at other critical

7Note that Cy2 · (D + Cy2) = Cy2.
8The potential ambiguity between Y2 and y2 doesn’t occur in the stable states.
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DC
y1y2 00 01 11 10 Q
00 (0) (1) (1) 0
01 – (0) 0
11 (0) (0) (0) 1
10 (0) – 1

Cy2

DC
y1y2 00 01 11 10 Q
00 (1) (1) (1) 0
01 – (0) 0
11 (1) (0) (0) 1
10 (1) – 1

D + Cy2

Table 1.9: Skeletal Flow Tables

times. To prove this, we only need to establish that when the term Cy2 goes
positive, the auxiliary signal D + Cy2 is true. Why is this sufficient? Because
we only need the effect of the delayed Cy2 at the time of the hazard; we need
to disable that line when the driving version of C sets Cy2 to one. It happens
that Cy2 is driven true only from the two stable states in the leftmost column
of the table. In these states, our chosen signal is true and no inhibition of the
required signals will take place.

The conclusion? To complete the properly functions ‘D’ flip-flop we simply
need to connect a wire from G2 to G3. That’s it! The result is shown in Figure
1.11
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Figure 1.11: Hazard-free Implementation of ‘D’ Flip-Flop
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1.2.4 Location and Identification of Signals

We will now make further use of skeletal flow tables to show how we were able
to identify the Q signal labeled in the schematic of Figure 1.11. The technique
is generally useful for locating or generating a signal with predetermined prop-
erties. To develop Q populate the stable cells of our circuit flow table with the
required signal values. This is done in Table 1.10.

DC
y1y2 00 01 11 10 Q
00 (1) (1) (1) 0
01 – (1) 0
11 (0) (0) (0) 1
10 (0) – 1

Table 1.10: Skeletal Map for Q

Recall that only the stable states are required to define the external behavior
of the circuit. Any signal with the stable state values in Table 1.10 matches our
requirement. The gate labeled G4, for example, implements the Boolean func-
tion y1+Cy2, but its truth values in the stable states are the same as Q. We are
thus justified in labeling it as we did. The only differences between the desired
and actual signals occur during transitional states, and since those transitions
are gray-coded the net effect is simply that some edges of our derived Q occur
earlier or later than those of an ‘ideal’ Q. Incidentally, it is a characteristic of
memory devices (latches, R-S flip-flops, etc.) that the circuit equations for Q
do not represent strict Boolean inverses.

1.2.5 Asynchronous Set and Clear

The completed ‘D’ flip-flop can be seen to consist of an output latch and some
control logic. The state of the output latch does not affect the control logic in
any way, and may be in any initial state at power up. It is desirable to have
some way to force the output into a pre-determined state independent of the
current state of the output and input variables; i.e., to introduce set (or preset)
and clear (or reset) signal lines into the circuit.

This is best accomplished by referring to the equations for the circuit sec-
ondary variables Y1 and Y2. Since our requirement is to force a known output
state regardless of the input combination, we must alter the states of some of
the secondaries. The equations for these are repeated below.

Y1 = y1(y2 + C) + y2C (1.9)

Y2 = D(y2 + C) + y2C (1.10)
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We also need the merged flow table to identify the stable state entries for
our altered functions. We begin by examining the flow table.

DC
y1y2 00 01 11 10 Q
00 (1) (2) (3) 4 0
01 1 – 7 (4) 0
11 5 (6) (7) (8) 1
10 (5) 2 – 8 1

Table 1.11: Flow Table for ‘D’ Flip-Flop

According to the table, if we can force both y1 and y2 to the true state
momentarily (third row of table), Q will go true and remain that way until
some other signal occurs. The circuit will be in state 5, 6, 7, or 8, This is the
action needed for an asynchronous set. Similarly, an asynchronous clear can be
accomplished by forcing both y1 and y2 low (false). The resulting set or clear
is independent of the current states of Q or any of the inputs.

Another, possibly better, way to derive the set and clear conditions is by
inspecting the right sides of (1.9) and (1.10). From (1.9) we can see that to set
Y1 (on the left) true, we must force both y1 and y2 (on the right) true. This does
not guarantee that Y2 will remain true, but it does guarantee that Q will be set.
Why? Because Y2 can only revert to false if C is false. But in this case, Y1 (Q)
will remain set because of the presence of the term y2C. By the same token,
forcing y1 and y2 low will clear Q. Here, the state of Y2 is also indeterminate,
but it can only revert to true if C is false, in which case Y1 will stay clear.

The complete ‘D’ flip-flop solution is shown in Figure 1.12. To implement
the enhancements we simply added additional inputs to the gates for Y1 and Y2
to handle the asynchronous set function. These are tied together and brought
out as S. To create an asynchronous clear we need to provide similar inputs to
G1 and G4 to force Y1 low, and an input to G2 to force Y2 low. These are tied
together and brought out as R.
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Figure 1.12: Complete Implementation of ‘D’ Flip-Flop with Set and Clear

1.3 Negative Pulse Generator

1.3.1 The Flow Table

This exercise will illustrate some of the power of the flow table as a circuit
description tool. We will be using the table in unusual ways and developing
some special design techniques which will be used later.

The problem posed in this section is to devise a circuit with a single input,
P , and a single output, Q, which produces a short negative pulse whenever the
input goes positive. This sort of circuit is encountered frequently, and many
logic designers have met it and solved it one way or another — usually by using
a single-shot or some sort of logic delay line. Our solution is clearly not the
only one possible, but it does have a certain elegance, and offers a vehicle for
introducing new design methods.

Our circuit description only provides for a single stable output value — with
Q positive. The negative pulse is generated on the rising edge of the input, and
will automatically complete before stability returns. So how do we describe this
behavior with a flow table? Table 1.12 shows a technique for doing this.

Note that we have identified four states, but only two of them are stable.
In the table, we have explicitly provided transitional rows to control the circuit
behavior during unstable operation. We will decode the secondary combinations
which correspond to the unstable rows and use the decoded signal to satisfy the
problem statement. In a sense, we have expanded the flow table by the addition
of these rows. Contrast this with the previous problem where we found it
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P
0 1 Q

(1) 2 1
– 3 0
– 4 0
1 (4) 1

Table 1.12: Flow Table for Negative Pulse Generator

convenient to merge rows. Also note that we have placed don’t cares in those
places where the circuit behavior is not specified. Generally, this practice can
simplify the design, but always confirm the operation of the completed circuit
to assure that no unwanted behavior occurs.

The selection of secondary assignments is closely linked with the problem
statement. We have two secondary variables, one of which we would like to
equate with Q. Our choice is shown in Table 1.13.

P
y1 y2 0 1 Q
10 10 00 1
00 – 01 0
01 – 11 0
11 10 11 1

Table 1.13: Secondary Assignments for Negative Pulse Generator

1.3.2 Equations and Implementation

The equations for the circuit are:

Y1 = P + y2 (1.11)

Y2 = y1 + Py2 (1.12)

These equations are implemented in the rather surprising configuration in Figure
1.13.

1.3.3 Analysis of Implementation

If this paper carries any consistent message, it is that every circuit implemen-
tation should be reviewed carefully. The assumptions and simplifications made
during the design may cause unwanted behavior.
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Figure 1.13: Negative Pulse Generator

In the current design, we placed don’t care entries in some of the cells in col-
umn one. As expected, this decision simplified the logic equations by accepting
a default transition to state (1). The practical consequence is that if the input
goes positive and then returns to negative before the output pulse completes,
the output pulse will be forced to complete early.

Engineering judgment comes into play here. It may be acceptable to place
a hold time restriction on the input to the circuit such that the input must
remain positive until the output completes automatically. It is also possible to
latch the input so that no such requirement is needed, with the penalty that
the circuit implementation will be more complex. Review the individual circuit
requirements carefully.

1.4 Up-Down Counter Controller

1.4.1 The Flow Table

The next circuit solves another common problem — that of controlling the action
of an up-down counter which has separate count-up and count-down inputs. The
controller is needed to deal with the case in which the count-up and count-down
signals arrive simultaneously. When this occurs, such counters often drop a
count (or add a count) because one the inputs gets lost. In applications where
up-down counters are used to control a FIFO or cyclic buffer, this fault is fatal.
Because the controller assures that count-up and count-down signals occurring
at arbitrary times are properly ordered, it is sometimes called a derandomizer.

Our objective is to devise a control circuit which is able to properly arbitrate
when the commands occur at or near the same instant.

Development of the flow table follows from these requirements:

1. The up-down counter has separate count-up and count-down pins,

2. The count action occurs on the leading edge of a negative going pulse at
the appropriate pin,
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3. Pulses on the count-up and count-down pins must be separated by at least
one gate delay to guarantee proper operation of the counter.

For this application, we will assume external count-up and count-down com-
mands consisting of positive-going signals of arbitrary duration; i.e., the signals
may coincide or overlap in time.

This will be our first exposure to incompletely specified functions, and we
will develop our solution in carefully contained stages. The first step will be
to create a partial flow table documenting what we know from the problem
statement. This table is shown in Figure 1.14.

