The Tutorial Book

Have fun with PIC microcontrollers, Jal v2 and Jallib

2008 2010 Jallib Group
Step by step tutorials, covering basic features of PIC
microcontrollers, using jalv2 compiler and jallib libraries. (version 0.3)

2| Jalib Tutorias | Introduction

Jallib Tutorials| TOC | 3

Contents

Chapter 1: Back t0 DASICS.......cccuviiieiececce e 5

TS = = o] o USSR 6

LT 111 S = = O 8

BliNK A Led (YOUr FIrSt PrOJECT).....coveeeieereeeeie ettt sttt sttt sb b s sbe s 13

Seria Port and RS-232 fOr COMMUNICELION.covivereiieiireieresrere s 23
Chapter 2: PIC INTEINAIS......cccoiieicieee et s 33
Pulse Width Modulation (PVWIM)........coiiiiiee ettt sbe e 34
DIimMmMIing & LED With PWMcoiiiiiiiieeee et 36

Producing sounds with PWM and a piezo DUZZEX...........ccooiirniiinee e 40
Analog-to-Digital CONVErSION (ADC)......ccoirriirieiirieiirieeriee sttt s sb e s be e e e e e sbe e e 43

[2C. ettt bbb R e b b e R bR e R R R e e R R e R £ R R R Rt e R b e R e e e R e b e Rt ae e b Re e e enenas 50
Building an 12C slave, some theory (DAt 1).......cccoevrernennenere e 51
Setting up and checking an 12C BUS (PaArt 2)........cooovereieieneeerere e 52
Implementing an 12C slave with jallib (Part 3)........cccoerrirnniir e 56

SPI INETOOUCTION. ... ettt b ettt n e nes 62
Chapter 3: Experimenting external parts........ccccoceveeeveeeceeseesceccee e 67
SD MEMOIY CAITS....ccueeetieetereetereetese ettt ettt eb e h e bt s e se st s s b s eb et b e e b e s e bt e e bt b e bt st eneseenennenes 68

Hard DiIsSKS - IDE/PATA ...ttt ettt 76
Interfacing @ Sharp GP2D02 [R FANGET......cc.ciieirieiriet ettt st sttt 89
Interfacing a HD44780-compatible LCD diSPlay......cccouerieiriienisese e stese s seeiese s e e e e enens 96
MeEMONY With 23K256 SIAIML......cceiiitirieiiriete ettt sttt et et s b e bbbt bbb b 104
(Lo g TSP TR PSP 111
LY o] 61010 | GRS O TP UR PP URSR 113
Materials, tools and other additional NOW=-LOS...........ccurreiriiirrercer s 114
Building a serial port borad with the max232 deviCe...........ccovveireieirince e 115

IN CIrCUit ProgramiMing........cccccueceeeeeeeeiesesteseseestesessessesseseseesessessessessessessessessessessessessessssens 119

4| Jalib Tutorials| TOC

Chapter

1

Back to basics...

Topics:

Installation

Getting Started

Blink A Led (Your First
Project)

Serial Port and RS-232
for communication

This chapter is about exploring basic tutorials. As a beginner, these are the very first steps
you should experiment and fully understand before going further. As an advanced user,
these tutorials are also here to help you testing new chips, or... when things go wrong and
you can't figure out why, going back to basics

Don't worry, everything is gonna be alright...

6 | Jallib Tutorials | Back to basics...

Installation

Jallib Group
Jallib Group

JALV2 & Jdlib installation guide

Windows Install:

1

2.

3.
4,
5.

Download jalpack (installer executable) from http://jaledit.googlecode.com/files/JALPack 2.4 0.4 0.6.1.0.exe,
Thiswill install JALv2 + JalEdit

Update your installation (very important) - Download jallib-pack or jallib-pack-bee from http://code.google.conv
p/jallib/downloads/list, copy the .zip contentsinto your Jallib installation directory.

Run the setup file

Run Jal Edit.exe from the "jaledit" directory

(optiona) Click Tools Menu -> Environment Options -> Programmer, Then Set the Programmer Executable Path

Y ou should get something like this on windows:

& jalv? E@I[’ij

Ele Edk ‘iew Favortes Tools Help
- Eed
@B.xk - Q- &F) search [Folders
Address |23 Cijjale = k=
Name Size Type
fboctinader File Folder
Cicompier File Falder
dec File Falder
Caledt File Falder
Caib Filz Falder
Lprofect File Foldsr
Ljsample Filz Falder
Citank File Falder
| = cHamcELOG TEE Fil
|| LIcEmSE. bsd 2KB BSDFie
[LicemisE. 2l LKE ZLIBFile
=0 rEADME LKE File
= READHE. bink 2KB BLINK File
| = urinsooo.dat S2KE DATFle
= unins 000, exe 667 KB Application
[versice: L KB Fik
Bl ¥
1& obijects 700 KB 'y My Computer
Linux Install
1. Go to http://code.google.comvp/jallib/downloads/list, get the link location of the jallib-pack (.tar.gz file)

2.
3.

4,

i

el

Go to the directory you wish to install JALv2

Download the package with: $ wget [link [ocation of the jallib-pack] orsimply useyour
favorite browser to download archive in the appropriate directory.

unzip the packagewith: $ tar xzf [fil ename.tar. gz]

Note: Jaedit runs under Wine on Linux

http://jaledit.googlecode.com/files/JALPack_2.4_0.4_0.6.1.0.exe
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/downloads/list

Y ou should get something like this on linux:

LICENZSE.zlikb EREADME.hlink

VEERS

compiler

doc

lik
prﬂject

Jallib Tutorials | Back to basics...

8| Jallib Tutorials | Back to basics...

Getting Started

Matthew Schinkel
Jallib Group

Guide to getting started with PIC microcontrollers JALv2 & Jallib

So, you've heard all the hype about PIC microcontrollers& JALv2 and want to hear more?

Why use PIC microcontrollers, JALv2, and this book?
Simple usage:

Y es, that’ s right, microcontrollers are simple to use with the help of this open source language JAL. Not only are
microcontrollers simple to use, but many other complex external hardware is made easy such as: USB, Analog to
digital conversion (ADC), serial communication, Hard Disks, SD Cards, LCD displays, sensors and many more.

All you will need isasmall amount of knowledge about general electronics. We will teach you the rest you need to
know!

Circuit Simplicity:
Would you like to reduce the size of your circuits? What are you currently using to build your digital circuits?

When | got started, | liked to use things like the 74L S series, simple CMOS gate chips, 555 timers etc. Y ou can
build just about anything with these simple chips, but how many will you need to complete your project? One of
the projects | built some time ago used five 74ls chips. With a microcontroller, | can now reduce my circuit to 1
microcontroller.

Bigger Projects:

When | say bigger, | mean cooler projects! Thereis no limit to what you can build! Choose from our small projects to
build alarge project of your own. What functionality do you need for your project? Check out our tutorial section for
acomplete list of compatible features you can use for your circuit.

What do | need to get started?

Y ou will need the following:

PIC microcontroller chip

PIC programmer

Programming language (JALV2) + Libraries (JALLIB) + Editor, see our installation guide.
Computer (preferably one with a serial port)

PIC programming / burning software

Regular electronic stuff such as breadboard, resistors, wire, multimeter etc.

Oscilloscope is hot required but suggested for some advanced projects.

FoIIow our Installation Guide for free programming language, libraries & text editor

NogpwdhpE

How much will it cost?

Y es, getting started with microcontrollers hasit’ s price. A microcontroller can cost you anywhere between $1 to $10
USD, and a programmer will cost $20 to $50. But you can't put a price on FUN!

Jallib Tutorials | Back to basics...

The programming language JALV2 is FREE, other languages will cost you somewhere between $200 and $2000.

When you compare this price to the price you are currently spending on those many 1C’s you currently require to
build your circuits, this may be cheaper. Y ou will not need many of your smaller IC’s, and some specialty chips can
be replaced. Of course you' re going to save time and breadboard space as well!

Asan example... Instead of buying a UART chip for serial communication, you can now use the microcontroller’s
internal UART for communication to your PC or other projects.

What PIC microcontroller should | buy?

40-Pin PDIP

MCLR/Vep —=[] 1 /40 [=—= RB7/PGD
39 [] «—» RBEPGC
38] == RBS
37] = RB4
35 [«—» RB3IPGM
35 [] == RB2
34] =—= RB1

PIC16FET4AIBTTA

23 [] =— RC4/SDIVSDA
ROWPSPO - [19 22 [] <= RO3PSP3
RO1PSF1 -—= [20 21 [] == RO2PSP2

PIC16F877 or PIC16F877A seem to be the most popular mid-range PIC at the moment (in the image above). You
should be able to find them at your local electronics store for around $10. This microcontroller has many features and
agood amount of memory. It will be sufficient for most of your projects. We will build our first project on this chip.

| warn you however, you may eventually want to move to an 18F PIC. | only suggest 16f877A because it will be easy
to find at a store.

There are many low-end PIC’ s to choose from, PIC16F84, PIC16F88 are smaller chips for around $5. There are also
very low end 8 pin PIC’s such as 12F675 for $1.

If you're looking for speed, functionality, and awhole lot of memory space, you can go with a PIC18Fxxx chip.
Some of these have USB capability. | would suggest one of the following: 18f452, 18F4620, 18F4550. These PIC's
will also work in our getting started “blink aled” tutorial with the same circuit diagram. If you can, get a 18F PIC.
My current favorite is the 40 pin 18f4620.

Here' s a price chart from the manufacturer’ s sales website:

PIC Price USD
16F877 $5.92
16F877A $5.20
18F4550 $4.47
16F84 $5.01
12F88 $1.83
18F675 $1.01
18F452 $4.14
18F4550 $4.47
18F2550 $4.51
18F4620 $4.27

10 | Jallib Tutorials | Back to basics...

What programmer should | buy?

Any pic programmer will do. The only suggestions | have isto make sureit can program awide variety of PIC's such
asthe ones listed above, and make sureit has al CSP port for future use. ICSPisfor in-circuit programming.

Here are some images of programmers we use:

SFREENENE N

USB PORT

ICSP PORT

4

What editor should | use?

Any text editor isfine, but if you are on a windows machine. We suggest the free editor “JAL Edit” which
will highlight & color important text as well as compile your JAL program to a hex file for burning to your
microcontroller. If you followed our installation guide, you will already have this editor.

Jallib Tutorials | Back to basics... | 11

JAL Edit - E:\jalv2\sample\1 6f877_sd_card.jal =13
File Edit Search Yiew Compile Tools Help
D - W[¥| @] s[> 442 2] 4[]8 | -[ea]c] b [t[] Al em| B
4120 | | Insert |Active 8L File is E:il,]:éi;é'l,sampieil,.l-SFS-?.?._sci:card.jal
Presz F5 to Refresh 1l —— Title: Library for communicating with 5D memory cards »
e — Z —— Author: Matthew Schinkel - borntechi.com, copyright (c) 2009, a11 righi
[+ Includes - [L
% Procedures - 3 X
% Elinchcie 4 —— Compiler: »>=2.41 =
- Constants 7 " : ’ : " .)
55 n\n"ariables &6 —— This file is part of jellib (kttp://jallib.gocglecode. com)
7 —- Released under the BED license (hitp:/ www.opensource. orgy/licenses bad-
8 AT
9 —— Description: this library provides functiomns Ffor 50 memory cards.
B ——
1l —- Scources:
12 —— Zanlisk Secure Digital Card — http: vww. cs.ucr.edw'~amitrasadcard/ Proc
13 —- How to use MMC/SDC — http://forums.parallax.com/forums/attach. aspx?a=3:
14 ——
15
16 —— compiler dependant device definitions
17 include 16£577
18 sinclude 1655772
19 sinclude 18F452 3
Compile Results I x
Code Uszage
0%
Data Usage
0% |
Hardware Stack
0%

What programming/burning software should | use?

Did your programmer come with software? There are many to choose from so use whatever you prefer. | use
“Micropro” from http://www.oztronics.comymicropro.html. It's afree, open source software for programming awide
range of PIC’s. However, it will most likely not support your programmer. | suggest you use the software that came
with your programmer. Y ou may see this programmer in other tutorials for demonstration only.

http://www.ozitronics.com/micropro.html

12 | Jallib Tutorials | Back to basics...

'+ DIY K149-BC v141204 <1B8f452 mp3_decoder_sta015. hex=

File Programmer Options Help
e
ROM DATA
000o0:| FFFF FFFF EF4A FOOO QOEZ0 eF2C 5008 3738 Eiett] L ot B E
aolo: | 37as 378A 3R S0DE8 3780 3TELl 3T8E 298I L. ... 03 o il
00z0:| AOD& EF1E FOOO Els4 2788 E18EF Z38% El8e [0 Ll
ooz30: | 324 5197 Z32B EZFS8C EFO0& FOOO 001z QElo E E
0040:| &F23C SEB2Z &BS3 20DE 3786 3787 2008 3780 3 il
o0so: | 3781 3782 3783 L£l&3 EDEE A4DE EF3Z Fooo o .o oL Z. E E
oog0: | L£l1zZ EDe4 EBE4DE EFZS FOOO EODE EF40 FOOO R = I £ il
. 0070z =80D& E1582 5534 EF&8ZF 5183 EEEE &F83 28186 0 il
L oogo: | EZF3C EFz3 FOOO 001z &EFE 0100 L518F 6EFA £ e E E
0020:| E12E SEFS eACZ COEO7 &ECL 0100 QEC4 &F20 Ea [
0oa0:| 0E42 &F21 QEOE &F2Z ZF2Z EFL4 FOOO ZF21 G i Lo E E
QO0EO:| EFEEZ FOOO EZFS0 EFE0 FOOO 0000 EF34 FOOO B._P._.. [3 |
O0co:| 0EZ0 SEAF 84AC 0012 ECE0 FOOO S4590 933D ST E3 &)
Ooono: | ZAAC OES0 cEAE OO0l 0100 &F3A AS9E EFEE n E E
O0EQ:| FooOo 5152 gEAD 001z 01040 E180 0100 eF%% (& B
= COM x Beady
T L ;
=) | Chip Selector
= Load ‘ My Herae | Programm | 245 Yeril | : ‘
= | 4m Prog ey 18F452 v
Refresh I & save | 5h Head I [Elank I =} Fuses | X Cancel
=i | == 11ER3IEPM =

OK, enough of this boring stuff, lets build something! Start with the Blink A Led (Your First Project).

Jallib Tutorials | Back to basics... | 13

Blink A Led (Your First Project)

Matthew Schinkel
Jallib Group

In thistutorial we are going to learn how to connect our first circuit and blink our first led.

Where to we start?
Let’smake aled blink on and off, how fun is that!

So, you' ve followed the install ation guide and now have a Programming language (JALV2) + Libraries (JALLIB) +
Editor. We will be using JALEdIt for our first example.

Setup your workspace

Start by getting out your programmer and connect it to your PC. Some connect by serial port, some connect via USB.
| actually use a serial port programmer attached to a USB-to-Serial adapter to free up my serial port for other projects.

If you are using a serial port programmer you need to check that you have aregular seria cable and isnot anull
modem cable. Using your multimeter, check that each pin of your serial cable matches, if pins7 & 8 are crossed, itis

anull modem cable.

Get out your PIC microcontroller (we will now refer to it asaPIC). You can use PIC' s 16f877, 16f877A, 18F2550 ,
18F452 or 18F4550 for this project since the port pin outs are the same for al of them. | will use 16f877A for this
blink aled project.

Now check PC connectivity to your programmer. Open your programming software on your PC, check the settings
within your software to change the serial port number and programmer type (if available). Y our programmer software
may tell you that your board is connected, if not, put your PIC in your programmer and do some basic tests such as
“read chip”, “blank / erase chip”

14| Jallib Tutorials | Back to basics...

If you are using Micropro, click on “file” -> “port”, and “file” -> “programmer” -> (your programmer type). If you
do not know the programmer type, you will have to guess until Micropro says something like “K149-BC board
connected”, Put your PIC in your programmer and choose your PIC type from the “Chip Selector” text box. Now do
some basic read/erase tests.

Jallib Tutorials | Back to basics... | 15

'~ DIY K149-BC v141204

=
EX |
£s |
C3 |
Ex £l
E2 8]
R [
CE Ll
£ |
i b

<3 & [
CE Ll
- (8]
£x Ll
Ca Ll
B E
Ex [
03 |
| Ll
X El

o CcoM 1 | Peading ROM. .. ==

B || b Chip Selector

= Load ‘ hMerge ‘ ,;El,, Proaram | "7{: Werify ‘ ; ‘i ‘ — .
Refresh ‘ & Save | 5h Head ‘ [Blank ‘ r=: Fuses ‘ X LCancel
2| | = = 122506AM =

Build your circuit

Weéll, it looks like we're all set to go, so grab your breadboard and other components, put together the following
circuit:

16 | Jallib Tutorials | Back to basics...

ST CHA

1 RucLrver e reveen B9
2 Bransann resrec B 22
T 2 Beadmnd ros B 3%
A 3 BRnz/aNZAREF- roa B 20
\/VV\ 5 BReanmer+ REaP o 20
1 B Resamack rez 8 35

T 7 Bresimnasss et B34 I%I

— 8 BREO/RDANS RECANT B2 5w

- o CH P voo & 22 =
ol I T wes b 21 ot s
0w —— VDD roTiPser B2 —
55 ROGFSPE §22 /T\
DsCUCLKIN rosPaps 125
SNE s 5 DscmoLKOUT roarsral 27 ~r B

RCOMI050IT1CK Re7mxoT 125
RCiTi0SIECR2 Roamuckl 25
RC2/CeP resssoo B2
ATAknmhz RCasckiscL RCaSDISon B25
o—“:|| Roo/PSFO ROaPsPa B22
| RO /PSP rozpare B2

And here' swhat it looks like. Notice the additional orange wire to the left of my PIC, this ensures that | always put
my PIC in the correct position after programming. Do not connect your power 5v supply till your circuit is complete
and checked over at least twice. Y ou will burn your PIC if power is on while building your circuit. Y ou will want an
on/off switch for your power supply.

Jallib Tutorials | Back to basics... | 17

Your circuit is done, and it looks pretty, but it doesn’t do anything :o(..

Understand the jalv2 directory structure

First take alook at your jalv2 installation directory on your PC, wherever you installed it.

Ee Edk ‘Wiew Favortes Tools Help

r s

ek - € - ¥) search |- Folders
address |20 Ciljalvz w Gn

Name Slze Type
bestivader Pl Folder
CJcompier File Faolder
des File Falder
[jaledt Fil Falder
kb Filz Falder
L profect Filz Faldsr
Csample Fila Falder
Ciitooks File Falder
| =T cranacELOG TKE Fle
E LICEMSE. bsd 2KB B5DFile
[LicErssE. 2l L KB ZLIEFile
| = rEADME LKE File
@ REACME. bink 2KB BLINE Fie
| = urinsooo.dat 3ZKE DATFle

= unins 000, exe 667 KB Application
= versica L KB Fik
& - ¥
16 ohiects 709 KB 'y My Computar

compiler — holds the jalv2.exe compiler program to convert your JAL code to microcontroller hex code
JALEdIt — JAL text editor where you will write your code

lib — A set of libraries to make things work

sample —Working examples.

