ADC with the Atmegal28

BJ Furman
10APR2007

e (preliminaries: the concept of A/D conversion, resolution, quantization, etc. See p 321-334 in
text)

e Describe successive approximation A/D

Features of the AD system for the 128
o 8 or 10-bit resolution
8 bit => 2° = 256 output states, so resolution of Vsg/2® = 1 part in 256 of Vrsg (Vrer)
10 bit => 2% = 1024 output states, so resolution of Vesr/2'° = 1 part in 1024 of (Vrer)
8 channel MUX => 8 single-ended (i.e. referenced to GND) voltage inputs on PORTF
16 combinations of differential inputs

o Two (ADC1, ADCO and ADC3, ADC2) have a programmable gain stage with
1X, 10X, or 200X gain selectable

= 1Xor 10X can expect 8 bit resolution
= 200X 7-bit resolution

o Seven differential channels share ADC1 as the common negative terminal
(ADCO0-ADC1)

o Input voltage range is 0 V — V¢c

o Vger Can be internal (either 2.56 V or AVCC) or externally supplied (but must be less
than Vce

o Free running or single conversion modes

o Ittakes 12 clock cycles to initialize the ADC circuitry on the first conversion after
ADC is enabled. Thereafter, it takes 13 clock cycles to complete a conversion.

= ADC circuitry needs 50 kHz to 200 kHz clock signal. So if you are using
an 8 MHz system clock, then you need a prescaler of at least 8/0.2 = 40.
The higher the frequency, the faster the conversion, but also the less
accurate.
e 8E6/64=125 kHz/13=9.6 kHz => 4.8 kHz to avoid aliasing

o Interrupt on ADC conversion complete

Two registers control the A/D converter:
ADCSRA (A/D Control and Status Register) See data sheet or p. 138 in Barnett book.

ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
ADMUX (A/D Multiplexer Select Register)

REFS1 REFSO ADLAR | MUX4 MUX3 MUX?2 MUX1 MUXO0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

The results appear in ADCL and ADCH. Need to read ADCL first to prevent ADCH from being
overwritten with new data!

BJ Furman

A to D with the Atmegal28.doc

Page 1 0of 4

Procedure to Initialize ADC:
Set up ADCSRA and ADMUX:
1. Turnonthe ADC (ADEN=1)
2. Choose single-conversion or free-run (ADFR=0 means single conversion)
3. Clock prescaler (selects system clock divider. Smaller divider => faster but less accurate
conversion
4. Choose the voltage reference by selecting proper bits, in location 7 and 6 of ADMUX
5. Choose left or right adjustment of result (in ADMUX register, ADLAR=0 for right
adjust)
6. Choose the AD channel to convert (in ADMUX, MUX bits)

Procedure to Do a Conversion:

1. Start a conversion by writing a 1 to ADC Status and Control Register, bit 6 (ADSC)
2. Wait until conversion is complete
a. Can monitor bit 6 (ADSC). It will stay as 1 until conversion completes, or
b. Generate an interrupt
e Bit4 (ADIF) of ADSC will be set when the conversion is complete
e To use interrupts must:
0 Set bit 3 (ADIE) of ADCSRA and
o0 Enable global interrupts: sei(); (which sets the I-bit in the Status
Register SREG

AND

o Define an interrupt handling routine. Ex:
SIGNAL(SIG_ADC)

/* do stuff here */

}
= The interrupt handling routine call will, by hardware, clear the

ADIF flag
0 Make sure to #include <avr/interrupt.h>

3. Read data from ADC Data register: ADCL first, then ADCH (if 10 bit desired)

a. Note that access to the ADC data register is blocked until both ADCL and ADCH
are read. Once ADCH is read, the ADC data register can be updated.

b. ADLAR=0 (right shifted)
15 14 13 12 11 10 9 8

ADC9 ADCS8

ADCY ADCG6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO

7 6 5 4 3 2 1 0

c. ADLAR=1 (left-shifted)
15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC?2