Cu Cd

00 01 11 10 Qu Qd

(1) – 11
1 (2) – 11
– 2 (3) 4 11
1 – (4) 11

Table 1.14: Partial Flow Table for Counter Controller

In this table we have only provided rows for the stable states. Those state
transitions which do not involve output signals are shown, but the other tran-
sitions are left blank for the moment. What can we learn from this partial
table?

1. We will have expand the table to provide unstable rows, such as we did
for the pulse generator,

2. If the output variables are equated with specific secondaries, two addi-
tional secondaries will be required to guarantee unique row assignments.

A fully expanded, partially filled, table is reproduced in Table 1.15. In this
table we have replaced the stable state numbers with their secondary assignment
equivalents and have added the transition requirements for the unstable states.
We have also retained the stable state indicators (parentheses, bold type) for
easy comparison with Table 1.14. The secondaries y1 and y2 have been identified
with with Qu and Qd, respectively.

Note the use of blanks instead of hyphens in some table entries. In our
method there is an important distinction between the two. The blank means
that the circuit behavior has not been specified. It doesn’t necessarily mean
the action can’t happen or won’t matter, it only means we have not chosen to
restrict it at this time. If we truly do not care, we will place hyphens in the
cell. Otherwise, we may specify some or all of the variables in the cell at a later
time.

A case in point concerns the blank cells in the rows where y1 and y2 equal zero
(first four rows). From the circuit description, this is a forbidden combination;
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Cu Cd

y1 · · · y4 00 01 11 10 Qu Qd

0000
0001
0011
0010
0110 [1110] 1110 01
0111 1111 01
0101 0111 01
0100 [0110] 0110 01
1100 (1100) 1000 - -00 0100 11
1101 1100 (1101) 0101 11
1111 1101 (1111) 1110 11
1110 1100 1010 (1110) 11
1010 1011 10
1011 1111 10
1001 1101 [1101] 10
1000 1001 [1001] 10

Table 1.15: Partially Filled Flow Table

i.e., at least one of these secondaries should be true at all times. Hence, the
cells in these rows can be used to simplify the equations for Y1 and Y2.

A more problematic situation occurs in the row labeled 1100 in column
11. Here we have the opportunity to specify what happens when both count
commands occur at the same time. But we expect the circuit to ‘decide’ which
count pulse to output first, so we choose not to select the next state identifiers
for y1 and y2.9 On the other hand, we also expect the circuit to immediately
output one or the other pulse so we need to assure that the next state is outside
the four stable rows. We can do this by specifying the secondaries y3 and y4 as
shown.

1.4.2 Equations and Implementation

The circuit equations are:

Y1 = Cu + y3 + y2 (1.13)

Y2 = Cd + y4 + y1 (1.14)

Y3 = y1 + y3Cu (1.15)

Y4 = y2 + y4Cd (1.16)

9These secondaries are identified with Qu and Qd, respectively.
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The first two equations borrow heavily from the unspecified portions of the
table for simplifications and redundancy. In this implementation Y3 and Y4 were
constructed first, and the others followed. See Figure 1.14.
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Figure 1.14: Up-Down Counter Controller

This circuit has several aspects which deserve comment. First, the latch
consisting of Y1 and Y2 operates as a ‘turnstile’ which passes a signal through one
side or the other, but which prohibits simultaneous passage of both. It arbitrates
between coincident requests by latching in one of two states. Whichever signal
is honored first will produce an appropriate output pulse, after which the other
will be allowed to pass. Second, with ‘real-world’ devices the possibility of
metastable behavior exists. That is, there may be a short period time during
which the latching process produces uncertain outputs on Y1 and Y2. This can
occur if the input signals arrive within a very small time interval; e.g., less
than a gate delay. But even if this does occur, the duration of the uncertainty
will be very short and its effects can be controlled with glitch suppression logic
(described later), or an ‘exclusive-latch’ which consists of an input latch driving
an output latch.

It is worth recalling that metastability can be managed and, in general,
the potential for its appearance does not necessarily suggest circuit failure.10

It is a constant companion in digital environments and even lurks inside the
common ‘D’ flip-flop. Since it can only occur during changes of state, such

10Metastability has been the subject of many analytic studies using statistical models and
various plausible device timing distributions. But the likelihood of an extended metastable
condition is vanishingly small.
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as when inputs change, it can be managed by imposing proper setup and hold
time requirements. In situations where the inputs are unrestricted, such as
here, additional logic may be considered. But the author has implemented this
configuration in TTL logic and driven it with a reference clock consisting of a 1
MHz sine-wave modulated reference clock over a period of several days without
any miscounts.

1.5 A Phase/Frequency Detector

This section calls upon techniques already developed and introduces the concept
of ‘strong’ and ‘weak’ secondaries. It also provides a last example before we
complete the development method and summarize it in its entirety.

We are to implement a phase/frequency detector which generates negative
pulses to drive the charge pumps associated with a phase-locked loop (PLL).
The circuit action is controlled by two inputs — one is the variable clock signal
derived from the PLL oscillator, φpll , and the other is the incoming reference
signal, φref , with which phase lock is desired. In the following exposition, these
signals will be designated as C and R, resectively. The input logic is driven by
the negative edges of these two input signals and will activate (or deactivate)
one of two pump signals, pump up or pump down, according as the reference
signal is ahead of or behind the PLL clock. The active level of the pump signals
is negative, and their normal state is high.

Phase lock is achieved when both signals are coincident at their negative
transitions. In this condition, both pump signals remain high, although we will
accept small glitches on both outputs on the assumption that they will have
no net effect on the total charge driving the phase locked oscillator (PLO). By
activating the pump up output when the reference signal is early, and clearing
all pumps when the PLL clock arrives, we can develop a driving signal that
is proportional to the time difference between the two. Similarly, if the clock
signal is early, we activate the pump down signal and clear all pumps when the
reference arrives.

The circuit is insensitive to duty cycle because of the edge triggering. It is
also immune to spurious lock-up on harmonics because it forces a one-to-one
correspondence between clock edges and reference signal edges. Hence, it is a
phase/frequency detector as opposed to a phase detector only.

1.5.1 The Flow Table

A suitable flow table description of the desired behavior is shown in Table;
1.16, where R is the reference signal and C is the PLL clock. This table can
be constructed easily from the observation that the circuit can only have three
different output states, and can have any combination of inputs for each possible
output. For this problem, it will be expedient to merge the table and then
expand it. The reason for this unusual approach is that the output requirements
cannot be met with any direct secondary variables. Decoding of secondaries
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RC
00 01 11 10 PU PD

(1) 4 – 10 11
(2) 5 – 11 01
(3) 6 – 12 10
3 (4) 7 – 11
1 (5) 8 – 01
3 (6) 9 – 10
– 5 (7) 12 11
– 5 (8) 10 01
– 4 (9) 12 10
2 – 7 (10) 11
2 – 8 (11) 01
1 – 9 (12) 10

Table 1.16: Raw Flow Table

would be required to produce the outputs unless the table is expanded to include
a greater number of secondaries, as was done in the previous example. But an
expansion at this point would create an unnecessarily, if not prohibitively, large
flow table. Our solution is to first reduce the table by merging, and then expand
the merged table to equate some secondaries to the output variables.

Merging presents no unusual problems and the merged table is shown in
Table 1.17.

Before expanding the table, we will reorder the rows. Why? Because our
table construction process has left us with a scrambled list of output states and
we would like to gray-code them before proceeding. Recall that the reordering
of flow table rows is essentially dealing with the row assignment problem, and

RC
00 01 11 10 PU PD

(1) 4 – 10 11
(2) 5 8 (11) 01
(3) (6) 9 12 10
3 (4) 7 – 11
1 (5) (8) 10 01
– 5 (7) 12 11
1 4 (9) (12) 10
2 – 7 (10) 11

Table 1.17: Merged Flow Table
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by taking some action to order the outputs at this time, we may be able to
simplify the row assignments later. The sorted table is shown in Table 1.18.

RC
00 01 11 10 PU PD

(2) 5 8 (11) 01
1 (5) (8) 10 01

(1) 4 – 10 11
3 (4) 7 – 11
– 5 (7) 12 11
2 – 7 (10) 11
1 4 (9) (12) 10

(3) (6) 9 12 10

Table 1.18: Sorted Flow Table

A glance at the output column shows why an expansion of the table is called
for. If we reserve a pair of secondary variables to provide the Pu and Pd signals,
we need two more to distinguish between the four rows whose outputs are 11.
Because of the symmetry in the circuit description and the table as developed
so far, we will try and preserve symmetry in the additional secondaries. Our
expanded table is shown in Table 1.19 with the state entries already replaced
by their corresponding row designations.

A few words are in order concerning constructing the expanded flow table.
The strategy used to create a satisfactory table is intended to deal with some
of the ‘real world’ problems that complicate some designs. For one thing, we
are at all times attempting to produce a flow table which permits easy move-
ment between states without critical races. This means we try to assure that
movement from row to row will involve the change of one variable only. We nor-
mally gray-code the secondaries to facilitate this task and will sometimes need
to expand the table to increase the number of state transition options available.