Create yourself afolder called workspace, and in that folder create afolder called blink_a led (eg. C:
\jalv2\workspace\blink_a_led\)

Setup your editor & .jal file

Open up your favorite text editor. | will use JALEdIt. Run jaledit.exe from the JALEdIt directory. Start a new
document, and saveit in jalv2\workspace\blink_a led\ and name it blink_a led.jal (eg: C:\jav2\workspace
\blink_a led\blink_a led.jal)

Let's write some code

So now we're going to write the code that will make our led blink. All code will be in highlighted text. Y ou can read
more about JAL language usage here: http://www.casadeyork.comvjalv2/language.html

Title & Author Block

Start out by writing a nice title block so everyone know’s who created it. Here's an example Title block from Rob
Hamerling' s working 16f877a blink.jal blink aled example in the sample directory. Every PIC has at least one
working sample. You can see that two dashes “-* declare acomment so your notes get ignored by the compiler. The

http://www.casadeyork.com/jalv2/language.html

18 | Jallib Tutorials | Back to basics...

character “;” can also be used for comments. We will comment our code aswe go along so it is easier for usto read
our own code.

-- Title: Blink-a-1ed of the Mcrochip picl6f877a

-- Author: Rob Hanerling, Copyright (c) 2008..2009, all rights reserved.
-- Adapt ed- by:

-- Conpiler: 2.4l

-- This file is part of jallib (http://jallib.googlecode.com
-- Rel eased under the BSD |icense (http://ww.opensource.org/licenses/bsd-

I i cense. php)

Descri pti on:

-- Sanpl e blink-a-1ed programfor M crochip PlICl6f877a.
Sour ces:

Not es:

-- - File creation date/tine: 14 Cct 2009 20: 24: 20.

Choose your PIC
Write the following code to choose the PIC you are using, change 16f877ato whatever PIC you have:
i ncl ude 16f877a -- target PICmicro

Choose your crystal speed

Write the following code according to the speed of the crystal you are using in your circuit. | suggest 20mhz for
16f877. Y ou can check your chip’s datasheet for it’s max speed. Higher speeds may not work the way you want them
to on atemporary breadboard.

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSC1L and OSC2.
pragma target clock 20_000_000 -- oscillator frequency

Configure PIC Settings

The following code sets some of the PIC’ sinternal settings, called fuses. A OSC setting of HS tellsthe PIC thereisan
external clock or crystal oscillator source. Y ou must disable analog pins with enable_digital_io() , you don’t need to
worry about the others.

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Programi ng
enabl e digital io() -- disable analog I/O (if any)

Choose an output pin

Let’s choose an output pin to control our led. Asyou can see from the circuit, our led is connected to pin #2. Let’s
check our datasheet to find the pin name from the pin out diagram.

Jallib Tutorials | Back to basics... | 19

The PDF datasheet for this PIC and for all others can be downloaded from the microchip website. Here isthe
datasheet for this PIC http://ww1.microchip.com/downl oads/en/DeviceDoc/30292c.pdf , and here is the pin out
diagram from the datasheet:

40-Pin PDIP
MClRver —= 1 ' 40] =—= RB7/PGD
RADIAND =[] 2 39 [] «—» RBEPGC
RATANY =—e113 38 [] =—= RBES
RAZAN2AVREF/CVREF <—s [] 4 37 [] = RB4
RAVANIVREF+ =[] 5 36 [] «— RBIPGM
RAATOCKICIOUT =[] 6 35] == RB2
RAS/AN4/SSIC20UT =7 < 34 []=—e RB1
REORDIANS =——[]8 & 330 RBONT
RE1VIIANG =——=[]8 = 327 «— VoD
RE2CSIANT =10 & 311 e— Vss
Voo — 11 5 300 -— RDWPSP?
ves__ .12 & 29[] < RDEPSPE
OSCHCLKl —=H 13 + 28 1 «—e RD5PSPS
OSCUCLKO «—[14 2 27]« RD4PSPS
RCOMIOSOMICK! =— [15 26 [] «— RCTRNDT
RC1T10SICCP2 «— [16 25 (] «— RCBITXICK
RC2/CCP1 = 17 24 (] «—> RCSISDO
RCSCKISCL =— [18 23 [] = RC4/SDVSDA
ROWPSPD -—e [19 22 [] «=—» RD3IFSF3
RO1PSFE] -—= [20 21 [= ROZESE2

Asyou can see, we are using the pin RAO/ANO at pin #2. RAOQ is the pin name we are looking for. ANO is another
name for this same pin (used in the analog to digital tutorial), but we can ignoreit in thistutorial. In the JAL language
RAO iswritten aspin_AO

Now let’s read the details of this pin in the datasheet on page 10. Asyou can see RAOisa TTL Digital 1/O pin. We
are checking this to make sure it is not a open drain output. Open drain outputs (like pin RA4) require a pull-up
resistor from the pinto V+

PIC16F87XA

TABLE 1-3: PIC16F874A/877A PINOUT DESCRIPTION

Pin Name PDIP | PLCC |TQFP| QFN op Buffer Descrintion
Pin## | Pin# | Pin® | Ping | Type Type P

FGRTA Is a bidirectional /0 port.

RADAND 2 3 19 19 TTL
RAaD Ilw] Digital 11O,
ANO | Analog input 0.
Legend: | =input 0 = output IF0 = input’output P = power

—=MNotused TTL=TTL input 3T = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Senal Programming mode.
3: This bhuffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

http://ww1.microchip.com/downloads/en/DeviceDoc/30292c.pdf

20| Jallib Tutorias | Back to basics...

Now write code for pin AO. We are writing an “alias’ only because in the future we can refer to pin 2 (AQ) as“led”.
This way we no longer need to remember the name of the pin (except for the directional register in the next line of
code we will write).

-- You may want to change the sel ected pin:
alias | ed is pin_AO0
Configure the pin as an input or output

Now we must tell the PIC if thisis an input or an output pin. The directiona setting is always named (pin_ +
pinname_ + direction). Since we are writing data to the port, to turn the led on, it is an output.

pi n_AO_direction = output

We could make an alias for thisaswell: “aliasled _directionispin_AQ_direction”, then write “led_direction =
output”. This way, we can change it from output to input in the middle of the program without knowing the pin name.
But in this case, we will only use pin_AQ_direction once in our program so there is no need to make an alias.

Write your program
So, now that we have the led under our control, let’s tell it what to do.
We will want our led to continue doing whatever we want it to do forever, so we'll make aloop

forever | oop

It is good practice to indent before each line within the loop for readability. 3 spaces before each lineis the standard

for Jdllib.
In thisloop, we will tell the led to turn on.
led = ON

now have some delay (250ms) a quarter of a second so we can see the led on.
_usec_del ay(250000)
turn the led off again
led = OFF
and have another delay before turning it back on again
_usec_del ay(250000)
close our loop, when the PIC gets to this location, it will go back to the beginning of the loop

end | oop

And that’sit for our code. Save your file, It should look something like this:

-- Title: Blink-a-l1ed of the Mcrochip picl6f877a

-- Author: Rob Hanerling, Copyright (c) 2008..2009, all rights reserved.
-- Adapt ed- by:

-- Conpiler: 2.4l

-- This file is part of jallib (http://jallib.googl ecode.com

-- Rel eased under the BSD license (http://ww.opensource.org/licenses/bsd-
I i cense. php)

-- Description:

Jallib Tutorials | Back to basics...

-- Sanpl e blink-a-1ed programfor M crochip PlICl6f877a.
-- Sources:

-- Not es:
-- - File creation date/tine: 14 Cct 2009 20: 24: 20.

i ncl ude 16f877a -- target PICmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSC1L and OSC2.

pragma target clock 20_000_000 -- oscillator frequency

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Programi ng
enabl e _digital _io() -- disable analog 1/0O (if any)

-- You may want to change the sel ected pin:
al i as | ed is pin_AO0
pin_AO0 direction = output

forever | oop
led = on
_usec_del ay(250000)
led = of f
_usec_del ay(250000)
end | oop

Compile your code to .hex

Now let’s get this beautiful code onto our PIC. Y our PIC cannot understand JAL, but it does understand hex, thisis
what the compiler is for. The compiler takes people readable code and converts it to code your PIC can understand.

If you are using JALEdIt, click the compile menu at the top and choose compile.

If you are using your own text editor in windows, you will need to open windows command prompt. Click start -> run
and type cmd and press OK. Now type (path to compiler) + (path to your .ja file) + (-s) + (path to JALLIB libraries)
+ (options) Here' s an example:

C:\jav2\compiler\jalv2.exe " C:\jalv2\workspace\blink_a led\blink_a led.jal" -s"C:\jalv2\lib" -no-variable-reuse
The option -no-variable-reuse will use more PIC memory, but will compile faster.

If al thiswent ok, you will now have ablink_a led.hex located in the same directory asyour blink_a led.jal, If there
where errors or warnings, the compiler will tell you.

A error means the code has an problem and could not generate any .hex file. If there isawarning, the hex file was
generated ok and may run on your PIC but the code should be fixed.

Write the hex file to your PIC

Take your PIC out of your circuit and put it in your programmer. With your programming software, open the
blink_a led.hex file. Y ou should see that hex data loaded in your software. Now click the Write button. Y our
software will tell you when it is done.

Let's Try It

Put your PIC back into your circuit, double check your circuit if you haven’t aready, and make sure your PIC is
facing the correct direction. Apply power to your circuit.

|21

22 | Jallib Tutorials | Back to basics...

It'salivel You should see your led blinking! Congratulations on your first JALv2 + JALLIB circuit!
Here's ayoutube video of the result: http://mww.youtube.com/watch?v=PYuPZO7isoo
| strongly suggest you do thistutorial next: Serial Port and RS-232 for communication.

http://www.youtube.com/watch?v=PYuPZO7isoo

Jallib Tutorials | Back to basics... | 23

Serial Port and RS-232 for communication

Matthew Schinkel
Jallib Group

In this tutorial we are going to learn how use TX & RX pinsfor serial communication to your PC, and also learn
communicate with another PIC or external device viaRS-232.

What is a serial port?

Y ou may have forgotten about this important part of history "The seria port”. Y ou have forgotten because you
have been too up-to-date on all the new technologies such as USB and Bluetooth, but you have left the good old
technologies in the past. Well, now it's time to put that funny looking port on the back of your PC to some good use!
If you don't have a seria port on your PC, you can get a USB to serial converter/adapter.

5 1
9 6

At onetime, there was awide range of devices that used the serial port such as a mouse, keyboard, old GPS, modems
and other networking.

In our case, we will use aserial port to send datato our PC, or to send data a second PIC. | find it most useful for
troubleshooting my code, and for sending other readable information to my PC without the use of additional hardware
suchasaLCD. LCDs & displays can be an expensive addition to your circuit.

What is RS-232?

RS-232 isthe data transfer standard used on serial ports. Basically thisis composed of one start bit, some data bits,
parity bit, and one or two stop bits. The transfer speed as well as the number of start, stop and data bits must match for
both the transmitter and receiver. We will not need to cover the way in which it is transferred since the PIC doesiit for
us. We will only need to know the following:

1. The number of start bits (always 1)
2. The Parity (usually no parity)

3. The number of data hits (usually 8)
4. The number of stop bits (1 or 2)

5. The data transmission speed

6. The port number on your PC

Y ou will be able to choose the transmission speed yoursalf. The Jallib library we will be using will use 1 start bit, 8
data bits, no parity, and 1 stop bit. Y our other device, such as your PC will also need to know this information.

What do | need?
In the first part of thistutoria | will show you how to hook your seria port up to your PC. | will show you how to
connect it to another PIC later on in thistutorial. | feel that connectivity to your PC is quite important. Y ou will need:

1. A PIC that has TX and RX Pin names. Most PIC's have them. Check your pinout diagram in the PIC's datasheet.

24| Jallib Tutorials | Back to basics...

MR —e[] 1 o [T =— RETPED
FRAVAND a—a] 35 [] =—e REEPEC
RA1ANT =—e[T] 3§ [] =—= RES

RAZIAMN - e [] 37 [=—s RBL
RALANIAML + e [] 35 [=+—e REVPEM
RALTOCK] HE 35 j-..—.— REZ

RASIANATEE =—=] 3 [T =—s RE1
REDFDVANS +—=[] 33 [J =—= REQINT
RE1.T'FI.'.*NE~ -l'——]: 33 j Dl
FEZCEANT —e [31 [T -— Wos
VEO w [[T =—s ROTFSFT
L I oy I == ROEFIFS
OICATLHN —] 28
OSCHCLNOUT —-— | a7 :[%i
25 i
25

74

SImoin b oW b= B

v

FIC16F

RCATIOSOTICK] e []
RG1TIOICCPE =[] 4
ROMCCP e [4 .
RCABCREIL =—= 118 23 [] =—= RC4EOVE0A
RODFPSFD = []43 22 [] == ROAFSFI
ROUPEF] =a—s= [20 21 [T =—= RDZFEFZ

2. A serial port board. Y ou can buy one on the net, or build your own. Building a serial port borad with the max232
device for moreinformation. A seria port board is needed for voltage conversion. Serial ports output voltages up to
12v and go lower than Ov.

3. A regular RS-232 Cable (make sure it is not a null modem cable, they ook the same). Y ou can check what type of
cable you have with your multimeter. Put your multimeter on each pin of your cable starting with pin 1. Check for a
zero ohm reading. Thiswill check that the pins are the same at both ends. Null modem cables have some pins crossed.

Build your circuit

The circuit will be quite simple, you can take your blink aled circuit, and attach your serial port board. Here'sa
schematic with 16F877. We will be using the TX and RX pins:

Jallib Tutorials | Back to basics...

SWATCHA
1 BucLrvER b revpon B30
2 Braniano rosipec B35
CEE 2 Brean res B 38
| | £ 3 BRaziaNzAREF. roa =7
| | W 5 Braznmer+ RE2PoME 2D
i B Resamock rez 435
i 7 Bresmnass re1 B 3% |i—_|
[~ B BREORDIANS rEoANT B35
SHD g 2 Bretmimsans vop 8 22 -
I (L A . i was b 3 0.4uf as
L Koo ro7iPser 20 R

I 12 Ryss roarePa B 29 /—‘—\

0—‘ 12 RoscucLim RrpsiPsPs 825
R pt 201 19 BoscwoLkout roarspall 2l 7 SH

f77 I -1 15 BecormiosmiTicK) reriRxoT 128
Tz i 1% Brcumiosicorz reemuck B-22
17 Becaiccpd resspo 122
RlA 1% BresssciscL RCasoIspa 22
>—{D| 18 Bepoepseo RpaPSPz B 22
| EER roz/FsFz B 21

Test your circuit

Serial Fort Board

Before you write your own code, you should make sure your circuit actually works.

Go into the sample directory within your jalv2/jallib installation. Find your pic, and look for a serial hardware sample
such as 16f877a_serial_hardware.jal. Then compileit and burn it to your PIC. Don't turn on your circuit yet, we are

not ready.

On your PC, you will haveto install some serial communications program such as Real Term. Real Term is free and
open source. | will use Rea Term for this tutorial. Y ou can download it here:

http://realterm.sour cefor ge.net/

Open Rea Term and click on the "Port" tab, we need to select the port & speed, etc to the following values:

1. The Parity = no parity

2. The number of databits=8
3. The number of stop bits=1

4. The data transmission speed = 115200

| 25

http://realterm.sourceforge.net/

26 | Jallib Tutorias | Back to basics...

5. The port number on your PC

RealTerm: Serial Capture Program 2.0.0.57

Display Por | Capture| Pins | Send | EchoPort| 120 | 1202 | 12CMise | Mise | An| Clear| Freeze| |
= Status
Baud |1152EID jEmt |1 j Qpen| Spy o Change ||:’ | Cornected
| R=D (2]
. : ; Software Flow Control
Parity Data Bite | [Stop Bits i i | TD (3]
& None | @ Bhitz| © 1ht (" 2bis | EERE Ay TlcTs @)
~ ! : -
o 28 | 7bits | ~Hardwere Flow Control [Transmit xoff Char: |19 _|DCD (1]
Mark (" Bhitz | | & Mone " RTS/CTS _|DSR[E]
£ Space || ¢ Bhbits| | " DTR/DSR T RS485ts ' _|Ring[9]
g _|BREAK
_ | Erar
‘ou have to click in terminal window before you can bype any chars out (Char Count:0000000 [CPS:0 Port: Closed

Now press "Open" in Real Term and turn on your circuit. If you now see "Hello serial world......" showing in within
Real Term on your PC, you are able to receive data.

% RealTerm: Serial Capture Program 2.0.0.57

ello serial

Displaw Pot | Captuie| Pins | Send | EchoPont| 12 | 1202 | 12CMise | Mise | An| Freeze| |
E— = Status
Baud [115200 | Port [4 | [Qpen spy| o Change |':’ _ | Digconnact
_IR=D (2]
: ; : Saftware Flow Cottral
Parity Data Bitz [~ Stop Bits Fiiniis N7 | T (3
& None | & ghits| @ 1Bt Zbis e SRR |CTS 8]
~ E3 | C Thits| Hardware Flow Contiol [Transmit yoff Char: |13 _|DCD 1)
Mark || ¢ Bhits| | & Mone (" RTS/CTS _|DSR (B
£ Space || ¢ Bhits| | 7 DTR/DSR T RS485ts r | Ring (9]
g _|BREAK
_ | Errar
You can use Active automation to control me! Char Counk:74 ZPS:10 Pork: 4 115200 8N1 MNone

If your circuit doesn't work, your serial port board may have TX and RX switched (you can try switching your TX/
RX wires around), or you may have selected the wrong port number, some PCs have more than one seria port.

Now click on Real Term's "send" tab, type in the number "65" in the first box and press " Send Numbers'. If it sent ok,
the PIC will echo this value back to you. Y ou will see the ASCII character "A", which is the same as decimal 65. You
can see afull ASCII chart at asciitable.com.

http://asciitable.com

Jallib Tutorials | Back to basics... | 27

Display | Port | Capture | Pins ~ Send | EchaPart| 12 | 1202 | 120Misc | Mise | An| Clear| Freeze| |
o EOL | —n Stf“[‘)‘_s |
: 4 SendASCIH | +CR =Bl
' iis I': iﬁfme _|R#D [2)
| =] 5end Ngmbers‘ Send ASCII |F - = |TXD (3)
- = el | S |CTS [8)
ﬂ ﬂ ﬂ Repeats |1 =] [Literal | StipSpaces [+oic |\DCD i
Dumnp File to Part _; DSR [B]
| emphoapture bt | J Send Eile ‘ X Stop | Delays [0 %[0 =] _|Ring[9]
___________ _|BREAK
Repeats m |U—£|' _ | Emar
‘ou have to click in terminal window before you can bype any chars out (Char Counk: 1066 CPS:10 Port: 4 115200 M1 Mone

Now please change your Real Term settings to receive decimal numbers by clicking on the "Display" tab, and choose
"int8" under "Display As" at the left side. Y ou will now continuously see the number "46" come in, and try sending
the number "65" again. Y ou will get the same humber back on your screen.

int8 - shows integer numbersin Rea Term
Ascii - shows ascii text

Hex[space] - shows hex numbers with a space between each

% RealTerm: Serial Capture Program 2.0.0.57

46 46 46 46 46 65 46 65 46 65 65 46 65 65 46 65 46 65 65 46 65 46 46 46 46 46

Display | Port | Captwre| Pins ~ Send | EchoPart| 12 | 1202 | 120Mise | Mise | An| Clear| Freeze| |
EnL ' Statuz
|85 [~ +CR _ | Disconnect
; ||— +LF I': i;m'e _IRXD (2]
| v| Send Ngmbers‘ Send 85011 |||: +E§ = | TRD (3
I_ = = X |CTS (8
ﬂ ﬂﬂ Repeats |1 *] [Litersl | StipSpaces || +oic miDED[H]]
Dump File to Part ; DSF [B]
|c:\temp'\capture.txt ﬂ J Send File ‘ X Stc:g| Delays |0 e | [| | Ring []
............... | BREAK
Repeats W |U—£|' _ | Emar
Chars sent aren't displayed when half-duplex is set Char Counk:52 CPs:10 Port: 4 115200 M1 Mone

28| Jdlib Tutorias | Back to basics...