ADC1 ADCO - - - - - -

7 6 5 4 3 2 1 0

BJ Furman A to D with the Atmegal28.doc Page 2 of 4

d. Example

/I ADC Conversion Example
// BJ Furman 18APR05

/]----- Include Files
#include <avr/io.h> // include 1/O definitions (port names, pin names, etc)
#include "global.h" // include our global settings

-—--- Defines
#define BV(bit) (1<<(bit)) // Byte Value => converts bit into a byte value. One at bit location.
#define chi(reg, bit) reg &= ~(BV(bit)) // Clears the corresponding bit in register reg

#define sbi(reg, bit) reg |= (BV(bit)) /I Sets the corresponding bit in register reg

1

/[----- Function Prototypes
void adc_init(void); /I Will set up the registers for A/D conversion
/[----- Begin Code
int main(void)

{

unsigned short adc_result; // Just a variable to hold the result

adc_init(); // Call the init function

DDRF = 0x00; // configure a2d port (PORTF) as input so we can receive analog signals
PORTF = 0x00; // make sure pull-up resistors are turned off (else we’'ll just read OXCFF)
while(1)

shi(ADCSRA,ADSC); // start a conversion by writing a one to the ADSC bit (bit 6)
while(ADCSRA & 0b01000000); // wait for conversion to complete (bit 6 will change to 0)
adc_result = ((ADCL) | ((ADCH)<<8)); // 10-bit conversion for channel 0 (PFO0)
}
return O;
} /1 end main()
1

void adc_init(void)

{
shi(ADCSRA,ADEN); // enables ADC by setting bit 7 (ADEN) in the ADCSRA
cbi(ADCSRA,ADFR); // single sample conversion by clearing bit 5 (ADFR) in the ADCSRA
ADCSRA = ((ADCSRA & 0b11111000) | 0b00000110); // selects div by 64 clock prescaler
ADMUX = ((ADMUX & 0b00111111) | 0b01000000); // selects AVCC as Vref
cbi(ADMUX,ADLAR); /I selects right adjust of ADC result
ADMUX &= 0b11100000; // selects single-ended conversion on PFO

}

Single-Ended vs. Differential Measurements

Single-ended Differential

ADC Value = | Vi*1024/V e (Vpos — Vieg)*Gain*512/V,e

Voltage meas. = | (ADC value)*V,,/1024 (Vpos — Vneg)=(ADC value)*V /(Gain*512)

For differential measurements, if you simply want to determine the polarity of the result, check
the MSB in of the converted result (i.e., ADC9, bit 9 for right-adjusted result)

if(ADCH & 0x02) /I If true, then Vyeg > Vieg

BJ Furman A to D with the Atmegal28.doc Page 3 of 4

// ADC Conversion Example
// BJ Furman 18APRO05
1/----- Include Files
#include <avr/io.h> // include 1/O definitions (port names, pin names, etc)
#include "global.h" // include our global settings

#include <avr/interrupt.h> // include interrupt support

#include "global.h" // include our global settings

#include "a2d.h" // include A/D converter function library

[f----- Defines
#define BV(bit) (1<<(bit))

#define cbi(reg, bit) reg &= ~(BV(bit))
#define shi(reg, bit) reg |= (BV(bit))
1/----- Begin Code
int main(void)

{

u08 ADres; // unsigned 8-bit integer

I/l Setup A/D converter

a2dinit(); // turn on and initialize A/D converter

DDRF = 0x00; // configure a2d port (PORTF) as input so we can receive analog signals
PORTF = 0x00; // make sure pull-up resistors are turned off

[* set the a2d prescaler (clock division ratio) a lower prescale setting will make the a2d converter
go faster, and a higher setting will make it go slower, but the measurements will be more
accurate - other allowed prescale values can be found in a2d.h*/

a2dSetPrescaler(ADC_PRESCALE_DIV32);

[* set the a2d reference - the reference is the voltage against which a2d measurements
are made - other allowed reference values can be found in a2d.h*/

a2dSetReference(ADC_REFERENCE_AVCC);

while(1)

{

ADres = a2dConvert8bit(0); // 8-bit conversion for channel 0 (PFO0)
}

return O;

} /I end main()

BJ Furman A to D with the Atmegal28.doc Page 4 of 4

	Features of the AD system for the 128