If often happens that there is no way to move from one unstable state to
a stable one without multiple secondary changes. In those cases, we will often
take advantage of any available don’t care cells as ‘stepping stones’; i.e., we will
make a gray coded move to an auxiliary cell and then another gray coded move
to the final state. We may even have to make several such steps to get to the
target state. If there are any blank cells in the table, we can use those, too.

Another way to approach this problem is to avoid ‘overspecifying’ the sec-
ondaries. If we only really care about a few of the secondaries, we can specify
them and leave the others in don’t care conditions wherever possible. We have
done this in the previous example, and do it again here in Table 1.19 in two
cells in row 0111, columns 00 and 10, as well as in row 1011, columns 00 and
01. Each of these cells would require multiple steps to get to the target state.
We have chosen to only specify those secondaries whose values concern us, and
not the others.
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RC
y1 · · · y4 00 01 11 10 PU PD

0000
0001
0011
0010
0110 (0110) 0111 0111 (0110) 01
0111 11- - (0111) (0111) 11- - 01
0101
0100
1100 (1100) 1101 - - - - 1110 11
1101 1001 (1101) 1111 - - - - 11
1111 - - - - 0111 (1111) 1011 11
1110 0110 - - - - 1111 (1110) 11
1010
1011 11- - 11- - (1011) (1011) 10
1001 (1001) (1001) 1011 1011 10
1000

Table 1.19: Expanded Flow Table

1.5.2 The Equations

Before deriving the equations for this circuit we will introduce the concepts of
external and internal secondaries. Heretofore we have regarded all secondaries
as ‘internal’ in the sense that they were implicit in the problem statement. We
now find it convenient to qualify certain secondaries depending on whether they
satisfy any of the given signal requirements. External secondaries are those
which can be immediately identified with a required output signal, and whose
values may be partly or completely fixed by the problem statement. Inter-
nal secondaries are those which are merely required to complete the internal
row identification requirements, and whose implementation details are uncon-
strained beyond that.

The reason for making such a distinction follows from the many degrees of
freedom available in implementing a set of Boolean equations. We are, of course,
always interested in economy. We can solve the implementation problem in more
than one way, but an optimal or quasi-optimal solution is not easily pulled from
the raw equations without imposing external constraints. In fact, more than
one set of equations can represent the same circuit.11

With this in mind, we begin the equation development by taking a first cut
at the equations for the external secondaries, Y1 and Y2.

11Consider that fact that some boolean terms are technically redundant, and do not alter
the truth values of the equations. We add or remove redundant terms when it serves our
purpose to do so — particularly to eliminate hazards.

32



Y1 = y1R + y3 + y3y4(y2 · R + y1 · C) (1.17)

Y2 = y2C + y4 + y3y4(y2 · R + y1 · C) (1.18)

With all the blank map space we have used, there is a real danger of incom-
pletely specifying the circuit equations. Indeed, an example of such an error is
revealed in equations (1.19) and (1.20) where we have partially completed the
equations for the internal secondaries, Y3 and Y4. Note that if either of these
terms ever becomes true, the secondary will ‘latch up’ because there is no way
to set it false.12

Y3 = y1R + y3 (1.19)

Y4 = y2C + y4 (1.20)

Clearly there should be some zeros in the y3 positions of cells in rows of
the map where the y3 row identifier is one. Similarly for y4. Why? Because
those zeros would prevent us from collecting all the rows where y3 is true into
our equation. The problem has occurred because of careless and over-optimistic
treatment of blanks and don’t cares. Some of the y3 terms need to be qualified
by some other variable which, when false, will unlatch Y3. We intend to correct
this oversight in the course of completing the design, but for the moment we
will simply note the problem and put it aside to concentrate on the external
secondaries.

When confronted with potentially conflicting design objectives, such as the
negotiable desire for economy with the absolute need for correctness, we may
find it necessary to re-examine the design space in which we are working. Here,
for example, we have ‘opened up’ the flow table to make the external secondaries
reflect the required circuit outputs. Now we need to place restrictions on the
secondaries to assure that they are not underspecified. We hope to do this in a
way that reduces the number of auxiliary signals we need to generate. This will
help assure that the final implementation is, in some sense, minimized.

To begin, note that the last term in the equations for Y1 and Y2 are the
same. Since this term, or an equivalent, will be implemented in our design, it
is worth examining it closely to determine whether it can be constructed from
terms which are usable in Y3 and Y4. This heuristic part of the design process
simply tries to minimize the total number of logic terms required by making
best use of common terms, if possible.

Relabeling the term under consideration as F1 and applying DeMorgan’s
theorem to obtain its inverse, F 1, we have:

F1 = y3y4(y2 · R + y1 · C) (1.21)

F 1 = y3 + y4 + y1y2 + y1R + y2C + RC (1.22)

12Recall Einstein’s admonition to make everything as simple as possible, but no simpler.
Here, in our zeal to maximize blank space, we have ‘overshot’ the mark.
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It can be shown, by the use of skeletal flow tables, for example, that the
Boolean function in (1.22) can be ‘AND’ed with the y3 in (1.19) to eliminate
the problem of underspecification.13 In other words, replacing the simple y3
with a qualified version give by the term: F 1 · y3, manages to capture all the
required true states in the flow table without the risk of latch-up. We can use
the same function to correct (1.20). Thus, to complete the specification for Y3
and Y4 we need only ‘AND’ the term F 1 with y3 and y4, respectively.

Now, we still may be able to simplify the logic if we can further reduce (1.22).
However, reductions in the expression for F 1 must be done with careful regard
for its impact on Y1 and Y2, as there are no obvious constraints available from
Y3 and Y4.

A partial implementation of the circuit is shown in Figure 1.15.
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Figure 1.15: Partial Implementation of Phase/Frequency Detector

Note that we have already generated terms for Ry1 and Cy2 and we would
like to know if we really need the terms y1y2 and RC. After all, these entered
into our equations for Y1 and Y2 following a very loose grouping of their maps.
We will always strive to eliminate unnecessary terms. To determine whether
we can simplify F 1 we can withhold the questionable terms, apply DeMorgan’s
theorem, and inspect the maps to see if we have introduced any damaging zeros
into the true equations.

The new values for F 1 and its inverse, now called F 2 and F2, are shown in

13This isn’t too surprising since y3 covered true, blank or unspecified cells only.
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(1.23) and (1.24).

F2 = y3 + y4 + y1R + y2C (1.23)

F2 = y3y4(y1y2 + y1C + y2R + RC) (1.24)

We can now examine the changes to F1 embodied in F2 to verify them. A
careful comparison of the skeletal maps with the Expanded Flow Table of Table
1.19 reveals that they do not invalidate our earlier implementation of Y1 and
Y2, so we can accept them and proceed.

The revised circuit equations are listed in (1.25) through (1.28) for reference
and the completed circuit diagram is shown in Figure 1.16.

Y1 = y1R + y3 + y3y4(y1 + R)(y2 + C) (1.25)

Y2 = y2C + y4 + y3y4(y1 + R)(y2 + C) (1.26)

Y3 = y1R + y3(y4 + y2C) (1.27)

Y4 = y2C + y4(y3 + y1R) (1.28)
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Figure 1.16: Complete Implementation of Phase/Frequency Detector

Dealing with incompletely specified functions can be very confusing, and
each case must be examined closely. In this case we have expanded the raw flow
table to allow us to identify certain secondary variables (external secondaries)
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with the circuit outputs. In doing so we introduced new rows in the table which
serve as ‘wild cards’ in gathering truth values from the resulting Karnaugh
maps. Handling the entries in these rows is part of the specification and design
problem. We may insert values in specific cells when it is necessary or desirable
to do so, or we may determine that we can leave blank and cells which represent
don’t care conditions. Hence, we should be prepared to place 1s or 0s in empty
cells representing transient states if there a reason for it.

We have accepted one slight departure from the strict original circuit specifi-
cation in this exercise. When both inputs go negative simultaneously, e.g. when
the PLL is in lock, there should be no corrective pump signals from Pu or Pd.
But in our circuit there will be coincident short glitches on both pump outputs.
These glitches can be eliminated with glitch suppression logic (discussed later)
or by redesigning the circuit to control the transient behavior under these con-
ditions. We have not bothered with either of these steps because, by the nature
of the problem, such glitches will not adversely affect the performance of the
PLL. This is because the PLL responds to the total time the pump up or down
outputs are active, and short glitches or spikes will have negligible impact.
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Chapter 2

The Complete Synthesis
Method

We are now in a position to pull together the techniques developed in the pre-
vious sections and generalize the entire process.

A summary is shown in the outline below.

1. Develop Circuit Description This should completely define the be-
havior of the identified output signals in terms of the inputs.

2. Derive the Raw Flow Table There are many ways to do this depend-
ing on the ‘fine print’ in the circuit description. Different raw flow tables
can describe the same circuit. If you have problems here, there may be
problems with the specification itself.

3. Expand or Merge Flow Table This step may not be necessary or
desirable in many cases. But if there is some problem in equations outputs
to unique rows in the raw flow table, we can assume additional secondaries
and expand the table accordingly.