Write code to send data from PIC to PC

Sincethisis one of thefirst circuits you will be building, | will try to give you detailed information so you can get
some programming experience. We will continue with your code from "Blink aled". We will modify it to send data
to your PC, Here's your original code:

i ncl ude 16f877a -- target PICrmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSCL and OsSC2.

pragma target clock 20_000_000 -- oscillator frequency

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabled -- no Low Vol tage Programi ng
enabl e digital _io() -- disable analog I/O (if any)

-- You may want to change the sel ected pin:
alias | ed is pin_AO0
pin_AO direction = output

forever | oop
led = on
_usec_del ay(250000)
led = of f
_usec_del ay(250000)
end | oop

First we need to add seria functionality, | got the following code from 16f877a_serial_hardware.jal

-- ok, now setup serial;

const serial _hw baudrate = 115 200
i ncl ude serial _hardware

serial _hw.init()

So, now copy and past thisinto your code, | would put it somewhere after the line "enable_digital _io", and
somewhere before your main program which starts at "forever loop".

This code will set your baudrate (speed), it will include the correct library file "serial_hardware", and it will initiaize
the library with "serial_hw_init()". Y ou can change the speed if you wish, but you must change the speed in
Real Term as well.

Now we can put some code that will send data to your PC. If you want to send the number 65 to your PC, you must
use this code:

serial _hw data = 65

This code works because it is a procedure/function within serial_hardware.jal, and you have already included the
serial_hardware library. serial_haredware.jal can be found in the "lib" folder of your jalib installation. Y ou can open
that file and read notes within it for more information and for other usable variables, functions and procedures.

Let's make your code send the number 65 when the led turns on, and send the number 66 when your led turns off. Just
place your code after your "led = on", and after "led = off"

forever | oop

led = on

serial _hw data = 65 -- send 65 via serial port
_usec_del ay(250000)

led = of f

serial _hw data = 66 -- send 66 via serial port

_usec_del ay(250000)
end | oop

Jallib Tutorials | Back to basics... | 29

Or, if you wish to send Ascii letters to your PC instead, you could use the following:

forever | oop

led = on
serial_hw data = "A" -- send letter A via serial port
_usec_del ay(250000)
led = of f
serial _hw data = "B" -- send letter B via serial port
_usec_del ay(250000)

end | oop

Both of the above loops will continuously send the decimal number's 65 and 66 via your serial port each time your led
turns on or off. Your completed code should look like this:

i ncl ude 16f877a -- target PICmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSClL and OSC2.

pragma target clock 20 _000_000 -- oscillator frequency

-- configuration nenory settings (fuses)

pragma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabl ed -- no Low Vol tage Progranmi ng
enabl e digital io() -- disable analog 1/0O (if any)

-- ok, now setup serial;@allib section seria
const serial_hw baudrate = 115 200

i ncl ude serial hardware

serial _hw_init()

-- You may want to change the sel ected pin:
al i as | ed is pin_AO0
pin_AO0 direction = output

forever | oop

led = on
serial _hw data = 65 -- send 65 via serial port
_usec_del ay(250000)
led = off
serial _hw data = 66 -- send 66 via serial port
_usec_del ay(250000)

end | oop

Compile and burn your code to your PIC, then turn on your circuit. Y ou should get this while your led is blinking:

30| Jallib Tutorials | Back to basics...

"_ RealTerm: Serial Capture Program 2.0.0.57

65 66 65 66 65 66 65 66 65 66 65 66 65 66 B5 66 B5 66 65 66 65 66 B5 66 B5 66 65
66 65 66 65 66 65 66 65 66 65 66 65 66 65 66 65 66 65 66

Dislay | Port | Capture | Pins | Send | EchaPart| 12 | 1202 | 120Misc | Mise | An| Clear| Freeze| |
Dizplay Az ™ Half Duplex Binary Synec Chars 5 - Status
Az W [BBCD ~lp =HNe 15 _| Disconnect
" Anw = sta | & MNone |
" Hespace] | | InvertData _|R=D [
O Hexessoi | 7 | | ®0R |~ asi | T*D (3]
o mpgt Data Frames | j AND | 7 Mumber _ICTS 8]
" Hew Bytes 20 I _IbEo]
ik a = | o Change | [~ Leading Sunc | DSR (8]
" uint]g [~ Single Guip | D

[Ascii _|Ring (3]
; Binary Rows Cols |EREAK
—~ nge?tlf TeminalFont| (16 %] |80 3] [~ Scrolback _|Emor

You can use Activer automation to contral me! Char Counk:92 CP3:0 Pork: 4 115200 k1 Mane

Awesome, now that you can send data to your pc! Thiswas an important step since it will greatly help you with your
troubleshooting by sending you readable information such as text, numbers and other types of data.

If you feel your programming skills are not as good as they should be, practice practice practice! Continue using the
language reference at http: //www.casadeyor k.com/jalv2/jalv2/index.html

Write code to send data from PC to PIC

In the beginning, you may not have a use for sending data from your PC to your circuit, so you may skip thisand go
onto other things.

Here we are going to get the PIC to receive data from the PC. We will write some code that will only start blinking a
led when you send data to the PIC. Also we will tell the PIC to send the number 65 to the PC once per second.

We will now learn to use the following variables from serial _hardware.jal:

serial_hw_data available - If the PIC received data, this variable will equal TRUE, otherwise FALSE
serial_hw_data - If datais available, this variable will contain the data

So let's modify your current loop:

forever | oop

led = on
serial _hw data = 65 -- send 65 via serial port
_usec_del ay(250000)
led = of f
serial _hw data = 66 -- send 66 via serial port
_usec_del ay(250000)

end | oop

First changeit so it will send the number 65 to your PC every one second:

forever | oop
_usec_del ay(1_000 _000) -- one second del ay
serial _hw data = 65 -- send 65 via serial port
end | oop

We now can add an if statement to find out if thereis seria data available;

forever | oop

http://www.casadeyork.com/jalv2/jalv2/index.html

_usec_del ay(1_000_000) --
_hw data = 65 -- send 65 via serial port

seri al

if serial _hw data avail able then --

end if
end | oop

one second del ay

Jallib Tutorials | Back to basics... | 31

check if there is data avail able

Y ou will need to create avariable "x" before your "forever loop", this variable will hold the data when you want to

receiveit:

var byte

X

Now you have a place to store the data, so you may now write aline within your "if" statement to get the data:

X = serial _hw data

Then build afor loop after that to blink the led "x" number of times

for x | oo

led =

p -- loop (x nunber of tinmes) using data received on serial port

on

_usec_del ay(250000)

led =

of f

_usec_del ay(250000)

end | oop

Hereisyour completed code:

i ncl ude 1

6f 877a

-- target PICmicro

-- This program assunes a 20 MHz resonator or crystal

-- is connected to pins OSClL and OsC2.
pragma target clock 20 _000_000

oscillator frequency

-- configuration nmenory settings (fuses)
pragma target OSC HS

pragma ta
pragma ta

enabl e_di

rget WDOT disabl ed
rget LVP disabled
gital io()

HS crystal or resonator
no wat chdog
no Low Vol tage Progranmi ng

-- ok, now setup serial;@allib section serial

const ser
i ncl ude s

i al _hw baudrate = 115 200

eri al _hardware

serial _hw.init()

-- You may want to change the sel ected pin:

alias |
pi n_A0_di

var byte
forever |

usec
seri al

if serial _hw data avail able then --

X =
for

end
end if

end | oop

ed is pin_AO0
rection = output

X

oop --
del ay(1_000_000) --
_hw data = 65 --

serial _hw data
x | oop
led = on
_usec_del ay(250000)
led = of f
_usec_del ay(250000)
| oop

continue forever
one second del ay
send 65 via serial port

di sable analog 1/0O (if any)

check if data is ready for us

get the data

| oop "X

turn the led on
250ms del ay
turn the I ed off
250ms del ay

| oop

end the if statenent

nunber of tines

32| Jallib Tutorials | Back to basics...

Asyou can see, this code will do the following:

1. delay 1 second

2. send the number 65 via serial port

3. seeif there isdatawaiting for us, if so, get it and blink the led (the number of times of the data received)
4. loop back to the start

So, turniit on, you will start getting decimal numbers: "65 65 65 65 65" or ascii: "AAAAAA" in Rea Term. Now send
your PIC the number 5, you will see your led blink 5 times. Now isn't that awesomel!

PIC to PIC ommunication via serial port

Sending datato your PC is not the only use. If you have an extra PIC laying around, we can get two PIC'sto talk to
each other. And it's quite easy too!

| think you can do this on your own by now, you know how to make one PIC send data, and how to make aPIC
receive data, so all you have to do is write some sending code on one PIC and receiving code on the other.

Build another circuit the same as your current one, then do the following:
1. connect the TX pin from PIC # 1 to the RX pin of PIC # 2
2. connect the RX pin from PIC # 1 to the TX pin of PIC #2

On one of your PIC's, make it send data every one second, like we did before at Write code to send data from PIC to
PC.

On the other PIC, make it loop continuously. Put an if statement in the loop that will seeif thereis data available, and
if there is, make the led blink once, like we did at Write code to send data from PC to PIC.

Y ou should then see your led blinking on your second PIC.

Wow, that was alot, now | think you know your stuff!

Chapter

2

PIC internals

Topics:

e Pulse Width Modulation
(PWM)

* Analog-to-Digital
Conversion (ADC)

e I2C

e SPI Introduction

This chapter covers main and widely used PIC microcontroller internals (also referred as
PIC peripheralsin datasheets), like PWM, ADC, etc... For each section, you'll find some
basic theory explaining how things works, then area-life example.

34 | Jallib Tutorials | PIC internals

Pulse Width Modulation (PWM)

Sébastien Lelong
Jallib Group

In the following tutorials, we're going to (try to) have some fun with PWM. PWM stands for Pulse Width Modulation,
and is quite weird when you first face this (thiswas at least my first feeling). So here's a brief explanation of what it is
about.

How does PWM look like ?...

PWM is about switching one pin (or more) high and low, at different frequencies and duty cycles. Thisis a on/off
process. You can either vary:

« thefrequency,
< ortheduty cycle, that is the proportion where the pin will be high

I on

WMz same duty cycle, different frequencies

Both have a 50% duty cycle (50% on, 50% off), but the upper one's frequency is twice the bottom

Figure 1: PWM: same duty cycle, different frequencies.

1 n

I .
1 1 1T 1.

Fwiv: same frequency, different duty cycles

http://en.wikipedia.org/wiki/PWM

Three different duty cycle (10%, 50% and 90%), all at the same frequency

Figure 2: PWM: same frequency, different duty cycles

But what is PWM for ? What can we do with it ? Many things, like:

« producing variable voltage (to control DC motor speed, for instance)
» playing sounds: duty cycleis constant, frequency is variable
» playing PCM wave file (PCM is Pulse Code Modulation)

That said, we're now goind to experiment these two major properties.

Jallib Tutoridls | PIC internals | 35

36 | Jallib Tutorials | PIC internals

Dimming a LED with PWM

Sébastien Lelong
Jallib Group

One PWM channel + one LED = fun

For now, and for thisfirst part, we're going to see how to control the brightness of a LED. If smply connected to a
pin, it will light at its max brightness, because the pin is"just" high (5V).

Now, if we connect this LED on a PWM pin, maybe we'll be able to control the brightness: as previously said,
PWM can be used to produce variable voltages. If we provide half the value (2.5V), maybe the LED will be half its
brightness (though | guess the relation between voltage and brightnessis not linear...). Half the value of 5V. How to
do this ? Simply configure the duty cycle to be 50% high, 50% low.

But we also said PWM isjust about switching a pin on/off. That is, either the pin will be OV, or 5V. So how will we
be able to produce 2.5V ? Technically speaking, we won't be able to produce areal 2.5V, but if PWM frequency is
high enough, then, on the average, and from the LED's context, it's as though the pin outputs 2.5V.

Building the whole

Enough theory, let's get our hands dirty. Connecting a LED to a PWM pin on a 16f88 is quite easy. This PIC has quite
anice feature about PWM, it's possible to select which pin, between RBO and RB3, will carry the PWM signals. Since
| use tinybootloader to upload my programs, and since tiny's fuses are configured to select the RBO pin, I'll keep using
this one (if you wonder why tinybootloader interferes here, read this post).

Connecting a LED to a PWM pin

L5V httpeifallib.googlecode. com

16F88

RAZANZ RA1/AN1
RAZANS RALAND
RA4/ANA RAT/OSCH
RASMCLR RABOSC2
YES YOD
RBO/IMNT RBFPGD
RB1/SDA RB&PGC
RB2/RX RB&STX
RBZ RB4/SCL

PIC16F88-DIP

oo

EEE a\ =lalal=l

+5

GND

Figure 3: Connecting a LED to a PWM pin

On a breadboard, thislooks like this;

http://www.etc.ugal.ro/cchiculita/software/picbootloader.htm
http://jallib.blogspot.com/2009/01/common-pitfall-setting-up-registers.html

Jallib Tutorials | PIC internals | 37

The connector brings +5V on the two bottom lines (+5V on line A, ground on line B).

r

LED is connected to RBO

Writing the software

For this example, | took one of the 16f88's sample included in jallib distribution (16f88 pwm led.jal), and just adapt
it soit runsat 8MHz, using internal clock. It also select RBO as the PWM pin.

http://code.google.com/p/jallib/source/browse/trunk/sample/by_device/16f88/16f88_pwm_led.jal

38| Jallib Tutorias | PIC internals

So, step by step... First, as we said, we must select which pin will carry the PWM signals...

pragma target CCP1MJX RBO -- ccpl pin on BO

and configure it as output

var volatile bit pin_ccpl _direction is pin_bO_direction
pin_ccpl _direction = out put
-- (sinply "pin_bO _direction = output” would do the trick too)

Then we include the PWM library.

i ncl ude pwm har dwar e

Few words here... Thislibrary is able to handle up to 10 PWM channels (PIC using CCP1, CCP2, CCP3, CCP4, ...
CCP10 registers). Using conditional compilation, it automatically selectsthe appropriate underlying PWM
libraries, for the selected target PIC.

Since 16f88 has only one PWM channel, it just includes "pwm_ccpl” library. If we'd used a 16f877, which has two
PWM channels, it would include "pwm_ccpl" and "pwm_ccp2" libraries. What isimportant isit's transparent to
users (you).

OK, let's continue. We now need to configure the resolution. What's the resolution ? Given a frequency, the number
of valuesyou can have for the duty cycle can vary (you could have, say, 100 different values at one frequency, and
255 at another frequency). Have alook at the datasheet for more.

What we want here is to have the max number of values we can for the duty cycle, so we can select the exact
brightness we want. We also want to have the max frequency we can have (ie. no pre-scaler).

pwm max_resol ution(1)

If you read the jalapi documentation for this, you'll see that the frequency will be 7.81kHz (we run at SMHz).
PWM channels can be turned on/off independently, now we want to activate our channel:

pwril_on()

Before we dive into the forever loop, | forgot to mention PWM can be used in low or high resolution. On low
resolution, duty cycles values range from 0 to 255 (8 bits). On high resolution, values range from 0 to 1024 (10
bits). In this example, we'll use low resolution PWM. For high resolution, you can have alook at the other sample,
16f88 pwm led_highresjal. Asyou'll see, there are very few differences.

Now let's diveinto the loop...

forever | oop
var byte i
i =0
-- loop up and down, to produce different duty cycle
while i < 250 | oop
pwnil_set dutycycl e(i)
_usec_del ay(10000)
i =i +1
end | oop
while i > 0 | oop
pwnil_set dutycycl e(i)
_usec_del ay(10000)
i =i -1
end | oop
-- turning off, the LED lights at nax.
_usec_del ay(500000)
pwnil_of f ()
_usec_del ay(500000)
pwril_on()

end | oop

http://jallib.googlecode.com/svn/trunk/doc/html/pwm_common.html
http://code.google.com/p/jallib/source/browse/trunk/sample/by_device/16f88/16f88_pwm_led_highres.jal

Jallib Tutorials | PIC internals | 39

Quite easy right ? There are two main waves: one will light up the LED progressively (0 to 250), another will turn
it off progressively (250 to 0). On each value, we set the duty cycle with pwrl_set _dut ycycl e(i) andwait a
little so we, humans, can see the result.

About the result, how does this ook like ? See this video: http://mww.youtube.com/watch?v=r9_TFEmUSO0

"l wanna try, where are the files ?"

To run this sample, you'll need the last jallib pack (at least 0.2 version). You'll also find the exact code we used here.

http://www.youtube.com/watch?v=r9_TfEmUSf0
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_board_sl_pwm_led.jal

40 | Jallib Tutorias | PIC internals

Producing sounds with PWM and a piezo buzzer

Sébastien Lelong
Jallib Group

In Dimming a LED with PWM, we had fun by controlling the brightness of a LED, using PWM. Thistime, we're
going to have even more fun with a piezo buzzer, or a small speaker.

If you Pulse Width Modulation (PWM), with PWM, you can either vary the duty cycle or the frequency. Controlling
the brightness of aLED, ie. produce a variable voltage on the average, can be done by having a constant frequency
(high enough) and vary the duty cycle. Thistime, thiswill be the opposite: we'll have a constant duty cycle, and vary
the frequency.

What is a piezo buzzer ?

It'sa"component” with amaterial having piezoelectric ability. Piezoelectricity is the ability for a material to produce
voltage when it get distorted. The reverseis also true: when you produce a voltage, the material gets distorted. When
you stop producing a voltage, it gets back to its original shape. If you're fast enough with this on/off voltage setting,
then the piezo will start to oscillate, and will produce sound. How sweet...

Constant duty cycle ? Why ?

So we now know why we need to vary the frequency. This will make the piezo oscillates more and less, and produces
sounds at different levels. If you produce a 440Hz frequency, you'll get anice A3.

But why having a constant duty cycle ? What is the role of the duty cycle in this case ? Remember: when making a
piezo oscillate, it's not the amount of volts which isimportant, it's how you turn the voltage on/off:

e when setting the duty cycle to 10%: during a period, piezo will get distorted 10% on the time, and remain
inactive 90% on the time. The oscillation proportionis low.

* when setting the duty cycle to 50% : the piezo is half distorted, half inactive. The oscillation proportion is high,
because the piezo oscillates at the its maximal amplitude, it's half and equally distorted and inactive.

» when setting the duty cycleto 90%: the piezo will get distorted during 90% of a period, then nothing. The
oscillation proportion is low again, because the proportion between distortion and inactivity is not equal.

So, to summary, what is the purpose of the duty cycle in our case ? The volume! Y ou can vary the volume of the
sound by modifying the duty cycle. 0% will produce no sounds, 50% will be the max volume. Between 50% and
100% is the same as between 0% and 50%. So, when | say when need a constant duty cycle, it's not that true, it's just
that we'll set it at 50%, so the chances we hear something are high :)

Let's produce sounds !

The schematics will use is exactly the same as on the previous post with the LED, except the LED is replaced with a
piezo buzzer, likethis;

1 | guessthisis about energy or something like that. One guru could explain the maths here...

http://en.wikipedia.org/wiki/Piezoelectricity
http://en.wikipedia.org/wiki/A440

Jallib Tutorials | PIC internals | 41

By the way, how to observe the "duty cycle effect" on the volume ? Just program your PIC with the previous
experiment one, which control the brightness of a LED, and power on the circuit. | wanted to show avideo with
sounds, but the frequency istoo high, my camera can't record it...

Anyway, that's alittle bit boring, we do want sounds...

Writing the software

The software part has alot of similarities with the Dimming a LED with PWM. Theinitiaization isthe same, | let you
have alook. Only thef or ever | oop has changed:

var dword counter = 0
forever | oop

42 | Jlib Tutorials | PIC internals

for 100 _000 using counter | oop
pwm set frequency(counter)
-- Setting @0% gi ves max vol une
-- nmust be re-conputed each tine the frequency
-- changes, because it depends on PR2 val ue
pwnil_set percent _dutycycl e(50)

end | oop

end | oop
Quite straightforward:

* we"explore" frequencies between 0 and 100 000 Hz, using acount er

« weusepwm set frequency(counter) to setthefrequency, in Hertz. It takes a dword as parameter (ie.
you can explore alot of frequencies...)

- finally, aswe want a 50% duty cycle, and since its value is different for each frequency setting, we need to re-
compute it on each loop.

Note: jalib's PWM libraries are coming from a"heavy refactoring” of Guru Stef Mientki's PWM library.
llI_|_ LI,|_| While integrating it to jallib, we've modified the library so frequencies can be set and changed during
program execution. This wasn't the case before, because the frequency was set as a constant.

So, how does this look like ? Hope you'll like the sweet melody :)
http: //www.youtube.com/watch?v=xZ90hQUKGtQ

"Where can | download the files ?"
Asusual, you'll need the last jallib pack (at least 0.2 version). Y ou'll also find the exact code we used here.

http://www.youtube.com/watch?v=xZ9OhQUKGtQ
http://code.google.com/p/jallib/downloads/list
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_pwm_sound.jal

Jallib Tutorials | PIC internals | 43

Analog-to-Digital Conversion (ADC)

Sébastien Lelong
Jallib Group

Analog-to-Digital Conversion isyet another nice feature you can get with aPIC. It's basically used to convert a
voltage as an analog source (continuous) into adigital number (discrete).

ADC with water...

To better understand ADC, imagine you have some water going out of a pipe, and you'd like to know how many
water it goes outside. One approach would be to collect all the water in a bucket, and then measure what you've
collected. But what if water flow never ends ? And, more important, what if water flow isn't constant and you want to
measure the flow in real-time ?

The answer is ADC. With ADC, you're going to extract samples of water. For instance, you're going to put alittle
glassfor 1 second under the pipe, every ten seconds. Doing the math, you'll be able to know the mean rate of flow.

The faster you'll collect water, the more accurate the rate will be. That is, if you're able to collect 10 glasses of water
each second, you'll have a better overview of the rate of water than if you collect 1 glass each ten seconds. Thisisthe
process of making a continous flow a discrete, finite value. And thisis about resolution, one important property of
ADC (and thisis aso about clock speed...). The higher the resolution, the more accurate the results.

Now, what if the water flow is so high that your glass gets filled before the end of the sample time ? Y ou could use
abigger glass, but let's assume you can't (scenario need...). This means you can't measure any water flow, this one
has to be scaled according to your glass. On the contrary, the water flow may be so low samples you extract may not
be relevant related to the glass size (only few drops). Fortunately, you can use a smaller glass (yes, scenario need) to
scale down your sample. That is about voltage r efer ence, another important property.

Leaving our glass of water, many PICs provide severa ADC channels. pinsthat can do this process, measuring
voltage asinput. In order to use this peripheral, you'll first have to configure how many ADC channels you want.
Then you'll need to specify the resolution, usually using 8 bits (0 to 255), 10 bits (0 to 1024) or even 12 hits (0 to
4096). Findlly, you'll have to setup voltage r efer ences depending on the voltage spread you plan to measure.

ADC with jallib...

Asusual, Microchip PICs offers awide choice configuring ADC:

* Not all PICshave ADC module(...)

« Anaog pins are dispatched differently amongst PICs, still for user's sake, they have to be automatically
configured as input. We thus need to know, for each PIC, where analog pins are...

« Some PICs have their analog pins dependent from each other, and some are independent (more on this later)

e Clock configuration can be different

» Aspreviously stated, some PICs have 8-bits low resolution ADC module, some have 10-bits high resolution
ADC modul€?

« Some PICs can have two voltage refer ences (VRef+ and VRef-), only one voltage reference (Vref+) and some
can't handle voltagereferences at all

e (and probably other differences | can't remember :)...

Luckily most of these differences are transparent to users...

Dependent and independent analog pins

OK, let'swrite some code ! But before this, you have to understand one very important point: some PICs have their
anal og pins dependent from each other, some PICs have their analog pinsindependent from each other. "What isthis
suppose to mean ?' | can hear...

Let's consider two famous PICs. 16F877 and 16F88. 16F877 datasheet explains how to configure the number of
analog pins, and vref, setting PCFG bits:

http://en.wikipedia.org/wiki/Analog-to-digital_converter

44 | Jallib Tutorias | PIC internals

PCFG3: | AN7(") | AN6(" | ANS(Y) | AN4 AN3 AN2 | AN1 | ANO e CHan/
PCFGO | RE2 RE1 REO RA5 RA3 RA2 | RA1 | RAO Refs®
0000 A A A A A A A A VoD Vss 8/0
0001 A A A A VREF+ A A A RA3 Vss 71
0010 D D D A A A A A VoD Vss 5/0
0011 D D D A VREF+ A A A RA3 Vss 41
0100 D D D D A D A A Voo Vss 3/0
0101 D D D D VREF+ D A A RA3 Vss 21
0l1lx D D D D D D [B] D VoD Vss 0/0
1000 A A A A VREF+ | VREF- A A RA3 RAZ2 6/2
1001 D D A A A A A A Voo Vss 6/0
1010 D D A A VREF+ A A A RA3 Vss 51
1011 D D A A VREF+ | VREF- A A RA3 RAZ2 4/2
1100 D D D A VREF+ | VREF- A A RA3 RAZ2 alz
1101 D D D D VREF+ | VREF- A A RA3 RAZ2 2/2
1110 D D D D D D D A VoD Vss 1/0

i 1111 D D D D VrEF+ | VREF- D A RA3 RA2 | “-1/2

! A =Analoginput D = Digital IO

Figure 4: 16F877 ADC channels are controlled by PCFG bits

Want 6 analog pins, no Vref ? Then PCFG bits must be set to 0b1001. What will then be the analog pins ? RAO,
RA1, RA2, RA3, RA5 and REO. "What if | want 7 analog pins, no Vref ?" You can't because you'll get aVref pin, no
choice. "What if | want 2 analog pins being RE1 and RE2 ?" Y ou can't, because there's no such combination. So, for
this PIC, analog pins are dependent from each other, driven by a combination. In this case, you'll have to specify:
e thenumber of ADC channelsyou want,

« and amongst them, the number of Vref channels

Now, let's consider 16F88. In this case, there's no such table:

‘bit6-0 ANS<6:0>: Analog Input Select bits
Bits select input function on corresponding AN<6:0> pins.
1 = Analog 11012
0 = Digital I'O
Note 1: Setting a pin to an analog input disables the digital input buffer. The corresponding
TRIS bit should be set to input mode when using pins as analog inputs. Only AN2 is
an analog I/O, all other ANx pins are analog inputs.

2: See the block diagrams for the analog I/O pins to see how ANSEL interacts with the
CHS bits of the ADCONO register.
i
Figure 5: 16F88 ADC channels are controlled by ANS bits
Mmmbh... OK, there are ANS bits, one for each analog pins. Setting an ANS hit to 1 sets the corresponding pin to
analog. Thismeans | can set whatever pin | want to be analog. "I can have 3 analog pins, configured on RAQ, RA4
and RB6. Freedom "

Analog pins are independent from each other in this case, you can do what you want. As a consequence, since

it's not driven by a combination, you won't be able to specify the number of ADC channels here. Instead, you'll use
set _anal og_pi n() procedure, and if needed, thereverseset _di gi tal _pi n() procedure. These procedures
takes a analog pin humber as argument. Say analog pin AN5 ison pin RB6. To turn this pin as analog, you just have
towriteset _anal og_pi n(5), because thisis about analog pin AN5, and not RB6.

Remember: as aconsequence, these procedures don't exist when analog pins are dependent asin our first
G =
'y Caution: it's not because there are PCFG bits that PICs have dependent anal og pins. Some have PCFG

bits which act exactly the same as ANS hits (like some of recent 18F)

Jallib Tutorials | PIC internals | 45

e Tip: how to know if your PIC has dependent or independent pins ? First have alook at its datasheet, if
f_} you can atable like the one for 16F877, there are dependent. Also, if you configure a PIC with dependent
- pinsasif it was one with independent pins (and vice-versa), you'll get an error. Finally, if you get an error
like: "Unable to configure ADC channels. Configuration is supposed to be done using ANS bits but it
seems there's no ANSbits for this PIC. Maybe your PIC isn't supported, pleasereport ", or the like, well,
thisis not anormal situation, so as stated, please report !

Once configured, using ADC iseasy. You'll findadc_r ead() and adc read low_res() functions, for respectively
read ADC in high and low resolution. Because low resolution is coded on 8-bits, adc_r ead() returnsabyt e as
theresult. adc_read_low_res() returnsawor d.

Example with 16F877, dependent analog pins

The following examples briefly explains how to setup ADC module when analog pins are dependent from each other,
using PIC 16F877.

The following diagram is here to help knowing where analog pins (blue) are and where Vref pins (red) are:

Pin Diagram

PDIP
MCLRNVPP ——= [] 1 Il\,/i 40 || +—= RB7/PGD
RAJAND -] 2 39 [| =—= RBEPGC
RAT/ANT =-—=| | 3 38 [| =—= ABS
RAZ2/AN2/VREF- [14 37] =—= RB4
AAI/ANI/VREF+ =—[|5 36 [] =—= RB3IPGM
RA4TOCK]I w+—=[] 6 35 || +—= RBZ2
RASANA/SS -—=[| 7 < 34 |] -—= HE1
RED/AD/ANS =+—=[] 8 P~ 33 || =—= BBOINT
RE1/WR/ANE =—=[T] g QE' 32 [] =*+—— VDD
RE2/CS/ANT =—[] 10 F'_ 31 [=-— V55
VoD — [| 14 E 30 [] =—= RD7/PSP7
vss w12 [T< 29 [] =—= RADEPSPS
OSC1/CLKIN —=[] 13 E 26 [[] «+—= RADS/PSPS
OSC2/CLKOUT +—1I[] 14 e 27 [] «+—= RD4/PSP4
RCOT1IOSOTI1CKl -—[] 15 Q. 25 [] -—= RCT/RX/DT
RC1/T10SIVCCP2 «—[] 16 25 [] =—= RCHTXCK
RC2/CCP1 w—[] 17 24 [] =—= RCE/SDO
AC3/SCK/SCL =—=[| 1B 23 [| =—= RC4/SDISDA |
! RDO/PSPO +—a[] 19 22 [| =—= AD3PSP3 |
RD1/PSP1 =-—=[| 20 21 [| =—= RD2/PSP2

Figure 6: Analog pins and Vref pins on 16F877

46 | Jallib Tutorias | PIC internals

Example 1: 16F877, with only one analog pin, no voltage reference

-- beginning is about configuring the chip
-- this is the sane for all exanples for about 18F877
i ncl ude 16f877

-- setup clock runni ng @OMiz

pragnma target OSC HS

pragma target clock 20_000_000

-- no wat chdog

pragma target WDT disabl ed

pragma target LVP disabled

enabl e digital io()

i ncl ude del ay

-- ok, now setup serial, we'll use this
-- to get ADC neasures

const serial _hw baudrate = 19 200

i ncl ude serial hardware

serial _hw.init()

-- ok, now let's configure ADC

-- we want to neasure using | ow resolution

-- (that's our choice, we could use high resolution as well)
const bit ADC H GH RESOLUTION = fal se

-- we said we want 1 anal og channel ..

const byte ADC NCHANNEL = 1

-- and no voltage reference

const byte ADC NVREF = 0

-- now we can include the library

-- note it's now nanmed "adc", not "adc_hardware" anynore
i ncl ude adc

-- and run the initialization step

adc_init()

-- will periodically send those chars
var byte neasure
forever | oop
-- get ADC result, on channel 0
-- this nmeans we're currently readi ng on pin RAO/ANO
measure = adc_read_ | ow res(0)
-- send it back through seri al
serial _hw wite(nmeasure)

-- and sleep a litte to prevent flooding serial..
del ay_1ns(200)
end | oop

Example 2: 16F877, with 5 analog pins, 1 voltage reference, that is, Vref+

Thisisamost the same as before, except we now want 5 (analog pins) + 1 (Vref) =6 ADC channels (yes, | consider
Vref+ pin asan ADC channdl).

The beginning is the same, here's just the part about ADC configuration and readings:

const bit ADC H GH RESOLUTI ON = fal se
-- our 6 ADC channel
const byte ADC NCHANNEL = 6
-- and one Vref pin
const byte ADC NVREF = 1
-- the two paraneters could be read as:
"I want 6 ADC channel s, anpbngst which 1 will be
-- reserved for Vref, and the 5 renmi ning ones wll be
-- anal og pins"

Jallib Tutorials | PIC internals | 47

i ncl ude adc
adc_init()

-- will periodically send those chars
var byte measure
forever | oop
-- get ADC result, on channel O
-- this means we're currently reading on pin RAO/ ANO !
nmeasure = adc_read_ | ow res(0)
-- send it back through serial
serial _hw wite(neasure)

-- sanme for pin RA1l/ANL
nmeasure = adc_read_|l ow res(1)
serial _hw wite(nmeasure)

-- sanme for pin RA2/ AN2
measure = adc_read_| ow res(2)
serial _hw wite(nmeasure)

-- pin RA3/AN3 can't be read, since it's Vref+

-- same for pin RA5/ AN

-- 4 is fromfrom"AN4" !
nmeasure = adc_read_| ow_res(4)
serial _hw wite(nmeasure)

-- sanme for pin RE10/ AN5
nmeasure = adc_read_ | ow res(5)
serial _hw wite(nmeasure)

-- and sleep a litte to prevent flooding serial..
del ay_1ns(200)

end | oop

Example with 16F88, independent analog pins

The following example is about setting up ADC module with PIC 16F88, where analog pins are independent from
each other.

The following diagram is here to help knowing where analog pins (blue) are and where Vref pins (red) are:

48 | Jallib Tutorias | PIC internals

Pin Diagram

18-Pin PDIP, SOIC

RAZIANZICVREF/ _, Lo R
HMMNB“;HSE*T"J - [2 17[] == RAQ/AND
F“M-"A”dgggﬂ . 16[] =— RA7/OSC1/CLKI
RAS/MCLR/VPP —w [4 @ 15[] —= RAG/OSC2/CLKO
Ves —= [5 :‘I-E- 14[] =-— VDD
RBOANT/ICCP1™M) =[] 6 E 3l = T raNePGD,
RB1/SDI/SDA == []7 12[] - ??S’;&?ﬁ?
RB2/SDO/RX/DT == [8 11[] == RB5/SS/TX/CK
RBAPGM/CCP1() ==] g 10[] == RB4/SCK/SCL

Note1: The CCP1 pin is determined by the CCPMX bit in
Configuration Word 1 register.

Figure 7: Analog pins and Vref pins on 16F88

Example 1: 16F88, analog pins on RAO/ANO, RA4/AN4 and RB6/ANS. No voltage reference.

-- beginning is about configuring the chip
i ncl ude 16f 88

-- W'Il use internal oscillator. It work @8Miz
pragnma target CLOCK 8_000_000

pragma target OSC I NTOSC_NOCLKOUT

OSCCON_| RCF = 0b_111

pragma target WDT di sabl ed

enabl e digital _io()

-- ok, now setup serial, we'll use this
-- to get ADC neasures

const serial _hw baudrate = 19 200

i ncl ude serial _hardware

serial _hw.init()

-- now configure ADC

const bit ADC H GH RESOLUTI ON = fal se

const byte ADC NVREF = 0

-- we can't specify a nunber of ADC channel here,
-- or we'll get an error !

Jallib Tutorials | PIC internals | 49

i ncl ude adc

adc_init()

-- now we declare the pin we want as anal og
set _anal og_pin(0) -- RAO/ANO

set _anal og_pin(4) -- RA4/ AN4

set _anal og_pin(5) -- RB6/AN5

-- reading is then the sane
var byte neasure
forever | oop

measure = adc_read_| ow res(0)
serial _hw wite(nmeasure)

nmeasure = adc_read_ | ow res(4)
serial _hw wite(neasure)

measure = adc_read_| ow res(5)
serial _hw wite(nmeasure)

end | oop

Whether you would want to turn RB6/ANS into adigital pin again, you'd just call:
set _digital _pin(5)

50 | Jallib Tutorials | PIC internals

12C

Jallib Tutorias | PIC internals | 51

Building an 12C slave, some theory (part 1)

Sébastien Lelong
Jallib Group

i2cisanice protocol: it is quite fast, reliable, and most importantly, it's addressable. This meansthat on asingle 2-
wire bus, you'll be able to plug up to 128 devices using 7bits addresses, and even 1024 using 10bits address. Far
enough for most usage... | won't cover i2c in depth, as there are plenty resources on the Web (and | personally like
this page).

A few words before getting our hands dirty...

i2c isfound in many chips and many modules. Most of the time, you create a master, like when accessing an
EEPROM chip. Thistime, in thisthree parts tutorial, we're going to build a slave, which will thus respond to master's
requests.

The slave side is somewhat more difficult (as you may have guess from the name...) because, as it does not initiate the
talk, it hasto listen to "events', and be as responsive as possible. Y ou've guessed, we'll use interrupts. I'll only cover
i2c hardware slave, that is using SSP peri pheral3. Implementing an i2c software slave may be very difficult (and |
even wonder if it's reasonable...).

There are different way implementing an i2c slave, but one seems to be quite common: defining afinite state
machine. Thisimplementation iswell described in Microchip AppNote AN734. It is highly recommended that you
read this appnote, and the i2c sections of your favorite PIC datasheet aswell (1 swear it's quite easy to read, and well
explained).