4. Sort Flow Table If there is a desire to equate output signals with
specific secondary variables, the rows should be sorted so that the outputs
are in gray coded order.

5. Make Secondary Assignments Having created a suitable flow table,
we can now assign a unique combination of secondary variables to each
row. The most direct way of doing this is to simply number the rows
in binary counting order. But because we are concerned with controlling
movement from row to row, we will use gray-coding exclusively. Note that
it is not necessary to start the assignments with the first row equal to
zero. The starting count is a matter of convenience and consistency with
the output.
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6. Make the Cell Assignments This is a multi-step process. Use the
following order:

(a) Fill those entries which represent stable states with their correspond-
ing row assignment numbers. This is a mandatory step.

(b) Fill the cells whose Hamming distance from their stable rows equals
one. In other words, if a change of input (column movement) places
the circuit on a transient (unstable) cell, and if there is only one bit
which is different in the present and next states, then fill the cell with
the next stable state value.

(c) Use stepping stone rows if the Hamming distance between the present
unstable state and target state exceeds one. Be advised that some-
times this will not be possible, and sometimes is won’t be worth the
effort. If there is only one stable state in the column, we may not
care how the secondaries get there. It is often possible to specify a
few of the secondaries to avoid undesired movement and leave the
rest unspecified. If more than one stable state exists in the column,
great care should taken to assure that the circuit always ends up in
the right one.

(d) Fill in any remaining necessary or desirable consrtaints. This is where
any blank cells are given 1s or 0s to force secondary movement into
or out of certain rows or blocks of rows in the table. We also use
this step to identify or eliminate potential problems associated with
underspecified secondaries.

7. Split the Completed Flow Table Note that this step of purely me-
chanical and does not involve any decision making. We have not shown
the split tables for all our examples, because they can be easily deduced
from the complete table.

8. Derive First Cut Secondary Equations In this step we consider
the simplest forms for each of the secondaries. Decisions about whether
to incorporate redundant terms in an equation are made at this point.
Problems with underspecification in expanded tables will also appear here,
hence we refer to this step as a ‘first cut’.

9. Partially Implement the External Secondaries If the circuit equa-
tions permit a complete solution at this point, we can implement all the
secondaries and complete the design process. Otherwise, we should move
ahead interactively constucting portions of the circuit as condistions per-
mit. While we have not yet discussed the exploitation of symmetry in
the defining equations, there are opportunities here to do so. (See the J-K
flip-flops later in this paper.) Complex terms which include blank areas on
the maps are targets for reduction and should be identified at this point.

10. Partially Implement the Internal Secondaries If these secondaries
allow a simple, unambiguous solution we can inspect the terms generated
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in the solution process to see if any are useful in completing the external
secondaries. Otherwise consider the implementation as tentative.

11. Apply DeMorgan’s Theorem to External Secondaries Actually,
we only need to look at those terms which are condidates for reduction.
Some of the terms in the secondary equations will be straightforward and
easily constructed. The other terms need to be inverted so that the input
requirements to the selected gate can be examined.1 We are looking for
existing signals or easily obtained signals to satisfy the requirements for
this term. We are also looking for ways to simplify or reduce the term
without invalidating the secondary equations.

12. Perform any Reductions If it is possible to simplify the input equa-
tions to the secondary under consideration, do so at this point.

13. Refine the Secondary Equations Having developed a new set of
equations which satisfy the derived maps and which are simpler to im-
plement, apply them to the affected secondaries.

14. Loop over Previous Five Steps This interactive reduction should
continue until the equations and implementation are satisfactory.

It should be emphasized that logic synthesis is as much an art and a devel-
oped skill as it is a science. No completely mechanical process for deriving circuit
solutions will render the conscientious, experienced designer obsolete. Do not
think of these procedures as substitutes for thought, but rather as tools. They
will not work if used carelessly. Many of the most important constraints in logic
design are imposed by considerations which are external to the problem speci-
fication. Make sure you understand the problem, the context, the constraints,
and the design space before attempting a solution.

In the hands of a thoughtful engineer, the methods presented here can help
develop solutions to many complex and difficult synthesis problems. They can
also aid in finding simpler solutions to problems normally solved at higher sys-
tem levels. This is important when available power or silicon real estate is at a
premium or when constructing custom cell libraries.

1In all the designs here we use an inverting gate as the source of the secondary signal. This
isn’t absolutely necessary, but this choice carries a great deal of simplification power with it.
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Chapter 3

Miscellaneous Problems
and Solutions

Here is a collection of sequential logic synthesis problems with solutions. Other
solutions to these same problems are possible, so these shouldn’t be taken as
definitive or necessarily optimal. Nevertheless, it is believed that they represent
good solutions which are in some sense minimal.

The solution process follows the outline in the previous section. No funda-
mentally new issues will arise, but each problem may have some unique aspect
which may require explanation. Considerations of symmetry in the implemen-
tation phase of the development will be given in some cases, and the handling
of exceptions to the general procedure will also be treated.

3.1 Clock Stream Switch

The circuit required here is to act as a clock stream multiplexer. It will have a
clock input C, an enable E, and two outputs C1 and C2. The clock input is to
be routed through the circuit to one of the two outputs, depending on the state
of the enable line. The enable input, E is asynchronous with the clock stream
and may switch at any time. The outputs, however, should complete the clock
cycle in process before they switch so that only full clock periods are presented
to the driven circuits. The output lines should be low when they are ‘off’ (no
clock stream is being passed through) and should follow the clock in the same
polarity when they are ‘on’.1

A suitable flow table is shown in Table 3.1. After merging and sorting the
rows we have Table 3.2. Note that this table has one completely unspecified
row already. This is because we were able to merge the original table into three
rows, but three rows require two secondary variables. Thus an additional unique
combination of secondary variables is unused and available.

1A fixed delay from the source clock to the output clock is acceptable.
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CE
00 01 11 10 C1 C2

(1) 3 – 2 00
1 – 6 (2) 01
1 (3) 4 – 00
– 3 (4) 5 10
1 – 4 (5) 10
– 3 (6) 2 01

Table 3.1: Flow Table for Clock Stream Switch

CE
00 01 11 10 C1 C2

(1) (3) 4 2 00
1 3 (6) (2) 01
– – – – –
1 3 (4) (5) 10

Table 3.2: Merged, Sorted Flow Table for Clock Stream Switch

Having sorted the rows, the secondary assignments follow easily. C1 and C2

are identified with Y1 and Y2, respectively. Secondary assignments are indicated
in Table 3.3 with the composite map entries.

The equations for the circuit are shown (3.1) and (3.2), and are implemented
in the final circuit shown in Figure 3.1.

Y1 = y1C + CEy2 (3.1)

Y2 = y2C + CEy1 (3.2)

CE
y1 y2 00 01 11 10 C1 C2

00 00 00 10 01 00
01 00 00 01 01 01
11 – – – – –
10 00 00 10 10 10

Table 3.3: Secondary Assignments for Clock Stream Switch
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Figure 3.1: Clock Stream Switch

3.2 Two-Phase Clock Generator

This circuit can best be described by referring to Figure 3.2. It has a single
input, C, and two outputs, φ1 and φ2. The input is an externally provided
clock signal which is to be separated into a phase-one and phase-two portion.
For this reason, the circuit is sometimes referred to as a clock separator or an
‘underlapped’ clock generator.

Input Clock - C

Phase One - φ1

Phase Two - φ2

Figure 3.2: Timing Diagram for Two-Phase Clock Generator

The flow table is shown in Table 3.4. Note that this flow table is the same
as the table for the ‘T’ flip-flop except for the output assignments. Because the
outputs are not unique for two of the rows (row 1 and row 3), we cannot directly
assign secondary variables to them.

From our previous experience with the designs in this paper, we might be
tempted to try expanding the table. This would, of course, lead us to a so-
lution. But we have a different approach in mind. Because of the similarity
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C
0 1 φ1 φ2

(1) 2 11
2 (3) 01

(3) 4 11
1 (4) 10

Table 3.4: Flow Table for Two-Phase Clock Generator

of the flow table with that of the ‘T’ flip-flop, we choose to examine our pre-
vious implementation of the ‘T’ flip-flop to look for already decoded variables
which might correspond to φ1 and/or φ2. Remember that we typically assign
secondary variables to outputs so that decoding is not necessary, but such as-
signment decisions are purely for convenience and may not always be possible
or yield the simplest circuit.

The effort required to examine the ‘T’ flip-flop is easily worth the cost.
Skeletal flow tables from that device but with stable state entries corresponding
to the truth table values for φ1 and φ2 are shown in Table 3.5. We can derive the
equations for those outputs from this table, assuming the same row assignments
as were used for the ‘T’ flip-flop (not shown in these maps).