Basically, during an i2c communication, there can be 5 distinct states:

1. Master writes, and last byte was an address: to sum up, master wants to talk to a specific slave, identified by
the address, it wants to send data (write)

2. Master writes, and last byte was data: this time, master sends data to the slave

3. Master read, and last byte was an addr ess: almost the same as 1., but this time, master wants to read something
from the salve

4. Master read, and last byte was data: just the continuation of state 3., master has started to read data, and still
wants to read more data

5. Master sendsa NACK: basically, master doesn't want to talk to the slave anymore, it hangs up...

Note: inthei2c protocol, one slave has actually two distinct addresses. One is for read operations, and it
llI_|_LI | endswith bit 1. Another is for write operations, and it ends with bit O.

l}

Example: consider the following address (8-bits long, last bit is for operation type)
0x5C => 0Ob_0101 1100 => wite operation

The same address for read operation will be:

0x93 => 0Ob_0101 1101 => read operation

Note: jallib currently supportsup to 128 devices on ai2c bus, using 7-bits long addresses (without the
“I_l, ”JJ 8th R/W bits). There's currently no support for 10-bits addresses, which would give 1024 devices on the
same bus. If you need it, please let us know, we'll modify libraries as needed !

OK, enough for now. Next time, we'll see how two PICs must be connected for i2c communication, and we'll check
thei2c busisfully working, before diving into the implementation.

3 some PICs have MSSP, this means they can also be used as i2¢ hardware Master

http://en.wikipedia.org/wiki/I2c
http://www.google.com/search?q=i2c
http://www.esacademy.com/faq/i2c/index.htm
http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Finite_state_machine
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011798

52 | Jdlib Tutorials | PIC internals

Setting up and checking an I2C bus (part 2)

Sébastien Lelong
Jallib Group

In Building an 12C slave, some theory (part 1), we saw a basic overview of how to implement an i2c slave, using a
finite state machine implementation. This time, we're going to get our hands alittle dirty, and starts connecting our
master/slave together.

Checking the hardware and the i2c bus...

First of al, i2c is quite hard to debug, especially if you don't own an oscilloscope (like me). So you have to be
accurate and rigorous. That's why, in this second part of thistutorial, we're going to setup the hardware, and just make
surethe i2c busis properly operational.

Connecting two PIC together through i2c is quite easy from a hardware point of view. Just connect SDA and SCL
together, and don't forget pull-upsresistors. There are many differents values for these resistors, depending on how
long the busis, or the speed you want to reach. Most people use 2.2K resistors, so let's do the same ! The following
schematicsis here to help:

=
:

Decoupling caps
near microcontroller

i
T

H‘?*WTTM

In this circuit, both PIC have a LED connected, which will help us understand what's going on. On a breadboard, this
looks like that:

Jallib Tutorias | PIC internals | 53

The master is on the right side, the slave on the left. I've put the two pull-ups resistors near the master:

54 | Jallib Tutorials | PIC internals

Green and orange wires connect the two PICs together through SDA and SCL lines:

The goa of thistest issimple: check if thei2c busis properly built and operational. How ? PIC 16F88 and its SSP
peripheral is able to be configured so it triggers an interrupts when a Start or Stop signal is detected. Read this page
(part of an nice article on i2c, from previous tutorial's recommandations).

How are we gonnatest this ? The idea of thistest issimple:

1. On power, master will blink aLED alittle, just to inform you it'saive

2. Onthe sametime, slave is doing the same

3. Once master has done blinking, it sends ai2c frame through the bus

4. If thebusis properly built and configured, slave will infinitely blink its LED, at high speed

Note master will send itsi2c frame to a specific address, which don't necessarily need to be the same as the slave one
(and | recommand to use different addresses, just to make sure you understand what's going on).

What about the sources ? Download last jallib pack, and check the following files (either inl i b or sanpl e
directories):

e i2c_ hw_davejal: maini2c library
« 16f88 i2c_sw _master_check busjal: code for master
» 16f88_i2c_hw_slave check busjal: code for dave

The main part of the slave code is the way theinitialization is done. A constant is declared, telling the library to
enable Start/Stop interrupts.

const SLAVE ADDRESS = 0x23 -- whatever, it's not inportant, and can be
-- different fromthe address the nmaster wants
-- to talk to

-- with Start/Stop interrupts

const bit i2c_enable start_stop interrupts = true

-- this init automatically sets gl obal/peripherals interrupts

i 2c_hw_sl ave_i ni t (SLAVE_ADDRESS)

http://www.esacademy.com/faq/i2c/busevents/i2cstast.htm
http://code.google.com/p/jallib/downloads/list
http://jallib.googlecode.com/svn/trunk/include/peripheral/i2c/i2c_hw_slave.jal
http://jallib.googlecode.com/svn/trunk/sample/16f88_i2c_sw_master_check_bus.jal
http://jallib.googlecode.com/svn/trunk/sample/16f88_i2c_hw_slave_check_bus.jal

And, of course, the Interrupt Service Routine (ISR):

procedure i2c_isr() is

pragma i nterrupt

if ! PIRL_SSPIF then
return

end if

-- reset flag

PIRL_SSPIF = fal se

-- tnp store SSPSTAT

var byte tnpstat

tnmpstat = SSPSTAT

-- check start signals

if (tnpstat == 0b_1000) then

Jallib Tutorials | PIC internals | 55

-- If we get there, this means this is an SSP/|12C interrupts

-- and this nmeans i2c bus is properly operational

while true | oop
led = on
_usec_del ay(100000)
led = of f
_usec_del ay(100000)
end | oop
end if

end procedure

The important thing isto:

check if interrupt is currently a SSPinterrupts (12C)

reset the interrupt flag,
analyze SSPSTAT to seeif Start bit is detected
if so, blinks 'til the end of time (or your battery)

Now, go compile both samples, and program two PICs with them. With a correct i2c bus setting, you should see the
following:

http: //mww.youtube.com/watch?v=Nal AKRhFP-s

On this next video, I've removed the pull-ups resistors, and it doesn't work anymore (slave doesn't high speed blink its
LED).

http://mww.youtube.com/watch?v=cNK_cCgWectY

Next time (and last time on this topic), we'll see how to implement the state machine using jallib, defining callback
for each states.

http://www.youtube.com/watch?v=NalAkRhFP-s
http://www.youtube.com/watch?v=cNK_cCgWctY

56 | Jallib Tutorials | PIC internals

Implementing an 12C slave with jallib (part 3)

Sébastien Lelong
Jallib Group

In previous parts of thistutorial, we've seen alittle of theory, we've also seen how to check if thei2c busis
operational, now the time has come to finally build our i2c slave. But what will slave will do ? For this example, dave
is going to do something amazing: it'll echo received chars. Oh, I'm thinking about something more exciting: it will
"amost" echo chars:

e ifyousend"a', it sends"b"
e if yousend"b", it sends"c"
« ifyousend"z", it sends"{"*

Building the i2c master

Let's start with the easy part. What will master do ? Just collect characters from a serial link, and convert them to i2c
commands. So you'll need a PIC to which you can send datavia serial. | mean you'll need a board with serial com.
capabilities. | mean we won't do this on a breadboard... There are plenty out there on the Internet, pick your choice.

If you're interested, you can find one on my SrBot site: dedicated to 16f88, serial com. available, and i2c ready (pull-
upsresistors).

It looks like this:

http://sirbot.org/sirbot-modules/main_board/
http://sirbot.org/

Jallib Tutorials | PIC internals | 57

Two connectors are used for earch port, PORTA and PORTB, to plug daughter boards, or a breadboard in our case.

Thei2c initialization part is quite straight forward. SCL and SDA pins are declared, we'll use a standard speed,
400K Hz:

-- 12Cio definition

var volatile bit i2c_scl is pin_b4

var volatile bit i2c_scl _direction is pin_b4 direction
var volatile bit i2c_sda is pin_bl

var volatile bit i2c_sda direction is pin_bl direction
-- 12c setup

const word _i2c_bus_speed = 4 ; 400kHz

const bit _i2c_level = true ; 12c levels (not SMB)

i ncl ude i2c_software
i2c_initialize()

Well aso usethelevel 1i2clibrary. The principle is easy: you declare two buffers, one for receiving and one for
sending bytes, and then you call procedure specifying how many bytes you want to send, and how many are expected
to be returned. Joep has written a nice post about this, if you want to read more about this. We'll send one byte at a
time, and receive one byte at atime, so buffers should be one byte long.

const single byte tx buffer = 1 -- only needed when length is 1
var byte i2c_tx_buffer[1]

var byte i2c_rx_buffer[1]

i nclude i2c_levell

What's next ? Well, master also has to read chars from a seria line. Again, easy:

const usart_hw serial = true
const serial hw baudrate = 57_600
i ncl ude serial _hardware

serial _hw_init()

-- Tell the world we're ready !
serial_hw wite("!'")

http://jallib.blogspot.com/2008/12/i2c-master.html

58 | Jallib Tutorials | PIC internals

So when the master is up, it should at least send the "!" char.

Then we need to specify the slave's address. Thisis a 8-bits long address, the 8th bits being the bit specifying if
operation isaread or write one (see Building an 12C slave, some theory (part 1) for more). We then need to collect
those chars coming from the PC and sends them to the slave.

The following should do the trick (believe me, it does :))

var byte icaddress = 0x5C -- sl ave address

forever | oop
if serial _hw read(pc_char)
t hen
serial_hw wite(pc_char) -- echo
-- transnit to slave
-- we want to send 1 byte, and receive 1 fromthe sl ave
i 2c_tx_buffer[0] = pc_char
var bit _trash = i2c_send receive(icaddress, 1, 1)
-- receive buffer should contain our result
ic_char = i2c_rx_buffer[0]
serial _hw wite(ic_char)
end if
end | oop

The whole program is available on jallib SVN repository here.

Building the i2c slave

So thisisthe main part ! As exposed on Building an 12C slave, some theory (part 1), we're going to implement afinite
state machine. jallib comes with alibrary where al the logic is already coded, in alSR. You just have to define what
to do for each state encountered during the program execution. To do this, we'll have to define several callbacks, that
is procedures that will be called on appropriate state.

Before this, we need to setup and initialize our dave. i2c address should exactly be the same as the one defined in
the master section. Thistime, we won't use interrrupts on Start/Stop signals; wel'll just let the SSP module triggers an
interrupts when the i2c address is recognized (ho interrupts means address issue, or hardware problems, or...). Finally,
since dave is expected to receive a char, and send char + 1, we need a global variable to store the results. This gives:

i nclude i 2c_hw sl ave

const byte SLAVE ADDRESS = 0x5C
i 2c_hw_sl ave_i ni t (SLAVE_ADDRESS)

-- will store what to send back to naster

-- soif we get "a", we need to store "a" + 1
var byte data

Before this, let's try to understand how master will talk to the slave (italic) and what the slave should do (underlined),
according to each state (with code following):

« dtate 1: master initiates a write operation (but does not send data yet). Since no datais sent, slave should just do...
nothing (slave just knows someone wants to send data).

procedure i2c_hw slave on_state 1(byte in _trash) is
pragme inline
-- _trash is read frommaster, but it's a dummy data
-- usually (always ?) ignored

end procedure

« dtate 2: master actually sends data, that is one character. Slave should get this char, and processit (char + 1) for
further sending.

procedure i2c_hw slave _on_state 2(byte in rcv) is
pragnme inline
-- ultimate data processing... :)
data =rcv + 1

http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_sw_master_echo.jal

Jallib Tutorials | PIC internals | 59

end procedure
- dtate 3: master initiates a read operation, it wants to get the echo back. Slave should send its processed char.

procedure i2c_hw slave on_state 3() is
pragma inline
i 2c_hw sl ave wite_i2c(data)
end procedure
+ state4: master still wants to read some information. This should never occur, since one char is sent and read at a
time. Slave should thus produce an error.

procedure i2c_hw slave on_state 4() is
pragma inline
-- This shouldn't occur in our i2c echo exanple
i 2c_hw sl ave_on_error()

end procedure

« state 5: master hangs up the connection. Slave should reset its state.

procedure i2c_hw slave on_state 5() is
pragma inline
data = 0

end procedure

Finally, we need to define a callback in case of error. Y ou could do anything, like resetting the PIC, and sending log/
debug data, etc... In our example, well blink forever:
procedure i2c_hw slave on_error() is
pragma inline
-- Just tell user user sonething's got wong
forever | oop
led = on
_usec_del ay(200000)
led = of f
_usec_del ay(200000)
end | oop
end procedure

Once callbacks are defined, we can include the famous ISR library.
i nclude i2c_hw_sl ave_i sr
So the sequenceis:

1. includei2c_hw_slave, and setup your slave
2. defineyour callbacks,
3. includethe ISR

Thefull codeisavailable from jallib's SVN repository:

e i2c_hw_dlavejal

e i2c_ hw_dave isrjal

» 16f88 i2c_sw_master_echo.jal
e 16f88 i2c_hw_slave echo.jal

All those files and other dependencies are also available in last jallib-pack (seejallib downloads)

Connecting and testing the whole thing...

Aspreviously said, the board | useis ready to be used with a seria link. It's also i2c ready, I've put the two pull-ups
resistors. If your board doesn't have those resistors, you'll have to add them on the breadboard, or it won't work (read
Setting up and checking an 12C bus (part 2) to know and see why....).

| use a connector adapted with a PCB to connect my main board with my breadboard. Connector's wires provide
power supply, 5V-regulated, so no other powered wires it required.

http://code.google.com/p/jallib/source/browse/trunk/include/peripheral/i2c/i2c_hw_slave.jal
http://code.google.com/p/jallib/source/browse/trunk/include/peripheral/i2c/i2c_hw_slave_isr.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_sw_master_echo.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_i2c_hw_slave_echo.jal
http://code.google.com/p/jallib/downloads/list

60 | Jallib Tutorias | PIC internals

72

Connector, with power wires

/

N

,....“
kN
., Ay

’

)

_..__-
»

.__--.

e

Everything isready...

Jallib Tutorials | PIC internals | 61

Crime scene: main board, breadboard and battery pack

Once connected, power the whole and use aterminal to test it. When pressing "a", you'll get a"a" as an echo from the
master, then "b" as result from the dlave.

sirlLoon@storm
sirloon@storm cu -1 fdev/ttyUSE® -s 57600

Connected.
abbccddeefxyyzz{0112233445

What now ?

We've seen how to implement asimple i2c hardware slave. The ISR library provides all the logic about the finite state
machine. You just have to define callbacks, according to your need.

i2c isawidely used protocol. Most of the time, you accessi2c devices, acting as a master. We've seen how to be

on the other side, on the slave side. Being on the slave side means you can build modular boards, accessible with a
standard protocol. For instance, I've built aDC motor controller daughter board using this. It's amodule, a unit on its
own, just plug, and send/receive data, with just two wires.

http://sirbot.org/sirbot-modules/dc-motor-controller-board

62 | Jallib Tutorids | PIC internals

SPI Introduction

Matthew Schinkel
Jallib Group

Introduction to SPI - Seria Periphera interface

What is SPI?

SPI isaprotocol issimply away to send datafrom device to devicein aserial fashion (bit by bit). This protocol is
used for things like SD memory cards, MP3 decoders, memory devices and other high speed applications.

We can compare SPI to other data transfer protocols:
Table 1: Protocol Comparison Chart

SPI RS-232 12C
PINS 3+ 1 per device 2 2
Number Of Devices unlimited 2 1024
Bitsin one data byte 8 10 (8 bytes + 1 start 9 (8 bytes + 1 ack
transfer bit + 1 stop hit) bit)
Must send one No No Yes
device address byte
before transmission
Clock Type Master clock only Both device clocks Master Clock that
must match dlave can influence
Data can transfer Yes Yes No
in two directions at
the same time (full-
duplex)

Asyou can see SPI sends the least bit's per data byte transfer byte and does not need to send a device address before
transmission. This makes SPI the fastest out of the three we compared.

Although SPI alows "unlimited" devices, and 12C allows for 1024 devices, the number of devices that can be
connected to each of these protocol's are still limited by your hardware setup. This tutorial does not go into detail
about connecting alarge number of devices on the same bus. When connecting more devices, unrevealed problems

How does SPI work?

Firstly, SPI worksin a master/slave setup. The master is the one that sends the clock pulses. At each pulse, data will
be sent and received.

SPI has a chip select pin. Every device will share the"SDI", "SDO" and "Clock" pins, but each device will haveit's
own chip select pin (also known as dave select). This means we can have avirtually unlimited number of devices
on the same SPI bus. Y ou should also note that the chip select pin can be active high or active low depending on the
device.

For some devices, the chip select pin must stay enabled throughout the transmission, and others require achangein
the chip select line before the next transmission.

SPI is Dual-Duplex. This means data can be sent and received at the same time. If you wish to send data and not
receive any, the PIC will receive data anyways. Y ou may ignore the return byte.

Here's a diagram showing the way in which SPI sends & receives data:

Jallib Tutorials | PIC internals | 63

Serial Dataln | f ©7 ¥ o0s ¥ ps ¥ oa ¥ ps ¥ 02 ¥ o1 ¥ 0o)

Serial Data Out 07 x D& }(Ds < D4 ;{ D3 X sz D }{ Do }\

Clock L] LJ i N i AN
ChipS&h&i, L

Samle Edge Data Change lock Polarity

SPI Modes

If you are using a device that does not yet have a Jallib library, you will need to get the devices SPI mode. Some
device datasheets tell you the SPI mode, and some don't. Y our device should tell you the clock idle state and sample
edge, with thisinformation, you can find the SPI mode. SPI devices can be set to run in 4 different modes depending
on the clock'sidle state polarity & data samplerising or falling edge.

Theimage aboveis SPI mode 1,1. See if you can understand why.

Clock Polarity (CKP) - Determinesif the clock is normally high or normally low during it'sidle state.
If CKP=1-the clock line will be high during idle.

If CKP =0 - the clock will be low during idle.

Data Clock Edge (CKE) - The edge that the datais sampled on (rising edge or falling edge)

If CKP=0, CKE =0- Dataisread on the clocks rising edge (idle to active clock state)

If CKP=0, CKE =1- Dataisread on the clocks falling edge (active to idle clock state)

If CKP =1, CKE =0 - Dataisread on the clocks falling edge (idle to active clock state)

If CKP=1, CKE=1- Dataisread on the clocks rising edge (active to idle clock state)

We can put thisin a chart to name the modes:

Table 2: SPI MODE NAMES

MODE NAME CKP CKE
0,0 0 1
01 0 0
1,0 1 1
11 1 0

Note: | noticed the mode numbers & mode table on Wikipediais different then the table in the Microchip
"l_l}f'] PDF. | am going by the Microchip PDF, as well as the tested and working PIC Jallib library + samples.
Wikipedia also names these registers CPOL/CPHA instead of CK P/CKE.

64 | Jalib Tutorias | PIC internals

Using The Jallib Library

At the moment, thereis only a SPI master hardware library, therefore any device you wish to control must be
connected to the PIC's SDI, SDO, SCK pins. The chip select pin can be any digital output pin.

The library requires you to set the pin directions of the SDI, SDO, SCK lines as follows:

-- setup SPI

i ncl ude spi _master_hw -- first include the library
-- define SPI inputs/outputs

pi n_sdi _direction = input -- spi data input

pi n_sdo_direction = output -- spi data output

pi n_sck_direction = output -- spi data clock

Y ou only need to set the pin direction of the chip select pin, the PIC will set the direction of the SDI, SDO & SCK for
you. You will Aliasthis chip select pin as required by the device'sjalib library.

If you are using more then one device in your circuit, you will need to declare your chip select pin near the beginning
of your program. If you do not do this at the beginning of your program, some of your devices may receive data
because their chip select pin could be enabled during init procedures of other devices on the SPI bus.

-- choose your SPI chip select pin
-- pin_SSis the PIC s slave select (or chip select) pin.

ALl AS devi ce_chi p_sel ect _direction is pin_SS direction

ALl AS devi ce_chi p_sel ect is pin_SS

devi ce_chi p_sel ect _direction = out put -- chip select/slave select pin
devi ce_chip_select = | ow -- disable the device

Now the last step in setting up the SPI library isto use the init procedure.

Use the SPI mode name chart to get your SPI mode. The modes can be any of the following:
SPI_MODE_00

SPI_MODE_01

SPI_MODE_10

SPI_MODE_11

Y ou will also need to set the spi bus speed. Hereisalist of the speeds you may choose from:
SPI_RATE_FOSC 4 -- oscillator / 4

SPI_RATE_FOSC_16 -- oscillator / 16

SPI_RATE_FOSC_64 -- oscillator / 64

SPI_RATE_TMR -- PIC'sinternal timer

Y ou will use the following init procedure with your custom val ues entered:

spi _init(SPI_MODE 11, SPI _RATE FOSC 16) -- choose spi node and speed

Now your ready to use the procedures to send and receive data. First you must enable the device with the chip select
line:

devi ce_chip_select = high -- enable the device
Y ou can use the pseudo variable spi_master _hw to send and receive data as follows:

-- send decimal 50 to spi bus
spi _master _hw = 50

Or receive datalike this;

-- receive data fromthe spi port into byte x
var byte x
X = spi_nmaster_hw

Jallib Tutorias | PIC internals | 65

Y ou can aso send and receive data at the same time with the spi_master_hw_exchange procedure. here's an example:

-- send decimal byte 50 and receive data into byte x
var byte x
X = spi _master _hw _exchange (50)

When your done transmitting & receiving data, don't forget to disable your device
device_chip_select = low -- enable the device

Alright, now you should be able to implement SPI into any of your own devices. If you need assistance, contact us at
the Jallist Support Group or at Jallib Group.

References

The Jallib spi_master _hw library - Written by William Welch

Microchip Technology SPI Overview - http://wwZ1.microchip.conm/downl oads/en/devicedoc/spi.pdf
Wikipedia - http://en.wikipedia.org/wiki/Serial_Peripheral_Interface Bus

http://tech.groups.yahoo.com/group/jallist/
http://groups.google.com/group/jallib/topics?gvc=2
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

66 | Jallib Tutorials | PIC internals

Chapter

3

Experimenting external parts

Topics:

SD Memory Cards
Hard Disks - IDE/PATA
Interfacing a Sharp
GP2D02 IR ranger
Interfacing a HD44780-
compatible LCD display

Memory with 23k256
sram

Y ou now have learned enough and can start to interface your PIC with externals parts.
Without being exhaustive, this chapter explains how to use a PIC with several widely used
parts, like LCD screen.

68 | Jallib Tutorias | Experimenting external parts

SD Memory Cards

Matthew Schinkel
Jallib Group

In thistutorial we will learn how to use an SD Card for mass data storage.

SD Card Introduction

SD Cards (Secure Digital Cards) are quite popular these days for things like digital camera’s, video camera's, mp3
players and mobile phones. Now you will have one in your project! The main advantages are: small size, large data
storage capability, speed, cost. It has flash storage that does not require power to hold data. The current version of the
sd card library that we will be using in this tutorial works with "standard capacity” sd cards up 4gb in size. | hopeto
find time to add "high capacity” and "extended capacity” capability to the library.

SD Card have 2 data transfer types "SD Bus' and "SPI Bus'. Most PIC's have an SPI port. The"SD Bus" isfaster,
however uses more pins. We will be using SPI in our circuit. For more info on SPI read the tutorial in this book: SPI
Introduction. The SPI mode for SD Cardsis1,1.

We are not responsible for your dataor SD card. Make sure you have nothing important on your SD card before you
continue.

w |
IT:I S5 [chip selet)
w[_]|5lI
SD CARD o[|GND
PINOUT -
a1 |GND

~[1|50
L m—

These SD Cards are 3.3v devices, therefore a 5v to 3v conversion is needed between the PIC and the sd card. We
will use resistors to do the conversion, however there are many other methods. See http: //www.microchip.com/3v/ for
more information. Another setup may be needed if you are putting more devices on the same SPI bus.

Thiscircuit will use 16F877 If you are using adifferent PIC for your project, refer to the PIC's datasheet for pin
output levelsivoltage. For example, 18F452 has many pins that are 5v-input that give 3v-output. These pins show
as"TTL / ST" - TTL compatible with CMOS level outputs in the datasheet and they will not require any voltage
conversion resistors. If you are not sure, set a pin as an output, and make it go high then test with avolt meter.

Build a SD Card Slot

Before we can build our circuit, we will need to find ourselves an sd card slot that can plug into our breadboard. Y ou
can find pre-made sd card slots on ebay and other places around the net. It is quite easy to make your own anyways. |
took one out of a broken digital camera and placed it on some blank breadboard and soldered on some pins. Here are
some images of my sd card holder:

http://www.microchip.com/3v/

Jallib Tutorials | Experimenting external parts | 69

Build the circuit

Follow this schematic for 16f877, if you are using another PIC, check the pin-outs for the SPI bus. The pin-outs of
your pic will show SDI, SDO, SCL and SS. The pin SSisthe chip select pin, you can use any pin for it but the others
must match.

70| Jalib Tutorias | Experimenting external parts

S0 Card - EF1Bus

1k
=
SWITCH1
T 1 40 | A i | ~f | F| b o ~
ACLRAP P RB7/PGD B——o g
2— [RAD/AND RBB/P G <
2 Beavam res § 38
S S BenzianzimEr- rea B 5
5 Beaznmers L] R
E— [RASTOCHK] RB2 g5
i IANAISS RB1 £k it
2 Reeomoons reaanT B35 5y S
Lol 2 Beeinmens oo B 32 ~
+ 45" %Rszmsmm S vEs :; 7y
DD RD7/PSPT B—— 23K
- 2 5 RDE/PSPE ﬂ g 23K
DM /;LGND 12 Boccacimn rosrses 8 2 g g
15 BosczcimouT Roarsead B s -
25 Recomiozomick rerminT B 28 § FT i
s 2 L [RCU/T10SKCCP2 RCE/TXICK 25 l e
— 7 ecoscce Resison §22 N J
sl 18 FSCRISOL Roaspisos B 22
D A2 Revareseo roarses 2
20 Renursed rozrsez B 5L
Serial Port
R i
TXx] 2
gy
Ferf— b
anp|—F
woD £
DD
— EHD
S

Jallib Tutorials | Experimenting external parts| 71

Compile and write the software to your PIC

With the use of the sd card lib (sd_card.jal) and a samplefile 16f877_sd_card.jal, we can easily put onein our own
circuit for mass data storage! Y ou will find these filesin thelib & sample directories of your jallib installation.

The most up to date version of the sample & library can be found at:
Samplefile - http://jallib.googlecode.convsvn/trunk/sample/16f877_sd_card.jal
Library file - http://jallib.googlecode.com/svn/trunk/include/external/storage/sd_card/sd_card.jal

Now that our circuit is built, lets test it and make sure it works before we continue with more details. Compile and
program your pic with 16f877_sd_card.jal from your jallib samples directory. If you are using another pic, change the
"include 16f877" line in 16f877_sd_card.jal to specify your PIC before compiling.

Now that you have compiled it, burn the .hex file to your PIC

Power It Up

Plug your circuit into your PC for serial port communication at 38400 baud rate. Now turn it on. Press the reset button
in your circuit, you should get aresult similar to this:

ASCII output

Rf:aIanm Serial Capture F'fngfam 2.0, D 51

i) HHH!
T : FEFF
FElF E'-II;FHII"ET*“[*#T (FH A F R F¥ Epmf A0 ¥
gk a kT 5 B 3 NTLDR
Hemowe dizkzs or other media.fF
Dizk errorff

I:n rEztart
. LRl R R el AL R L R e L L L AL AL
"r"l_'"'_'"'_'"r"l_'"r"r"r"r"r"r"!_'"r"!_'l EVE R PE PR R pRpang A
£

B R PR R B R B P PR

r
PR PR ARpARpAREARD ARG ARE SRR AR ARRARE ARR ARpARE SR ARRARPARE AR AR AREARRARR A e
Rp AR ARE AR ARE AR ARE AR AR AR ARE AR AR AR AR AR AR ARE PR AR E R E AR EAREARE AR AR A8
Rp PR AREARE ARpARE ARE SRR AR ARE AR ARE ARR AR SRR AR AR ARR ARE AR R AR R ARE AR ARE ARR AR A8
R ARE SRR AREARDARE ARp SRR SRR ARE AR ARE AR AR AR AR EARE AR ARE AR AR E AR AREARRARE SRR AR
RERp AR ARpARE AR ARp SRR ARR AR ARE AR ARR SRR ARR AR AR ARpARR AR R AR pAREARRARp dRp A8 R A8
AREARE AREAREARE AR ARE SRR AR AREARE AR SRR ARpARR ARpARRARpARE AR AR AR AR Ed I‘T'J"
AP ARE SRR AREARp AR AR AR AR MR ARE AR ARR SRR AR IREAREAREAFR AR AR EAREAREARE R IR NS
RERE AREAREARE AR ARp AR SRR ARE AR ARE AR SRR AR AR AREARE ARE AR AREAREAREARE ARG AR A8

L R R R O P R R
i M R R T PR T PR T
F} B3 FL AL O P PR B Oy
£} B BF) FF) PRy PR BF BFL B
R R R B R R R
R R B B R B R 6
= B B RR B R R A
B B B B R R B R R
= R R e

Display | Pait | Captune | Pins | Send | EchoPert| 120 | 1202 | 12CMise | Mise | An| Clear| Freeze| |
Diizphay de o | [HafDuplex Birary Symc Chaz ; Skahuz

£ dzcd [™ reesilire mode |4BCD = bl | Dizgonnect
i - Dala | & Heme

T Hedzace] Irrest Drata | <] »om _AFRADE]
Hau3+ deci | @ " ASCH I THD @)
B ,“,EJ Dvata Frames | 7| BMD | T Humber _ICTS3)
" Hex Bytes {2 = _lBED

I int1E e | - -

£ Uit [~ Snde Guip | | o Change | LosdingSume _IDSA 6l
(Asep —L Ring [4]
" Binary Aows '_Euls N _|BREAK
- E‘lﬂjtﬂﬁ Tcln‘m"lel |cIZI & |30 = T Scralback Wik

o Can use Ackive aufomsation o controd me! Char Count: 3072 CF5:0 Port: 4 35400 3NL None

Hex output

http://jallib.googlecode.com/svn/trunk/sample/16f877_sd_card.jal
http://jallib.googlecode.com/svn/trunk/include/external/storage/sd_card/sd_card.jal

72 | Jalib Tutorias | Experimenting external parts

AR

HA

HA

2]

AR

AR

HA

A1

A

KA

| Capluie | Pins | Serd | EchoPet | 120 | 122 | 12CMic | Miss |
Qi&pta;-flﬁ o | [HafDuplex Binary Symc Chaz z Skahuz
E. ﬁﬁ‘ir ; ™ rewviline mode |ﬂEED j Dala ﬁn:{u _ | Dhsconnec
@ Hedsoace] | | IrvestData | =] w8 |~ o L REE
(" Hashics " asci im0
e :',I.?-_gl Draka Frames | w| BND | 7 Mumber _NETS 8
. Hex Buvies 12 3] _lpcoim
€ Ll [Snde _Gu | | o Lhange | Lesdingsine _IDSA 6]
" Agei I Ring [3]
" Hinany Hows Cols _ | BREAK
ok TeminalFont| [20 2] |72 3 1 Scrolback By
Vol Cany Use Ackivel aunonmation bo controd met Char Count: 3072 CPs0 Poet) 4 38400 SML Mone

Asyou can see from the first image, we got some actual readable data off the sd card as well as abunch of junk. The
sample file reads the first sector (512 bytes) from the sd card. My sd card is formated with fat32, thisiswhy | can
read some of the data output.

In the second image (after clearing the output and resetting the circuit), there was too much datato show it all. It
only shows the last bytes received. If you get the same hex output "66 22" followed by many "00", your circuit has
successfully written data and read it back again. Y ou now have aworking sd card circuit!

Understand and modify the code

I'm just going to quickly go over some of the key points you need to know about sd cards. Open the sample file with
an editor if you have not done so already.

The code in the sample file may change, therefore it may be different then what you see here. The samplefile you
have downloaded will always be tested and correct.

Include the chip

Specify the PIC you wish to use as well as your clock frequency
i ncl ude 16f877

pragma target OSC HS -- HS crystal or resonator
pragma target clock 20_000_000 -- oscillator frequency

pragma target WDT disabl ed
pragma target LVP disabl ed

Disable Analog Pins

enable_digital _io() -- disable all analog pins if any

Jallib Tutorials | Experimenting external parts| 73

Include other librariesrequired

-- include the delay library
i ncl ude del ay

Setup serial communication and port speed

-- setup uart for conmunication

const serial_hw baudrate = 38400 -- set the baudrate
i ncl ude serial hardware

serial _hw_init()

SPI Settings

Here you may change the chip select pin "pin_SS' and "pin_SS direction” to another pin. SDI, SDO and SCK must
stay the same for the SPI hardware library.

Y ou may notice that we are not defining/aliasing pins sdi, sdo and sck. We do not need to define them with aline
like"alias pin_sdois pin_c5" becase they are set within the PIC and cannot be changed. If we use the SPI hardware
library, we must use the spi hardware pins. We only need to define there direction like this"pin_sdo_direction =
output”.

Y ou may also choose the SPI rate. According to the SPI hardware library, you can use SPI_RATE_FOSC 4
SPI_RATE_FOSC 16, SPI_RATE FOSC 64 or SPl_RATE_TMR. The fastest is FOSC_4 (oscillator frequency / 4).
Y ou may require a breadboard for the fastest speed, keep your SD Card as close to the PIC as possible.

-- setup spi
i ncl ude spi _nmaster_hw -- includes the spi library
-- define spi inputs/outputs

pin_sdi _direction = input -- spi input
pi n_sdo_direction = output -- spi out put
pi n_sck_direction = output -- spi clock

-- spi chip select pin
ALl AS sd_chi p_sel ect _direction is pin_SS direction

ALl AS sd_chi p_sel ect is pin_SS
sd_chi p_sel ect _direction = output -- chip select/slave select pin
sd_chi p_sel ect = high -- disable the sd card

spi _init(SPI _MODE 11, SPI _RATE FOSC 16) -- choose spi node and speed
Includethe SD card library
Select sd card settings & Include the library file, then initalize the sd card.

Some sd cards may require a 10ms delay every time you stop writing to the sd card, you can choose weater
or not to have this delay. If you are doing many small writes and are worried about speed, you may set
SD_DELAY_AFTER WRITE to "FALSE".

-- setup sd card library

const bit SD DELAY_AFTER WRI TE = TRUE

include sd _card -- include sd card library

sd_init() -- initalize the sd card

Read thefirst sector from the SD card

Reading is easy, there are 3 procedures within the library that MUST be used.
sd_start_read(0) - start reading at specified sector (sector 0)
sd_read_data(bytel, byte?) - actually read data from the card (2 bytes at atime)
sd_stop_read() - stop the read process

You can aso usethe sd_read pulse(number) procedure to skip past data. For every 1 value added, there will be 2
bytes skipped since this procedure simply reads data and ignores the input.

74| Jalib Tutorias | Experimenting external parts

If you have more then one SPI device on the SPI bus, do not interrupt or switch devices until the complete read
process has finished with sd_stop_read, do not allow the chip select pin to go high.

_usec_del ay(100_000) -- wait for power to settle
var byte | ow byte, high_byte -- vars for sending and recieving data
-- read the boot sector (sector 0)
sd_start_read(0) -- get sd card ready for read at sector
0
for 256 | oop -- read 1 sector (256 words)
sd read _data (low byte, high byte) -- read 2 bytes of data
serial_hw wite (low byte) -- send byte via serial port
serial_hw wite (high byte) -- send byte via serial port
end | oop
sd_stop_read() -- tell sd card you are done reading

Write some data to your sd card

Writing is also easy, there are 3 procedures within the library that MUST be used.
sd_start_write(20) - start writing at specified sector (sector 20)
sd_read_data(bytel, byte?) - write to the card (2 bytes at atime)
sd_stop_write() - stop the read process

When writing to your SD card, you MUST write 512 bytes at atime. In this example, we are writing (256x2) = 512
bytes + (128x2) = 256 bytes for atotal of 768 bytes. This means we have written one sector (512 bytes), as well as
half of a sector (265 bytes). The half of a sector(256 bytes) that we have written, will not actually be written to the sd
card until we finish the sector with data.

For this reason, you will need to use the sd_write to_sector_end(value) procedure. This procedure will automatically
finish the sector for you with the "value" data specified. In our case we are writing 0x00 till the end of the 512 bytes
(end of the sector).

Just as we noted with reading data, you may not interrupt the SPI port until you have completed the write process
with the sd_stop_write procedure.

Please note that we are writing to sector 20

-- wite (0x66, 0x22) to sector 20 over and over.

| ow byte = 0x66 -- set low byte to wite
hi gh_byte = 0x22 -- set high byte to wite
sd_start_wite(20) -- get sd card ready for wite
for 256 + 128 | oop -- wite 1 sector + 1/2 sector
sd wite data(low byte, high byte) -- wite data to the card
end | oop
sd_ wite to_sector_end(0x00) -- 2nd sector is not done, so finish it
-- sectors nust be conpl eted during
wite
sd _stop_ wite() -- tell sd card you are done witing

Read back the data we have written

Now read 2 sectors (1024 bytes) from sector 20 (where we had previously written data). Y ou will get 512 + 256 bytes
of 0x66 & 0x22 as well as 256 bytes of 0x00's

-- read the data back, should get (0x66, 0x22) over and over.

sd_start_read(20) -- get sd card ready for read at sector
20
for 512 | oop -- read 2 sectors (512 words)

sd read data (low byte, high byte) -- read 2 bytes of data

serial _hw wite (low_ byte) -- send byte via serial port

Jallib Tutorials | Experimenting external parts| 75

serial _hw wite (high_byte) -- send byte via serial port
end | oop
sd_stop_read() -- tell sd card you are done reading

Now you can put whatever you want on your SD card, or possibly read lost data off of it.

If you want to read files stored on the card by your PC, there wil soon be a FAT32 library and tutorial so you can
easily browse, read and write to files and folders stored on your card.

What are you waiting for, go build something cool!

Sources

The Jallib SD Card Library - Written by Matthew Schinkel

SanDisk Secure Digital Card - http://www.cs.ucr .edu/~amitra/sdcard/ProdManual SDCar dv1.9.pdf
How to use MM C/SDC - http://forums.parallax.com/forums/attach.aspx?a=32012

http://www.cs.ucr.edu/~amitra/sdcard/ProdManualSDCardv1.9.pdf
http://forums.parallax.com/forums/attach.aspx?a=32012

76 | Jalib Tutorias | Experimenting external parts

Hard Disks - IDE/PATA

Matthew Schinkel
Jallib Group

IDE Paralel ATA hard disk drive tutorial

Introduction to hard disks drives

If your are like me, you have too many old hard disks laying around. | have gathered quite a collection of drivesfrom
PC's | have had in the past. Now you can dust off your drives and put them in your circuit. | have extra drives ranging
in sizefrom 171MB to 120GB.