C
0 1 φ1 φ2

(1) 11
(0) 01

(1) 11
(1) 10

φ1

C
0 1 φ1 φ2

(1) 11
(1) 01

(1) 11
(0) 10

φ2

Table 3.5: Skeletal Maps for φ1 and φ2

On these assumptions, the decode values for φ1 and φ2 are:

φ1 = C + y1 (3.3)

φ2 = C + y1 (3.4)

Except for the change of input variable from T to C these same signals are
available already. (See Figure 1.2 for the locations of these pre-existing signals.)
Therefore, we do not need to separately implement this circuit — we merely
redraw our implementation of the ‘T’ flip-flop to identify the required outputs.
This is done in Figure 3.3.
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Figure 3.3: Two-Phase Clock Generator

3.3 Glitch Suppressor

In a sense, this glitch suppressor is the counterpart of the Negative Pulse Gen-
erator designed earlier. The relation is so close, in fact, that the same circuit
provides both functions. We will pose the problem statement in such a way as
to show this.

We require a circuit which will suppress narrow positive spikes on a signal
line. The output of the circuit will be an inverted and slightly delayed version
of the input — minus the spikes.

An appropriate flow table is shown in Table 3.6. The only change from the
flow table for the pulse generator is in the output requirements. Here we have
used the second row to accomplish the suppression.

X
y1 y2 0 1 Z
10 (1) 2 1
00 – 3 1
01 – 4 0
11 1 (4) 0

Table 3.6: Flow Table for Glitch Suppressor

For example, if the circuit is momentarily taken from stable state 1 to state
2 by a change at the input from low to high, the output will, at first, remain
high. If the input signal which caused this action suddenly reverts to low, the
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circuit will return to state 1 with no change in the output. If, on the other
hand, the input remains high long enough for the circuit to reach state 4, the
output will go low.

We could have increased the suppression span by demanding that the output
be high in row three, but by accepting the shorter value we can identify the
output with y2 or its equivalent. In the implemented circuit (see Figure 3.4) we
have found that X + y2 meets our requirements.
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Z
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Figure 3.4: Positive Glitch Suppressor

3.4 Digital Single Shot

The digital single-shot is a circuit which picks out a single, full-sized clock pulse
from a regular clock signal stream for transmission to the output. The clock
input, C, and the control line, E, are the only inputs. Q is the only output. We
will require that the output pulse be negative for positive clock pulses and that
the control (enable) line be active true. A timing diagram is shown in Figure
3.5.
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Clock - C

Enable - E

Output - Q

Figure 3.5: Timing Diagram for Digital Single Shot

The merged flow table is shown in Table 3.7 and the equations derived from
it are in (3.5) and (3.6).

Y1 = Cy2 + Ey1 (3.5)
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EC
00 01 11 10 Q
(1) (2) (8) 3 1
1 – 4 (3) 1
1 (5) (4) 6 0
1 2 (7) (6) 1

Table 3.7: Merged Flow Table for Digital Single Shot

Y2 = Cy2 + ECy1 (3.6)

The completed circuit is shown in Figure 3.6.
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Figure 3.6: Digital Single-Shot

Caveats and Cautions — A Potential Problem

This circuit contains a potential problem. It occurs if the rising edges of E and
C are simultaneous, or nearly so. In this case a malfunction may occur in which
a brief glitch or oscillation appears on the output. The reason this situation
arose is that we chose to designate that cell in the primitive flow table as a
‘don’t care’. If the positive edges are separated by at least three gate delays,
the circuit will operate as advertised.

Now, in most of the previous circuits we have treated simultaneous input
changes in two or more inputs as ’don’t cares’. Typically, this simplifies the
merging process and also simplifies the resulting circuit. In many cases the only
penalty is uncertainty over which final stable state the circuit will choose. In
this circuit, malfunction can occur, so the edge separation is required.

If the user’s application can accept this limitation, no further action is indi-
cated. But if the application requires predictable behavior for coincident pos-
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itive edges, a redesign is necessary. This is why we have frequently cautioned
the designer to examine circuits for unanticipated behavior.

Recall that we solved this kind of problem in the Up/Down Counter Con-
troller for simultaneous negative going inputs. We dealt with it again in the
Phase/Frequency Detector where simultaneous positive edges is the normal op-
erating condition. Similar techniques can be used to solve the problem for this
circuit. Redesign is left to the reader.

3.5 Master/Slave J-K Flip-Flop

3.5.1 The Flow Table

This device illustrates an interesting aspect of logic design — the compromise
of performance requirements vs. circuit complexity. For the ‘D’ flip-flop the
problem statement implied edge triggering and the resulting circuit is more
complex than, say, a simple ‘R-S’ flip-flop or latch. In the problem statement
for the J-K flip-flop, we will accept a constraint on the inputs which simplifies
the flow table and the corresponding circuit. The limitation is that the ‘J’ and
‘K’ inputs must not change when the clock is high. This concession allows us to
increase the number of don’t care entries in the flow table, which will reduce the
number of terms required in the circuit equations. The circuit outputs changes
when the clock goes low.

Most of the popular Master/Slave flip-flops place this constraint on changing
the ‘J’ and ‘K’ inputs at the positive level of the clock, leading to the descriptive
name ‘ones catcher’ for this device. The derivation presented here will show why
this is so.2 As will be seen later, the inverted sense of the clock is just as easy
to implement.

Before deriving the flow table, we should look at the truth table description
of the desired circuit behavior. This is shown in Table 3.8.

J K Qn+1

0 0 Qn

0 1 0
1 0 1

1 1 Qn

Table 3.8: Truth Table for Master/Slave J-K Flip-Flop

This type of description is valuable for specifying the external behavior of
the circuit and in constructing the flow table, but it does not have any means
of identifying input constraints or distinguishing between edge-triggered and
level-sensitive operation. Nor does it indicate the clock polarity.

2The choice of logic levels for the clock is largely arbitrary, but we have chosen the negative
clock to comply with standard convention.
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It is instructive to examine the full, unmerged flow table for this flip-flop.
Such a table is shown in Table 3.9.

CJK
000 001 011 010 110 111 101 100 Q
(1) 2 – 4 – – – 8 0
1 (2) 3 – – – 7 – 0
– 2 (3) 4 – 6 – – 0
1 – 3 (4) 5 – – – 0
– – – 12 (5) – – – 0
– – 11 – – (6) – – 0
– 2 – – – – (7) – 0
1 – – – – – – (8) 0

(9) 10 – 12 – – – 16 1
9 (10) 11 – – – 15 – 1
– 10 (11) 12 – 14 – – 1
9 – 11 (12) 13 – – – 1
– – – 12 (13) – – – 1
– – 3 – – (14) – – 1
– 2 – – – – (15) – 1
9 – – – – – – (16) 1

Table 3.9: Flow Table for Master/Slave J-K Flip-Flop

The don’t care entries are due to the external restrictions on the ‘J’ and
‘K’ input changes and the general restriction on multiple simultaneous input
changes we have used before. We have used C = 1 on the right half of the table
where the restriction on input changes is in force.

Merging will reduce the number of rows from sixteen to four, as shown in
Table 3.10. Because of the large number of initial don’t care entries, we still
have some present in the merged table.

CJK
000 001 011 010 110 111 101 100 Q
(1) (2) (3) (4) 5 6 (7) (8) 0
– – 11 12 (5) (6) – – 0

(9) (10) (11) (12) (13) 14 15 (16) 1
– 2 3 – – (14) (15) – 1

Table 3.10: Merged Flow Table for J-K Flip-Flop

The secondary assignments derived from the merged flow table are shown in
Table 3.11.
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CJK
y1 y2 000 001 011 010 110 111 101 100
00 00 00 00 00 01 01 00 00
01 – – 11 11 01 01 – –
11 11 11 11 11 11 10 10 11
10 – 00 00 – – 10 10 –

Table 3.11: Secondary Assignments for J-K Flip-Flop

3.5.2 The J-K Flip-Flop Circuit Equations

The equations for the secondaries are:

Y1 = y1C + y1y2 + y2C (3.7)

Y2 = y2K + y1y2 + y2C + CJy1 (3.8)

Implementing Y1 is straightforward, but the redundant term y1y2 must be
included to prevent hazards from occurring during transitions between stable
states 12 and 13 in the merged flow table. Our grouping of the three terms is
intended to exploit the obvious symmetry in the problem statement.

Y1 is, by our definition, an external secondary. It is directly identified with
the output, Q, and is easily implemented as shown in Figure 3.7.
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Figure 3.7: Implementation of Y1

Considerations of Circuit Symmetry

Suppose that some logic circuit can be represented by a box, as in Figure 3.8.
The inputs are on the left, and the outputs are on the right. Internal feedback
is concealed within the box, so that external inputs and outputs are all that are
visible.

There may be an arbitrary number of inputs and outputs, but in order for
the circuit to qualify as a candidate for symmetric treatment the following rules
must apply:
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Figure 3.8: Box Model of Logic Circuit

• Output lines will occur in related pairs; e.g., each Y will have a corre-
sponding Y . It isn’t necessary that the problem statement require such
pairs, but only the circuit can be put in this form.

• Input lines will be of two types:

1. Clock or Trigger inputs, which will usually be single-ended in the
problem statement,

2. Other inputs which can be arranged in pairs with corresponding func-
tions.

If the circuit specification is such that the box representation rules can be
applied, we should consider a fully symmetrical implementation.

There are several benefits in exploiting symmetry in a design. For one thing,
it assures that corresponding inputs will have similar delay paths through the
network. Propagation delays which are equal for symmetric inputs have obvious
advantages to the user. For another, the logic implementation process has so
many degrees of freedom that it may be largely undirected unless we adopt
‘meta’ rules to restrict choices. Many different circuit arrangements can meet
a given requirement, but some of the designs decisions will be more or less
arbitrary. Imposing external constraints allows us to meet other objectives
at the price of reducing the number of arbitrary decisions. Symmetry, like
minimization, is an aid in directing the design process.

The J-K flip-flop can be put in symmetric form, as shown in Figure 3.9.
We have already implemented the external secondary, Y1, in a symmetrical

arrangement. Now we want to look more closely at the internals of the logic box
to see what rules are applicable to the rest of the circuit. We find the following:

• For every gate that exists on one side of the axis of symmetry, there will
be an identical gate in the mirror image position on the other side axis.

• All secondaries will exist in true and complemented forms (this follows
from the previous item).
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Figure 3.9: Box Model of J-K Flip-Flop

• Each gate input which comes from a secondary will have a mirror image
input which uses the complemented secondary.

• Each gate which uses a single-ended or clock signal will have a correspond-
ing mirror image input which uses the same signal.

• Each gate input which uses one of the paired input lines will have a mirror
image counterpart using the other member of the pair.

A close examination of Figure 3.7 in light of these rules will help to clarify
their usage. First, notice that Y1 does exist in true and complemented form
already as an R-S latch. Again, this was not part of the original problem
statement, but the circuit readily fits the symmetric template and the two signals
arose naturally in the implementation. But note that a different grouping of the
terms in the equation for Y1 might have obscured the potential for symmetry
rather than bringing it to the surface. Second, note that the input terms are
symmetric by our definition. The clock input is single-ended. Logic expressions
which include the secondary, y2, will be implemented so that one of the mirror
image inputs uses the true version and the other uses the complement.

Implementing Y2 provides a good opportunity to employ a design technique
which can reduce the effort in deriving gate input requirements from the output
equations. It is particularly useful in designs using NOR gates and AND-OR-
INVERT blocks, but is not restricted to those devices. Instead of picking up the
1s from a Karnaugh map to determine the locally true expression for a variable,
we can pick up the 0s and invert the entire expression. This approach directly
gives a Sum Of Products form for the inputs to the gate and relieves us from
having to apply DeMorgan’s theorem to determine what the inputs should be.
On the other hand, it gives the input equation in a form which is not well-suited
for NAND gate usage. NAND gate input requirements are better expressed in a
Product Of Sums form where each input line corresponds to one of the product
terms.

The equation for Y2 using this technique is:

Y2 = y1y2 + Cy2 + y2J + y1CK (3.9)
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Factoring out y2 so that only two inputs are required gives (on the input
side of the gate):

Y2 = y2(y1 + C + J) + y1CK (3.10)

The question, “Can this expression be implemented symmetrically?” is an-
swered in the affirmative. To see this, consider the terms in (3.10). First,
the equations defines, as many secondaries do, a cross-coupled latch or mem-
ory element. Such equations, which are expressed in terms of one of the two
latch outputs (or its input), contain terms for both of the gates forming the
latch. Thus, (3.10) consists of two major terms. One, which is written: y1CK,
represents a direct input line to the gate Y2, and the other, which is written:
y2(y1 + C + J), represents the output of the other gate of the pair. We see that
the direct term defines one input to Y2. The other term defines the other input
to Y2 and, since this signal comes from the other member of the latch, its in-
verse defines the inputs required for the other gate. Thus, if we invert the second
term, the resulting unimplemented inputs should satisfy our symmetry rules. A
partial implementation of Y2 is shown in Figure 3.10, where the symmetry can
be easily seen.
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Figure 3.10: Partial Implementation of Y2

The completed circuit is shown in Figure 3.11.
Before leaving this design a few comments are in order. First, the circuit

as shown expects C as an clock input, rather than C. In our original problem
statement we made the decision to use negative clocking and built the flow
table to reflect that choice. But, since the circuit uses both the input clock
and its inverse, we could accept either as an input and provide the other with
an inverter. If the logic devices have equivalent delays, no critical races should
occur.

Second, our implementation of the external secondary, Y1, could have used
AND and NOR gates rather than NANDs. This is a ‘dealer’s choice’ issue.
Other implementation choices could have been made as well.

Third, the Master/Slave J-K flip-flop represents a simple problem in design-
ing by symmetry rules. The Edge-Triggered J-K flip-flop in the next section is
more complex, and some of the subtle difficulties in dealing with symmetry are
taken up there.

Finally, this is a good example of a circuit type which calls out for asyn-
chronous set and clear imputs. Because of their symmetric role, they can also
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Figure 3.11: Master/Slave J-K Flip-Flop

be retrofitted symmetrically. The solution to this design challenge is left to the
reader.

3.6 Edge-Triggered J-K Flip-Flop

The best way to avoid having to impose restrictions on changing the inputs to
a J-K flip-flop when the clock is high (or low) is to require that the flip-flop be
edge triggered. The design will be more involved in this case, but the added
complexity may be worth the added difficulty.

3.6.1 The Flow Table

For the edge-triggered J-K flip-flop the flow table must account for input changes
when the clock is in either state. Only at the time of a clock change will the
values of the ‘J’ and ‘K’ inputs matter. We will build the flow table for positive
edge triggering, but otherwise the circuit behavior is completely described by
a truth table which is similar to the previous Master/Slave J-K version, ex-
cept that here we will use positive edge-triggering rather than negative level
triggering.

3.6.2 Edge-Triggered J-K Flip-Flop Flow Table

The full flow table is shown in Table 3.12.
Merging is straightforward, except that there are fewer don’t cares than there

were in the Master/Slave flip-flop. The merged table is shown in Table 3.13
Secondary assignments present no difficulties, largely because of the care we

have taken in constructing the flow table. The result is shown in Table 3.14.
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CJK
000 001 011 010 110 111 101 100 Q
(1) 2 – 4 – – – 8 0
1 (2) 3 – – – 7 – 0
– 2 (3) 4 – 14 – – 0
1 – 3 (4) 13 – – – 0
– – – 4 (5) 6 – 8 0
– – 3 – 5 (6) 7 – 0
– 2 – – – 6 (7) 8 0
1 – – – 5 – 7 (8) 0

(9) 10 – 12 – – – 16 1
9 (10) 11 – – – 7 – 1
– 10 (11) 12 – 6 – – 1
9 – 11 (12) 13 – – – 1
– – – 12 (13) 14 – 16 1
– – 11 – 13 (14) 15 – 1
– 10 – – – 14 (15) 16 1
9 – – – 13 – 15 (16) 1

Table 3.12: Flow Table for Positive Edge-Triggered J-K Flip-Flop

3.6.3 The Circuit Equations

The equation for Y1 is:

Y1 = y1C + y1y2 + y2C (3.11)

Note that this is the same as the equation for Y1 of the Master/Slave device.
Rather than dwell on the implementation, we can just take it from the previous
design. See Figure 3.7.

The implementation of Y2 is more of a challenge. We begin by writing the
equation for Y 2 in order to deal directly with the input side of a NOR latch.
Equation (3.12) contains all the zeros and only the zeros from the Karnaugh

CJK
000 001 011 010 110 111 101 100 Q
(1) (2) 3 4 (5) (6) (7) (8) 0
1 2 (3) (4) 13 14 – – 0

(9) 10 11 (12) (13) (14) (15) (16) 1
9 (10) (11) 12 – 6 7 – 1

Table 3.13: Merged Flow Table for Edge-Triggered J-K Flip-Flop
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CJK
y1 y2 000 001 011 010 110 111 101 100
00 00 00 01 01 00 00 00 00
01 00 00 01 01 11 11 – –
11 11 10 10 11 11 11 11 11
10 11 10 10 11 – 00 00 –

Table 3.14: Secondary Assignments for Edge-Triggered J-K Flip-Flop

map for Y2. We have included redundant terms or tie sets covering those states
between which transitions can occur.

Y2 = CJy1 + CKy1 + Cy1y2 + Ky1y2 + Jy1y2 (3.12)

Since we wish to avail ourselves of readily available signals we will group the
terms of (3.12) as in Equation 3.13. This provides us with a starting point for
our design by symmetry.

Y2 = Ky1(C + y2) + y1(CJ + Cy2 + Jy2) (3.13)

3.6.4 The Implementation
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y2 +C
K

y1

Figure 3.12: 1st Partial Implementation of Y2

A partial implementation of Y2 provides clues which will carry us forward to
the complete circuit. See Figure 3.12. We can see from the terms in (3.13) that
two AND gates will be required at the input of Y2, hence the mirror image gate,
which we expect to identify with y2, also has two AND gates. The symmetric
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signal requirements are spelled out in Figure 3.13, in accordance with the rules
given previously.
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Figure 3.13: 2nd Partial Implementation of Y2

The schematic diagram in Figure 3.13 can be derived from the partial schematic
in Figure 3.12 by appealing to the rules of symmetry. Now we should assess
our progress by looking at the partially developed output of the mirror image
gate, and comparing it with the remaining requirements for the input to Y2.
Naturally, we would like to cross couple the gates as soon as we are certain that
the equation for Y2 is satisfied.