Before you start, make sure you use adrive you do not care about. We are not responsible for your drive of the data
that ison it.

Y ou can find more general info at http://en.wikipedia.org/wiki/Parallel_ATA, and you can find more detailed
technical info at http://www.gaby.de/gide/I DE-TCJ.txt

Drive Types - PATA vs SATA

There are two types of hard disks PATA (parallel ata) and SATA (serial ata). In thistutoria we will use PATA, these
drives use a40 pin IDE connector. The newer type of drive SATA hasonly 7 pins but thereisno Jallib library for
these drives at the moment. Both types of hard disks are available with massive amounts of data space.

http://en.wikipedia.org/wiki/Parallel_ATA
http://www.gaby.de/gide/IDE-TCJ.txt

Jallib Tutorials | Experimenting external parts| 77

Drive Data Size

The current jallib library will accept drives up to 128GB. The 128GB limit is due to and addressing limitation, this
isthe 28 bit addressing limitation.The max address you will be able to reach is hex OXFFFFFFF. If you multiply this
address by 512 bytes (1 sector) you get amax size of 137,438,952,960 bytes, yes this does equal 128GB. Eventually |
may upgrade the library for 48bit addressing which will allow up to amax drive size hex OxFFFFFFFFFFFF * 512 =
128P Petabytes. But now that | think about it, 128 GB should be enough!

Actual Size

The most common drive sizestoday are 3.5" and 2.5". The 3.5 inch drives are commonly used in desktop computers,
2.5" drives are used in laptops. The 2.5" drives are nice for your circuit because they do not require a 12v supply
voltage, and they use much less power.

If you wish to usea2.5" laptop hard drive, you may need a2.5" to 3.5" IDE adapter like this one;

COOerererry

78 | Jalib Tutorias | Experimenting external parts

Build a breadboard connector

Now, if your going to put one of these into your circuit, you'll need to plug the drive into your breadboard. | took a
40pin I DE connector off an old motherboard. The easiest way to get large components of aboard isto use a heat gun
on the bottom side of the board to melt the solder on all pins at once.

Now take this connector and stick it into some blank breadboard and add some pins. The blank breadboard | cut is 4
holes wide by 20 long. Put the connector in the middle and connect the pins on the outside, join each pin with each
pin of the connector.

Of course you will also need a40pin IDE cable, | like the ones with the notch so you don't plug it in backwards.
Here'sthe one | made:

TR

Circuit Power

It isvery important that you have enough power to drive your circuit. Hard drives need alot of ampsto run,
especialy the 3.5" drives, so make sure you have a decent 5v and 12v power supply. | suggest that you DO NOT use
your PC's power supply to drive your circuit. Y ou can easily short circuit your power supply and blow up your PC.

If you redlly insist on doing this, you better put afuse on both 5v and 12v between your PC and your circuit. Just
remember that | told you not to!

IDE Connector Pin-out
Pin 1 on the IDE cable isthe red stripe. Here the pin out for the male connector | took off a motherboard:

IDE Connector - Top View

PIN 1
PIN FUNCTION PIN FUNCTION
1 IRESET 2 GND
3 D7 4 D8
5 D6 6 D9
7 D5 8 D10

Jallib Tutorials | Experimenting external parts| 79

PIN FUNCTION PIN FUNCTION

9 D4 10 D11

11 D3 12 D12

13 D2 14 D13

15 D1 16 D14

17 DO 18 D15

19 GND 20 NO PIN

21 22 GND

23 /IOWR - READ Pin 24 GND

25 /IORD - Write Pin 26 GND

27 28 ALE - 1K resistor to
5v

29 30 GND

31 32

33 Al 34

35 A0 36 A2

37 /CS0 (to 5v) 38 /CS1 (to GND)

39 ACT - BUSY LED 40 GND

Build the circuit

Build the circuit below. Asyou can seeit is quite smple. Asyou can see, it only requires 3 resistors, aled and a
bunch of wire. Y ou can put areset button on the IDE connector if you like, but | have found no use for it so | connect
it direct to 5v.

80 | Jallib Tutorials | Experimenting external parts

1k0

Sv
GND

L

LED

Power Connector

Here's what the completed circuit should look like (don't turn on the power yet):

o
IDE Connector 16F87T /o ;\;x}:;,
1 BESET I 17 :2EE0 MCLE 1 o
T11s 24 ERL
#4 BLE i 13 5 EEE e s
I 17 46 BB Fad B—
29 ACT D4 g 7 EE4 — =
s 16EES e A
D6 g MBS pm oo
o7 4 40 pEY TEs 1of—
1k0 ECO 15—
0§ 4 13 Enn Bra Lif—
103 g ol mreti— Sariai Bort
&
o & SO erial Po
TlE 13 7 FD4 e 4
D1z 14 L FDS ECE i5 ™
IL4 75 L9EDE BCY iF B
015 13 H0EDT
v
WEITE ;2 17Ere T
FEXD 15 L6 Rrl i
5 ey l——
11} ga_l—_L WOCE 2E
L3l 27 — GHOL 1£
A% 3g 4 Eai GHDE 21—
AL 49 4 Ral
20 45 i RAD =
— &1 JOCHEDY gacyl:
—— 37 IOCHEDVE 03Cz 1d
— zg HOPIH
— {4 e, 20mhz
—]:1 IR0
— i Iole [1l
— 24 FDIAG | |
; GHOL ki sy
L 22f =42 = Z2pf
¢z WHD2
rq FHD4
¢p FHDS
2 FHDE
4 FHDT =

Jallib Tutorials | Experimenting external parts| 81

82 | Jallib Tutorials | Experimenting external parts

Compile and write the software to your PIC

The hard disk lib (pata_hard_disk.jal) and a sample file (16f877_pata_hard_disk.jal) will be needed for this project.
You will find these filesin the lib & sample directories of your jallib installation.

The most up to date version of the sample & library can be found at:
Samplefile - http://jallib.googlecode.convsvn/trunk/sample/16f877_pata_hard_disk.jal
Library file - http://jallib.googlecode.com/svn/trunk/include/exter nal/storage/har ddisk/pata_hard_disk.jal

Now letstest it and make sure it works. Compile and program your pic with 16f877_sd_card.jal from your jalib
samples directory. If you are using another pic, change the "include 16f877" linein 16f877_sd_card.jal to specify
your PIC before compiling.

Now that you have compiled it, burn the .hex file to your PIC with your programmer

Power It Up

Plug your circuit into your PC for serial port communication at 38400 baud rate. Now turn it on. It should do the
following in this order:

1. Drivewill power up with the led on, after power up the led will go off.

The led will blink once quickly and the drive will "spin down".

The led will turn on while the drive now "spins up"

The led will blink once quickly and the drive will "spin down" again.

The led will turn on while the drive now "spins up" again.

The led will turn on and off afew times and send some data to your PC's serial port.
The PIC now "spin down" the drive at the end of the program.

ASCI| output

RealTerm: Serial Capture Program 2.0.0. m@@

S e, FFFNSIIRE = Al P v o B] o B -
[

No ok wbd

hEpey ™ B4 FoipnlL] ReBzA Fyfr 0o o i B
(3 B F2FpBeRoPupm EFFDRBgay

i E:"i_l |:| ng::,‘
IARLAGLELG R T 0A 730 | BH=DTTA

i@

Display | Pait | Capture | Pins | Send | EchoPort| 126 | 1202 | 12CMisc | Mise | An| Clear| Freeze| |
Qiaptay!lﬁ o | [Half Duplex Binary Symc Chaz P Skahuz
e .-g-f“:' ' I~ i mods |ABCD | Data ﬁm' | Barnecled
" Hewsoace] | [Invet Data . one IR 2]
. Hen b foci | =] %R | asc _1THo)
= :',I.?:g; Draka Frames | w| AND | T Mumber LTS3
£ Hex Bytes |2 3 _lpcoim
:.II-E'|1I1EE [T Snge Gup | | o Lhange | [T Leadng Sy _ICSA (5]
& Asca — e)
7 Binary Fows Cols _|BREAK
ke TeminalEont| [20° 2] [80 2] ™ Scratback T Ewee
il Cany Uee ACHvel SUnomation o controd mel Char Count:51440 P30 Porti 4 35400 SNL None

Hex output

http://jallib.googlecode.com/svn/trunk/sample/16f877_pata_hard_disk.jal
http://jallib.googlecode.com/svn/trunk/include/external/storage/harddisk/pata_hard_disk.jal

Jallib Tutorials | Experimenting external parts | 83

5 RealTerm: Serial Capture Program 2.0.0057

G DD 1] []
i}
) D
D D
o D
o D
o D
D D
oD D
1] il
] D
) D
ji]
Ji]
I
i
Ji]
Ji]
'R
Display | Pt | Caplure | Pins | Send | EchoPoa | 126 | 1202 | 12CHisa | Mise | An| Clear| Freezn| |
Q?apta}-_.'-'l.ﬁ o | [Half Duplex Binary Symc Chaz P Skahuz
Colssi ™ rewline mode [48CD | o Bkt _ | Cornected
® Hewsooce] | | Invest Data : = b LR)
(. Horr o ! | 0B asey _IT*o)
B :f.:':g} Draka Frames | w| BND | 7 Mumber _NETS (3
" Hex Bvies (2 3 _lnco
€ nis [Snde _Gup | | o Change | Lesdngsine _IDSA (6]
i Azl — | Ring [4]
£ Binary Hows ~ Cols _ | BREAK
e Pﬁ':.tﬂﬁ Tclmirn:‘!E:rlll |EI:I =1 |72 :l [Scralback _ | Enios
Vioilh Cany se Activel 3Usonmation bo control met Char Count:5140 CPsi0 Poet: 4 38400 SML Mone

In the first image, If your disk isformatted with fat32 you may be able to see some readabl e data as well as some
junk. There is too much data for me to show it al in the image, on my drive formatted with fat32 | can read "Invalid
partition t ableError loading operating system..."

In the second image (after clearing the output and resetting the circuit), there was too much data to show it al again.
It only shows the last bytes received. If you get the same hex output "CC DD" followed by many "FF", your circuit
has successfully written data and read it back again. Y ou now have aworking hard disk circuit!

Understand and modify the code

I will go over some of the key points you need to know about hard disk coding. Open the sample file with an editor if
you have not done so already. The code in the sample file may change, therefore it may be different then what you see
here. The sample file you have downloaded will always be tested and correct.

Include the chip
Select the PIC you wish to use and your clock frequency

-- include chip
i ncl ude 16f877 -- target picnicro
;include 16f877a -- target picnmicro

-- this program assunmes a 20 mhz resonator or crysta

-- is connected to pins oscl and osc2.

pragma target osc hs -- hs crystal or resonator
pragma target clock 20 _000_000 -- oscillator frequency
pragma target wdt disabled

pragma target |vp disabled

84 | Jallib Tutorials | Experimenting external parts

Disable all analog pins
enable_digital _io() -- disable all analog pins if any
Includerequired libraries

i ncl ude del ay -- include the delay library

Setup serial port and choose baud rate 38400

-- setup uart for conmunication

const serial _hw baudrate = 38400 -- set the baudrate
i ncl ude serial _hardware

serial _hw init()

Setup the hard disk library constants/settings

The registers Alternate Status, Digital Output, and Drive Address registers will only be used by advanced users, so
keep the default PATA_HD_USE_CS0_CS1_PINS=FALSE

The pins /iowr, /iord, /cs0, /csl are active low pins that are supposed to require an inverter. If you leave
PATA_HD_NO_INVERTER = TRUE, the PIC will do the inversion for you. Y ou will most likely want to keep the
default "TRUE".

-- setup hard disk library

-- set true if you will use Alternate Status,
-- Digital Qutput or Drive Address registers
const byte PATA HD USE CSO_CS1_PINS = FALSE

-- if true, an external inverter chip is not
-- needed on /iow, /iord, /csO, /csl pins
const bit PATA HD NO | NVERTER = TRUE

Setup pin assignments

Y es, pata hard disks have alot of pins. You will need two full 8pin port's (port B and port D of 16F877) for data
transfer, three register select pins, one read pulse pin and one write pulse pin. A total of 19 io pins. | am ableto
commented out cs1/cs0 and save pins because of the constant we set.

-- pin assignments

var volatile byte pata_hd_data_ | ow is portb -- data port
(1 ow bits)

alias pata _hd _data | ow direction is portb direction

alias pata _hd_data hi gh is portd -- data port (high bits)

alias pata_hd_data_hi gh_direction is portd_direction

alias pata_hd_a0 is pin_a0

alias pata_hd_aO_direction is pin_a0 _direction

alias pata hd_al is pin_al

alias pata _hd_al direction is pin_al direction

alias pata_hd_a2 is pin_a2

alias pata_hd_a2 direction is pin_a2 direction

alias pata_hd_i owr is pin_c2

alias pata hd_i owr _direction is pin_c2 direction

alias pata _hd_iord is pin_cl

alias pata_hd_i ord_direction is pin_cl direction

alias pata _hd_csl is pin_a3

alias pata _hd_csl1l direction is pin_a3 direction

alias pata hd _csO is pin_a4

alias pata hd _csO direction is pin_a4 direction
pata_hd_aO_directi on = out put -- register select pin
pata _hd_al direction = output -- register select pin

Jallib Tutorials | Experimenting external parts | 85

pata _hd_a2 direction = output -- register select pin

pata hd_iow direction = output -- used for wite pul se

pata hd iord direction = output -- used for read pul se

;pata_hd_csl1l direction = out put -- register select pin

;pata_hd_csO _directi on = out put -- register select pin

Now includethelibrary

i ncl ude pata_hard_di sk -- include the parallel ata ide hard disk
library

pata_hd_init() -- initialize startup settings

Add user's procedure and variables

Hard disks send data 2 bytes at atime since there are two 8 pin data ports, so | made asmall serial port procedure to
send 2 bytes viathe serial port:

-- Function for sending hard disk data via seria

-- port, data is read 2 bytes at a tine.

procedure send_word(byte in lowbit, byte in highbit) is
serial_hwwite(lowbit) -- send 1st serial data byte
serial _hw wite(highbit) -- send 2nd serial data byte
end procedure

Now declare variables for recieved data

-- Declare variables for this exanple.
var byte in_a
var byte in_b

Wait for power to stabilize then send "START" to the serial port to notify the user (Y OU) that the program has started
ok

_usec_delay (1 000 _000) -- wait for power to stabilize

-- send "start" to pc / test uart communication
send_word("S', "T")

send_word("A", "R")

send_word("T", 0x20)

send_word(13, 10)

send_word(13, 10)

Spin Up/Spin Down test

It isimportant to know if we have some basic communication to the drive. We will try to spin up (turn on the drive's
motor) and spin down (turn off the drive's motor). Thiswill simply send the "spin up" command to the command
register then "spin down", then it will do the same once more. This shows that we have communication from your
PIC to the hard drive.

for 2 I oop
pata hd register_wite(PATA HD COWAND_REG, PATA HD SPI N_UP) -- turn on
not or
_usec_del ay(5_000_000) -- 5 sec del ay
pata_hd_register_wite(PATA HD COWAND_REG, PATA HD SPI N DOAN) -- turn off
not or
_usec_del ay(5_000_000) -- 5 sec del ay
end | oop

pata_hd_register_wite(PATA_ HD COVWAND_REG, PATA HD SPI N_UP) -- turn on
not or

Wait 10 seconds before next example

_usec_del ay(10_000_000) -- wait 10 seconds before next exanple

86 | Jallib Tutorials | Experimenting external parts

Read the first and second sector from the hard drive

Now that we know we are able to write to the registers, we can try to read some data. One sector is 512 bytes. Since
dataistransfered 2 bytes at atime, we will loop 256 times to read one full sector while sending the data via serial
port.

Reading is easy, there are 3 procedures within the library that MUST be used. Y ou will notice this processis similar
to the SD card tutorial.

pata _hd_start_read(0) - start reading at specified sector (sector 0)
pata_hd_read_data(bytel, byte?) - actually read data from the card (2 bytes at atime)
pata_hd_stop_read() - stop the read process

You can aso use the pata_hd_read pulse(number) procedure to skip past data. For every 1 value added, there will be
2 bytes skipped since this procedure simply reads data and ignores the input.

-- Read one sector

for 256 | oop -- 256 words, 512 bytes per sector
pata hd read data(in_b, in_a) -- read data
send_word(in_b, in_a) -- send data via serial port

end | oop

-- You will see hard disk LED on during this delay
-- because you did not finnish reading.
_usec_del ay(2_000 _000) -- 2 second del ay

-- Read 2nd sector.

for 256 | oop -- 256 words, 512 bytes per sector
pata _hd read _data (in_b, in_a) -- read data
send_word(in_b, in_a) -- send data via serial port

end | oop

pata_hd_stop_read() -- tell drive you are done reading

-- hard disk led will turn off at this point.

_usec_del ay(10_000_000) -- wait 10 seconds before next exanple

I dentify drive command

Theidentify drive command loads 512 bytes of data for you that contains information about your drive. You can
retrieve info like drive serial number, model number, drive size, number of cylinders, heads, sectors per track and a
bunch of other data required by your PC. Of course you can read more info on this at the links | have given you.

On the sticker of some older drives, you will see"CYL", "HEADS', "SEC/T" (this can also be found with the Identify
command). Y ou can calculate drive's addressabl e sectors with (cylinders * heads * sectors per track), and multipy that
by 512) for the size of the drive.

On newer drives, you will see on the front sticker the number of LBA's, thisis the number of addressable sectors.

If you multiply this value by 512, you will get the size of the drive in bytes. For example, one of my drive says
60058656 LBA's. With this drive, you can send apata_start read command with a addresses from 0 to (60058656 -
1). The size of thisdrive is 60058656 * 512 = 30GB

Let'stry it out, first we send the command:

-- send the identify drive comrand
pata_hd_register_wite(PATA HD COMVAND_ REG PATA HD | DENTI FY_DRI VE)

Now we must wait till the drive is ready and has data for us:

-- check if drive is ready reading and set data ports as inputs
-- this MJUST be used before reading since we did not use pata_hd _start _read
pat a_hd_dat a_r equest (PATA_HD WAl T_READ)

Jallib Tutorials | Experimenting external parts | 87

The drive isnow has datafor us, so let'sread it. Notice that the input data bytes (in_b & in_a) are backwards for
identify drive (don't ask me why).

-- Read 512 bytes

for 256 | oop -- 256 words, 512 bytes per sector

pata hd read data(in_b, in_a) -- read data

send word(in_a, in_b) -- send data via serial port
end | oop -- drive info high/low bytes are in reverse
or der

Wait 10 seconds before the next example

_usec_del ay(10_000_000) -- wait 10 seconds before next exanple
Writedatato thedrive

Just like reading, there are 3 procedures that MUST be used.

pata_hd_start_write(20) - start writing at specified sector (sector 20)
pata_hd_read_data(bytel, byte2) - write to the card (2 bytes at atime)
pata_hd_stop_write() - stop the read process

When writing to your hard drive, you MUST write 512 bytes at atime. In this example, we are writing (256x2) = 512
bytes + (250x2) = 500 bytes for atotal of 1012 bytes. This means we have written one sector (512 bytes), aswell as
500 bytes of the next sector. The second sector (500 bytes) that we have written, will not actually be written to the
hard drive until we finish the sector with data.