We see from (3.13) that we need to provide CJ + y2C + Jy2 at the unused
input to the upper AND gate of Y2. The output of the mirror image gate will
produce this if it is ANDed with the existing signal C + y2. We must verify,
however, that connecting the lines suggested by symmetry does not invalidate
the equation. This validation and the assurance that cancellation of literals does
not introduce new problems is left as exercises. The complete circuit is shown
in Figure 3.14.

A Comment on the Concept of Edge-Triggering

The term ‘edge-triggering’ is used rather loosely in logic hardware literature. Its
meaning must be determined from the context, because there are two distinct
senses in which the term is used. One, to mean event driven and two, to mean
edge sensitive (as opposed to level sensitive).

An event driven device3 may be designed to perform its function on the
rising or falling edge of some input, but may not be immune to changing in-
put conditions at other times. On the other hand, an edge sensitive device is,
presumably, unaffected by input changes at any time except near the rising or

3We may consider state transitions or edges to represent events. When all transients have
completed, we are in a steady state.
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Figure 3.14: Edge-Triggered J-K Flip-Flop

falling edge of some specific input. The term pulse triggered is also sometimes
use to refer to clocked devices which are designed to respond to a relatively
narrow input clock.

Data sheets for many J-K flip-flop implementations refer to them as edge-
triggered when, by our definition, they are not. Specifically, we define an edge-
triggered device to be one which is driven by the stated edge of its input line,
and whose next state is determined solely by the conditions that exist at or near
the time of the triggering event. Input changes that occur at other times have no
effect on the operation of the device. Of course, practical circuit implementation
considerations will affect the specific timing limits for any circuit. These should
be identified in the set up and hold time specifications.

For example, the Master/Slave J-K flip-flop is intended to perform its func-
tion when the appropriate clock occurs and it is the leading edge of the clock
which drives the output changes. Nevertheless, when the clock is high, changes
in the ‘J’ or ‘K’ inputs can change the intended future state.4

It is important to read the fine print in the data sheets to determine whether
there are any constraints on the inputs during either state of the clock for a
specific device. Don’t depend on ambiguous terminology in selecting a device
for your application.

4This property leads to the ‘ones-catching’ behavior sometimes noted in the literature.
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Part II

Analysis Methods
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Chapter 4

Sequential Circuit Analysis

Synthesis is the major problem in digital circuit design. Analysis, although it
enjoys wide coverage in the analog domain, and even in digital signal processing,
is poorly represented in the digital logic domain. Nevertheless, analytic tools
are powerful aids in solving the synthesis problem and in understanding or
verifying the performance of existing digital circuits. We need a good analytic
method if we are to be able to examine the schematic for a given logic circuit
and answer the questions: What does it do? How can we use it? Will it meet
certain requirements? In other words, the analysis problem we are addressing
is behavior analysis, not timing analysis.

In this chapter, we present a method for analyzing sequential circuits which
complements the synthesis procedures given earlier. The process is almost ex-
actly the reverse of that for circuit synthesis. With few exceptions,1 it can
be used to derive the governing Boolean equations for a given circuit, and to
reconstruct the flow tables and high level behavioral descriptions.

4.1 Fundamental Properties of Secondary Vari-
ables

Before presenting the analysis method, we should gain a clear understanding
of what a secondary (internal) variable is, and what its role is in satisfying the
overall sequential circuit requirements.

In the literature it is shown that secondary variables are associated with
internal states of a sequential state machine, i.e., a machine whose current
output depends on previous outputs as well as present inputs.2 These internal
states can be numbered and identified, for example, with some kind of binary

1Some logic circuits are designed to exploit special properties of the devices used to imple-
ment them, and their behavior cannot be completely specified by a formal method.

2For purely combinational circuits, no secondary variables are required because the output
values are completely determined by the current input values.
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counter which has a sufficient number of stages to uniquely determine them.
Thus, we expect approximately log2(n) latches for every n states.

We further expect that in examining the equations for a sequential machine
we will find equations for memory or storage elements which cannot be reduced
to purely combinational form. The difference between combinational equations
and sequential equations is of fundamental importance, leading us to consider
the question of what that difference is, and how to identify it.

There is no better way to understand the algebra of memory than to examine
the simplest memory element: the cross-coupled latch. In Figure 4.1 we show
an R-S flip-flop whose boolean equation can be written:3

Q = S + qR (4.1)

�
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•

•

Q q
S

R

Figure 4.1: Cross-Coupled Flip-Flop (Latch)

The memory feature of this circuit is found in the presence of the Q term in
both the input and output of the circuit equation. From an analog perspective,
this is feedback with greater than unity gain. If the S and R lines are set to 1,
then the circuit equation reduces to Q = q, which is an identity. Thus, if q was
1 then Q will be 1. Similarly, if q was 0 then Q will be 0. When we speak of
memory in a digital circuit context, this behavior is what we mean.

Notice that the only way to prevent the latch from remaining forever in the
same state is to active S or R. (Of course, we are assuming that power to the
circuit is always available.) S is the means to force a 1 state and R is the means
to force 0. In general we will find that memory elements, or secondaries, will be
defined by equations of the form,

Y = f(xi, yj) + y · g(xm, yn) (4.2)

where f(xi, yj) and g(xm, yn) are functions of the inputs, Xp and outputs, Yq.
The variable y can be forced to either state by appropriate manipulation of the
primaries and secondaries, and will serve as a memory element when f(xi, yj)
is false and g(xm, yn) is true. Corresponding equations for NOR latches or
combinations of gates can be developed as long as the elements have gain, delay,
and can be connected so as to satisfy the memory requirements.

3R and S stand for Reset and Set, respectively.
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4.2 An Outline of the Analysis Method

Our analysis strategy will be to develop the circuit equations for the given circuit
from the schematic diagram and to construct the flow table from the equations.
We will then determine the stable state behavior from the flow table, giving us
the information needed to generate a high level description.

The procedure will follow a simple set of elementary steps:

• Label each of the input signals,

• Label all gates with arbitrary names or symbols,

• Write the equations for each gate in terms of the labeled gates and the
input signals,

• Reduce the equation set by the elimination of unnecessary internal vari-
ables,

• Construct the flow table from the remaining equations,

• Identify the stable states,

• Formulate a circuit description.

We will step through the solution of several example problems to illustrate
and clarify the procedure.

4.3 A Simple Example

Although we have chosen the Negative Pulse Generator for this example, we
will assume no prior knowledge of the circuit behavior. The circuit design is
provided to us with no description and only the unlabeled schematic.

4.3.1 Labeling the Circuit Elements

First, we must label the inputs and gates. This is shown in Figure 4.2.
We are using upper case alphabetic characters to identify the gates, and lower

case letters to identify the output signals from those gates. This is essentially a
mnemonic device and could be replaced by some other labeling scheme.

4.3.2 Writing the Raw Circuit Equations

We may write the equations directly from the labeled schematic.

A = X + c (4.3)

B = X + a (4.4)

C = a+ b (4.5)

(4.6)
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Figure 4.2: Unknown Circuit with Labels

We have placed the gate label, possibly representing a secondary variable, on
the left side of each equation and the terms of the required equation on the right.
This is also a convenient strategy, but it reminds us that the Boolean equations
in a sequential circuit are not true equalities — they are flow statements. We
understand them to mean that the conditions on the right side of the equation
(true or false) determine the condition on the left.4

Clearly the memory capability (if any) of the circuit is hidden among the
equations which describe the relations between the variables, and some steps
must be taken to uncover memory elements. This is the heart of the analysis
procedure.

4.3.3 Reducing the Equations

For a combinational circuit we can label gates and write equations as we have
done for the circuit we are presently examining. But we can also describe
each output solely in terms of the inputs. Thus, for the output of each gate,
we can substitute the controlling expression (possible inverted) for its input,
and eliminate the unnecessary label it used. By successive eliminations we can
eventually represent all outputs in terms of the inputs.

For a sequential circuit, the substitution process will terminate differently.
We will eventually arrive at a minimum set of equations involving inputs and
memory elements beyond which no further reduction is possible. In some cases
we will have irreducible equations which indicate essential secondaries, and re-
ducible equations which represent circuit outputs. We will retain the latter,
even if they are reducible, but our objective is not to eliminate gates from the
equations set, but only to eliminate unnecessary labels. The remaining labels
will be used in the expanded flow table.

The process of reduction begins by examining the circuit to identify any out-
put signals which, for convenience, we wish to identify with secondary variables.
Clearly B, in the present example, is an obvious choice for a secondary and we

4It actually would have been better to use arrows instead of equal signs, but we prefer to
submit to convention rather than unnecessarily disturbing it.
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will proceed with this in mind. Turning to the equation for A, we see that all
instances of a in the other equations can be replaced by X + c. By making this
replacement, we find that no secondary called A is actually needed. Hence we
can reduce the equation set to,

B = X + Xc (4.7)

C = b+ Xc. (4.8)

Now, the equation for C is clearly that of a memory element, and cannot be
eliminated because it contains itself as a term. We could attempt to eliminate
B, but that would be absurd because it is the generator for the circuit output
signal. At this point we have a set of equations which describe a sequential
circuit constructed from an expanded flow table.

One further simplification of the equations is possible. The X term in the
equation for B is redundant. We can therefore simplify B to,

B = X + c. (4.9)

4.3.4 Constructing the Flow Table

Having derived equations for the circuit, we can now construct the truth table
from which the flow table is derived. This truth table has the same structure
as the Karnaugh map for the circuit variables. Because of this identification
between the map and flow table, we need not be too rigorous in our terminol-
ogy. The main difference between the map and flow table is that the table is
concerned with state changes and the map facilitates term grouping.

First, we determine the number of rows and columns from the number of
inputs and secondaries. An appropriate skeletal table is shown in Table 4.1.

X
b c 0 1 B
00 0
01 0
11 1
10 1

Table 4.1: Skeletal Flow Table (map) for Example Circuit

Now we simply fill in the truth values derived from the equations. That is,
B is true whenever X is false or C is true. We but the ones in the table for all
these cells, and put zeros in the remaining cells. Since we have two secondaries
to consider, we can double up and put the truth values for both B and C in the
map at once. We have done this in Table 4.2. On completion of the map, we
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can identify those cells which represent stable states as those cells whose entries
agree with their row assignments. These are already identified in the table.

X
b c 0 1 B
00 11 01 0
01 11 11 0
11 10 (11) 1
10 (10) 00 1

Table 4.2: Karnaugh Map for Example Circuit

Although it is not necessary, we can convert this to the same form as was
used in the Negative Pulse Generator. The conversion simply consists of re-
labeling the input and secondaries, coupled with re-ordering of the rows and
decimal numbering of the stable and unstable states. None of these operations
alters the circuit behavior.

4.3.5 The Circuit Description

The stable state change that occurs when the input X falls does not produce
any output response. This is seen by simply tracing the behavior from the
stable state cell labeled ‘11’ to the adjacent cell and then into the row with the
corresponding entry. On the other hand, when X rises, the circuit produces the
negative pulse for which it was originally designed. Our analysis has successfully
retained and identified the performance feature of interest and provided us with
a complete description.

4.4 Another Example

Given the circuit in Figure 4.3, derive the circuit equations, generate a flow
table, and provide a description of its function.

4.4.1 The Circuit Equations

Using the labels we have placed on the gates, we write the following equations,

A = X1 + X2 (4.10)

B = X1 + d (4.11)

C = X2 + d (4.12)

D = a+ b+ c. (4.13)
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Figure 4.3: 2nd Example Circuit

We will retain C because it is a required output signal, and retain D because
we can see that it is part of an internal latch. B or D could be retained, as
either one could be identified with the memory element.

Eliminating A and B by substitution, we have,

C = X2 + d (4.14)

D = X1X2 + X1d+ c. (4.15)

4.4.2 The Flow Table

We can now construct the truth table. There are two inputs and two secondaries
of interest. A table with the truth values derived from the equations is shown
in Table 4.3. We have also identified the stable states in the table.

X1 X2

c d 00 01 11 10 C
00 11 11 11 11 0
01 11 (01) (01) 11 0
11 10 00 01 (11) 1
10 (10) (10) (10) 11 1

Table 4.3: Karnaugh Map for 2nd Example

At this point we will move on to the construction of a flow table. We do
this by numbering the stable states as shown in Table 4.4, where the unstable
states with a Hamming distance of unity are also shown.

To create the primitive flow table we need only build a table with one row
for each stable state and fill in the unstable cells from the merged table in Table
4.4. Note that stable states 3 and 4 are the only stable states in their respective
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X1 X2

00 01 11 10 C
–

(1) (2) 3 0
4 – 2 (3) 1

(4) (5) (6) 3 1

Table 4.4: Partial Flow Table for 2nd Example

columns, so it is reasonable to fill the remaining cells in those columns with the
same number, although we could also leave them initially blank.

In fact, we do not really need the expanded table to determine the circuit
behavior. From inspection of the merged table we can see that there are two
possible output levels. The output zero level is associated with stable states 1
and 2, and can only be entered following state 3. The only way to return the
output to the one level is by moving to state 3 or 4.

States 2 and 3 represent a cycle or loop. When in one of these states the
circuit moves to the other following a change in X2. Thus, X2 is passed inverted
to C in this mode. Before entry to this mode, or after exit via state 4, the output,
C, stays high.

The circuit is a synchronous clock enable. Inspection of the flow table shows
that it is designed to pass (inverted) the first full length positive pulse which
occurs on X2 (clock) after X1 (enable) is raised, and to pass all subsequent
pulses until X1 is lowered, permitting the last pulse to complete before raising
the output line. It is similar to our earlier Clock Stream Switch, and was taken
from a partial schematic for a 74120 pulse synchronizer.

4.5 Caveats and Cautions

As mentioned in an earlier footnote, this analysis procedure will not necessarily
reverse the synthesis procedure used to to create every device. Some designs
depend for their operation on special properties of the components used in the
implementation. For those cases, part of the logic description is implicit in the
elements used, and may not be amenable to the analytic procedure described
here.

Finally, since the synthesis procedure often involves arbitrary decisions and
creative adjustments, the analysis procedure may not be entirely straightfor-
ward. Be prepared to consider any analysis problem from a fresh point of view.

In spite of these limitations, the analysis procedure will work on all the
designs presented in this paper, and most of the designs one is likely to encounter
in practice.

66



Bibliography

[Cald 58] S. H. Caldwell, Switching Circuits and Logical Design, John Wiley
& Sons, 1958.

[Huff 54] D. A. Huffman, The Synthesis of Sequential Switching Circuit, J. of
Franklin Institute, pp. 275–303, March and April 1954.

[Huff 55] D. A. Huffman, The Design of Hazard-Free Switching Networks,
M.I.T. Press, Cambridge, Mass., 1955.

[Karn 53] M. Karnaugh, The Map Method for the Synthesis of Combinatorial
Logic Circuits, Comm. and Electronics, No. 9, 1953.

[Maley 63] G. A. Maley, The Logic Design of Transistor Digital Circuits,
Prentice-Hall Inc., Englewood Cliffs, N.J., 1963.

[Marc 62] Mitchell P. Marcus, Switching Circuits for Engineers, Prentice-Hall
Inc.,Englewood Cliffs, N.J., 1962.

[Mealey 55] George H. Mealey, A Method for Synthesizing Sequential Circuits,
Bell System Technical Journal, September 1955.

[Moore 54] E. F. Moore, Gedanken-Experiments in Sequential Machines, Au-
tomata Studies, Princeton University Press, 1954.

[Ung 59] S. H. Unger, Hazards and Delays in Asynchronous Sequential
Switching Circuits, IRE Trans. Circuit Theory, Vol. CT-6, pp. 12–25,
March 1959.

67



Index

analysis
method, 61

asynchronous, 5

Boolean, 8, 21
algebra, 5
equation, 32, 59, 60, 62
function, 21

charge pump, 29
circuit

analysis, 59
reduction, 62
sequential, 5, 6, 40, 59, 62, 63
synthesis, 40

circuit symmetry, 49
clear, 6, 21, 22
clock stream switch, 40–41
counter controller, 25–29

DeMorgan’s theorem, 5, 10, 33, 34, 51
don’t care, 25, 31

edge-triggered, 12
edge-triggering, 56
equation

circuit, 5, 9, 10, 14, 21, 27, 33, 35,
49, 54, 60, 61, 64

secondary, 9

flip-flop
D, 6, 12–22
edge-triggered, 53–56
J-K, 47–56
master/slave, 47–53
R-S, 60
T, 7–11, 15, 43

flow table, 5, 7, 12, 22, 23, 26, 29, 40,
42, 44, 45, 47, 53, 63, 65

expanded, 31
merged, 13, 19, 30, 53
skeletal, 19, 34, 63

glitch suppressor, 44–45

hazard
critical, 10, 11, 15, 49
dynamic, 15
static, 15
suppresion, 17
suppression, 11, 15, 16, 19

Karnaugh map, 5, 19, 65

latch, 21, 28, 60
logic

combinational, 5

merge, 12, 12
metastable, 28

phase-locked loop, 29
phase/frequency detector, 29–36
pulse generator, 23–25

race condition, 11

secondary
strong, 29
weak, 29

set, 6, 21, 22
signal

clear, 21
identification, 21
inversion, 11
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location, 21
preset, 21

single shot, 45–46
stable state, 21
state

stable, 7, 8, 19
transitional, 7, 23

state machine, 5, 59
synchronous, 5
synthesis, 37

truth table, 9, 63
two-phase clock, 42–43

up-down counter, 25

variable
primary, 19
secondary, 8, 13, 19, 21, 31, 40, 59
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