For this reason, you will need to use the pata_hd write to_sector_end(value) procedure. This procedure will
automatically finish the sector for you with the "value" data specified. In our case we are writing OXFF till the end of
the 512 bytes (end of the sector).

Here's an example write, Please note that we are starting to write at sector 200

pata_hd_start _wite(200) -- tell hd to get ready for reading

-- now wite 1 sector + nost of 2nd sector, data will not
-- be witten unless 512 bytes are sent
for 256 + 250 | oop

pata_hd _wite_data(0OxCC, OxDD) -- wite data OxCC, OxDD over and over
end | oop
-- first sector has been witten to the disk since 512 bytes where sent,
-- but 2nd sector is not finnished, only 500 bytes sent,
-- so lets finnish the sector with 6 nore wite pul ses (OxFF' s as data)
pata hd wite to_sector_end(0xFF)

pata_hd_stop_wite() -- tell hd we are done witing

Now read back the data the 1012 bytes have been written

-- Now read the 1st sector you just wote, should get
-- OxCC, O0xDD over and over

pata_hd_start _read(200) -- get drive ready for reading
for 256 + 250 | oop -- read 512 bytes + 500 bytes
pata _hd_read _data(in_b, in_a) -- read data
send_word(in_b, in_a) -- send data via serial port
end | oop

-- if you want, you can read back the last 6 bytes that are OxFF
for 6 | oop

pata _hd_read _data(in_b, in_a) -- read data
send_word(in_b, in_a) -- send data via serial port
end | oop

pata_hd_stop_read() -- tell drive we are done reading

88 | Jallib Tutorials | Experimenting external parts

If you want, you can turn off the hard drive motor at the end of the program

-- W're done, lets turn off the hd notor
pat a_hd_regi ster_wite(PATA HD COWAND REG, PATA HD_SPI N_DOWN)

Your Done!

That'sit, Now you can read & write to al those hard drives you have laying around. Y ou can read raw data from
drives and possibly even get back some lost data.

Alright, go build that hard disk thingy you where dreaming about!

Jallib Tutorials | Experimenting external parts | 89

Interfacing a Sharp GP2DO02 IR ranger

Sébastien Lelong
Jallib Group

Sharp IR rangers are widely used out there. There are many different references, depending on the beam pattern, the
minimal and maximal distance you want to be able to get, etc... The way you got results also make a difference: either
analog (you'll get avoltage proportional to the distance), or digital (you'll directly get adigital value). Thisnice
article will explain these details (and now | know GP2D02 seems to be discontinued...)

Overview of GP2DO02 IR ranger

GP2D02 IR ranger is able to measure distances between approx. 10cm and 1m. Results are available as digital values
you can access through a dedicated protocol. One pin, Vin, will be used to act on the ranger. Another pin, Vout, will
be read to determine the distance. Basically, getting a distance involves the following:

1. First you wake up the ranger and tell it to perform a distance measure
2. Then, for each bit, you read Vout in order to reconstitute the whole byte, that is, the distance
3. finally, you switch off the ranger

The following timing chart taken from the datasheet will explain this better.
GP2D02 IR ranger : timing chart

0.2ms or less 1.5ms or more 1.5ms or more
1ms or more :
- ~<+—| Power OFF

70ms or more

UL

—

Output—l | W ﬂ £ \ r
i /4 > :
: MSB LSB LSB |
Example of distance measuring output (8-bit)

Figure 8: GD2DO02 IR ranger : timing chart

m Note: the distances obtained from the ranger aren't linear, you'll need some computation to make them
1LY s0.

Sharp GP2D02 IR ranger looks like this:

90 | Jallib Tutorias | Experimenting external parts

* Redwireisfor +5V

» Black wire ground

* Greenwireisfor Vin pin, used to control the sensor

* Yelowwireisfor Vout pin, from which 8-bits results read

(make a mental note of this...)

Interfacing the Sharp GP2DO02 IR ranger

Interfacing such a sensor is quite straight forward. The only critical point is Vin ranger pin can't handle high logic
level of the PIC's output, this level mustn't exceed 3.3 volts. A zener diode can be used to limit thislevel.

Note: be careful while connecting this diode. Don't forget it, and don't put it in the wrong side. Y ou may

I damage your sensor. And I'm not responsible for | Y ou've been warned... That's said, | already forgot it,
put it in the wrong side, and thought I'd killed my GP2D02, but this one always got back to life. Anyway,
be cautious !

L

e

Here's the whole schematic. The goal hereisto collect data from the sensor, and light up a LED, more or less
according to the read distance. That's why we'll use aLED driven by PWM.

Jallib Tutorials | Experimenting external parts| 91

Interfacing a Sharp GP2002 IR ranger

+BV httpeifallib.googlecode. com

1N41Sﬁm \in L
;
16F88 vour 1™
RAZ/ANZ Rat/iant P2 .
e RAS/ANE RAGANG LT 5L
RA4/AN4 paricsct P8 GP2Do2
PASMCLR PA&OsC2 [12
Y55 ¥DD g
RBGINT me7PeD [
RB1/SDA meaPcC L=
GND RB2/RX esTx bt
PB3 reuscL 2 &
PIC16r88-DIP

Figure 9: Interfacing Sharp GP2D02 IR range : schematic

Here's the ranger with the diode soldered on the green wire (which is Vin pin, using your previously created mental
note...):

I've also added thermoplastic rubber tubes, to cleanly join all the wires:

92 | Jallib Tutorials | Experimenting external parts

Finally, in order to easily plug/unplug the sensor, I've soldered nice polarized connectors:;

Jallib Tutorials | Experimenting external parts | 93

Writing the program

jallib >=0.3 contains alibrary, ir_ranger_gp2d02.jal, used to handle this kind of rangers. The setup is quite straight
forward: just declare your Vin and Vout pins, and pass them to the gp2d02_r ead_pi ns() . Thisfunction returns
the distance as araw value. Directly passing pins allows you to have multiple rangers of this type (many robots have
many of them arranged in the front and back sides, to detect and avoid obstacles).

Using PWM libs, we can easily make our LED more or less bright. In the mean time, we'll aso transmit the results
through a serial link.

var volatile bit gp2d02_vin is pin_a4

var volatile bit gp2d02_vout is pin_a6

var bit gp2d02 vin_ direction is pin_a4 direction

var bit gp2d02 vout direction is pin_a6 direction

i nclude ir_ranger_gp2d02

-- set pin direction (careful: "vin" is the GP2D02 pin's nane,
-- it's an input for GP2D02, but an output for PIC!)
gp2d02_vi n_di recti on = out put

gp2d02_vout _direction = input

var byte measure
forever | oop
-- read distance fromranger num O
measure = gp2d02_read_pi ns(gp2d02_vi n, gp2d02_vout)
-- results via serial
serial _hw wite(neasure)
-- now blink nore or |ess
pwnil_set dutycycl e(measure)
end | oop

m Note: | could directly passpi n_A4 and pi n_A6, but to avoid confusion, | prefer using aliases.
I

A sample, 16f88 ir_ranger_gp2d02.jal, isavailablein jallib SVN repositoryjalib released packages, and alsoin ,
starting from version 0.3. Y ou can access downloads here.

Building the whole on a breadboard
Building the whole on a breadboard

http://code.google.com/p/jallib/source/browse/trunk/include/external/ranger/ir/ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/source/browse/trunk/include/external/ranger/ir/ir_ranger_gp2d02.jal
http://code.google.com/p/jallib/downloads/list

94 | Jallib Tutorials | Experimenting external parts

| usually power two tracks on the side, used for the PIC and for the ranger:

Jallib Tutorials | Experimenting external parts | 95

Using the same previously created mental note, | connected the yellow Vout pin using ayellow wire, and the green
Vin pin using agreen wire...

Testing (and the video)

Time to test thisnice circuit ! Power the whole, and check no smoke is coming from the PIC or (and) the ranger. Now
get an object, like you hand, more or less closed to the ranger and observe the LED, or the serial output... Sweet !

http: //mww.youtube.com/watch?v=15AZwv7LzyM

http://www.youtube.com/watch?v=l5AZwv7LzyM

96 | Jallib Tutorias | Experimenting external parts

Interfacing a HD44780-compatible LCD display

Sébastien Lelong
Jallib Group

In this"Step by Step” tutorial, we're going to (hopefully) have some fun with a LCD display. Particularly one
compatible with HD44780 specifications, which seems to be most widely used.

Setting up the hardware

As usual, there are plenty resources on the web. | found this one quite nice, covering lots of thing. Basically, LCDs
can be accessed with two distinct interfaces. 4-bit or 8-bit interfaces. 4-bit interface requires less pins (4 pins), but
is somewhat slow, 8-bit interface requires more pins (8 pins) but is faster. jallib comes with the two flavors, it's up
to you deciding which is most important, but usually, pins are more precious than speed, particularly when using a
16F88 which only has 16 /O pins (at best). Since 4-bit interface seems to be most used, and we'll use this one here...

So, I've never used LCD, to be honest. Most guys consider it as an absolute minimum thing to have, sinceit can help
alot when debugging, by printing messages. | tend to use seria for this... Anyway, I've been given aLCD, so | can't
resist anymore:)

The LCD | have seemsto be quite anice beast ! It has4 lines, is 20 characters long.

Looking closer, "JHD 204A" seems to be the reference. Near the connector, only a"1" and a"16". No pin's name.

http://www.google.com/search?hl=en&q=lcd+hd44780
http://home.iae.nl/users/pouweha/lcd/lcd.shtml

Jallib Tutorials | Experimenting external parts | 97

Googling the whole points to aforum, and at least alink to the datasheet. A section describes the "Pin Assignement”.
Now I'm sure about how to connect this LCD.

http://www.8051projects.net/e107_files/public/1231066792_13674_FT0_jm204aspec.pdf

98 | Jallib Tutorias | Experimenting external parts

® Pin assignment

Pin NO. Symbol Function Remark
1 GND . ov
2 Vdd Power supply +5V
3 V5 For LCD Variable
4 RS _ Register Select(H=Data,L=Instruction)
5 R/W Read/Write L=MPU to LCM,H=LCM to MPU
6 E Enable
7 DBO Data bus bit 0
8 DB1 Data bus bit 1
9 DB2 Data bus bit 2
10 DB3 Data bus bit 3
11 DB4 Data bus bit 4
12 DB5 Data bus bit 5
13 DB6 Data bus bit 6
14 DB7 Data bus bit 7
15 A Anode of LED Unit
16 K Cathode of LED Unit

For thistutorial, we're going to keep it simple;

e aspreviously said, we'll use 4-bit interface. This means we'll use DB4, DB5, DB6 and DB7 pins (respectively pin
11, 12, 13 and 14).

« wewon't read from LCD, so R/W pin must be grounded (pin 5)

e wewon't use contrast aswell, V5 pin (or Vee) must be grounded (pin 3)

Including pins for power, we'll use 10 pins out of the 16 available, 6 being connected to the PIC (RS, EN and 4 data
lines).

For convenience, | soldered a male connector on the LCD. Thiswill help when building the whole on a breadboard.

So we now have everything to build the circuit. Here's the schematic. It also includesa LED, it will help us checking
everything is ok while powering up the board.

Jallib Tutorials | Experimenting external parts| 99

LCD HD44780
Interfacing an HO44780-compatible LCD display 161
(4-bit interface) REH
1. | oB?
httpefijallib.googlecods. com 1= DB
=l | DBs
. | DB4
%.—
+5V -
———
i .
5l | EN
16788 —+= | B
v 1 Razane Rat/ant B2 o | vee
= 2} RAG/ANG RACIAND Pt 200 | vee
= B = 5 1 Vss
=] RA4AN4 RATIOSCH |2 — .
- RASMCLR RA&CSC2 |=
- V5SS VDD = T
—{ RBGINT RE7/PGD b=
=T —| RB1/SDA RB&PGC =
= RE2RX REB&STX il
RB3 . RB4/SCL |— Y
PIC16F88-DIP
R

*x
<
LED

M

i

Using a breadboard, it looks like this:

100 | Jallib Tutorials | Experimenting external parts

Jallib Tutorials | Experimenting external parts| 101

102 | Jalib Tutorials | Experimenting external parts

Writing the software

For this tutorial, we'll use one of the available samples from jallib repository. | took one for 16f88, and adapt it to my
board (specifically, | wanted to use PORTA when connecting the LCD, and let PORTB's pinsasis).

Asusual, writing a program with jallib starts with configuring and declaring some parameters. So we first have to
declare which pins will be connected:

-- LCD IO definition

var bit lcd rs is pin_a6 -- LCD conmand/ dat a sel ect.
var bit lcd rs direction is pin_a6 direction
var bit lcd_en is pin_a7 -- LCD data trigger

var bit lcd_en_direction is pin_a7_direction

var byte | cd_dataport is porta_l ow -- LCD data port
var byte I cd dataport _direction is porta | ow direction

-- set direction
lcd_rs_direction = out put

I cd_en_direction = out put

| cd_dataport_direction = out put

Thisis, pin by pin, the translation of the schematics. Maybe except port a_| ow. Thisrepresents pin A0 to A3, that
ispinsfor our 4 linesinterface. por t a_hi gh represents pin A4to A7, and por t a reprensents the whole port, A0 to
A7. These arejust "shorcuts'.

We aso have to declarethe LCD geometry:

const byte LCD ROAS
const byte LCD _CHARS

4 -- 4 lines
20 -- 20 chars per line

Once declared, we can then include the library and initialize it:
i nclude | cd _hd44780 4 -- LCD library with 4 data |ines

http://code.google.com/p/jallib/source/browse/
http://code.google.com/p/jallib/source/browse/trunk/sample/16f88_lcd_hd44780_4.jal

Jallib Tutorials | Experimenting external parts | 103

lcd_init() -- initialize LCD

For this example, welll lso usethepri nt . j al library, which provides nice helpers when printing variables.
i nclude print

Now the main part... How to write things on the LCD.

* You can ether useaprocedurecal: | cd_wite_char("a")
e oryou can usethe pseudo-variable:l cd = "a
e lcd_cursor_position(x,y) will setthecursor position. x istheline, y isthe row, starting from 0
o finally,| cd_cl ear _screen() will, well... clear the screen !

Full API documentation is available on jalapi.
So, for this example, we'll write some chars on each line, and print an increasing (and incredible) counter:

const byte strif]
const byte str2[]
const byte str3[]

"Hell o world!" -- define strings
"third Iine"
"fourth Iine"

print_string(lcd, strl) -- show hell o worl d!
| cd_cursor_position(2,0) -- to 3rd line
print_string(lcd, str2)

| cd_cursor_position(3,0) -- to 4th line

print_string(lcd, str3)

var byte counter =0

forever | oop -- loop forever
counter = counter + 1 -- update counter
| cd_cursor_position(1,0) -- second |ine
print_byte hex(lcd, counter) -- output in hex format
del ay_100ns(3) -- wait alittle
i f counter == 255 then -- counter wap
| cd_cursor_position(1,1) -- 2nd line, 2nd char
lcd =" " -- clear 2nd char
led =" " -- clear 3rd char
end if
end | oop

The full and ready-to-compile code is available on jallib repository:
» blog_16f88 d_Icd_hd44780 4.jal
You'll need last jallib-pack, available on jallib's download section.

How does this look when running ?
Here'sthe video !
http: //mww.youtube.com/watch?v=hlVMuaz803

http://jallib.googlecode.com/svn/trunk/doc/html/lcd_hd44780_4.html
http://jallib.googlecode.com/svn/trunk/doc/html/index.html
http://code.google.com/p/jallib/source/browse/trunk/doc/dita/tutorials/code/blog_16f88_sl_lcd_hd44780_4.jal
http://code.google.com/p/jallib/downloads/list
http://www.youtube.com/watch?v=hIVMuaz8OS8

104 | Jdlib Tutorials | Experimenting external parts

Memory with 23k256 sram

Matthew Schinkel
Jallib Group

Learn how to use Microchip's cheap 256kbit (32K B) sram for temporary data storage

What is the 23k256 sram and why use it?
S0, you need some data storage? Put your data on a 23k256!

-

If speed isyour thing, thisoneisfor you! Thisis FAST. According to Microchip's datasheet, data can be clocked in
at 20mhz. The disadvantage to this memory however isthat it will not hold it's memory when power is off sinceitisa
type of RAM (Random Access memory).

If you wish to hold memory while power is off, you will have to go with EEPROM but it is much slower. EEPROM
requires a 1ms delay between writes. In thetime that | could write 1 byte to an EEPROM (1ms), | could write 2500
bytes to the 23k256 (if | can get my PIC to run fast enough).

Y et another advantage, isthat it isonly 8 pins (as you can see from the image). Other RAM memories have 10 or so
address lines + 8 data lines. If you haven't guessed yet, we are sending serial data for reads & writes. We will be using
SPI (Serial Peripheral Interface Bus).

| suggest you start by reading the SPI Introduction within this book first.
Y ou can read more about the 23k256 here:
http: /Aww.microchi p.com/wwwipr oducts/Devi ces.aspx?dDocName=en539039

What will | learn?

Wewill be using the jallib sram_23k256 library & sample written by myself. With this library, we will be able to do
the following:

1. Initidlization settings for 23k256.

2. Read settings from the 23k256.

3. Read & Write one byte to/from a specific address

4. Use the 23k256 as a large byte, word or dword array (32k bytes, 16k words, 8k dwords)
5. Fast read/write lots of data.

OK, lets get started

| suggest you start by compiling and writing the sample file to your PIC. We must make sure your circuit isworking
before we continue. As always, you will find the 23k256 sample file in the sample directory of your jalib installation
"16f877_23k256.ja"

Y ou will need to modify this samplefile for your target PIC.

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039

Jallib Tutorials | Experimenting external parts | 105

Note: Jallib version 0.5 had thisfollowing line in the library file, but in the next version (0.6) it will
llI_|_ ”J_| be removed from the library and you will have to add it to your sample file before the line include
sram_23k256.

const bit SRAM 23K256_ALWAYS_SET_SPI _MODE = TRUE
Here's the 23K 256 pin-out diagram:

PDIP/SOIC/TSSOP

(P, SN, ST)
cs 1 8] vcec
so 2 7 0 HOLD
NC 3 6] SCK
Vss 4 5] sl

Now build this schematics. Notice the resistors for 5v to 3.3v conversion. Also notice that we are using the PIC's
hardware SPI port pins. These pins are named (SDO, SDI, SCK) + One chip select pin of your choice.

ll LI|| Note: Thisisa3.3V Device
1L

106 | Jallib Tutorials | Experimenting external parts

R

s
R
a 23K256 Must have capacitor directly accross veeivss
1
ST | o 33w
Ces § ©
AveP ey
2 RRaomno Rrespoc |22 =
- ERN ey res | 2@ o
8 L G 1 woc -8
5 Rreanmers reaspom 20 2 ko mowf 7
= Kesamoci [L NN PR "
B S o A K A E i |
s I E —
o o i = \
ﬁ I 170 N— vss
2 " jr— 3 o
. 12] 1 = o
14 Roscamikout Rroapspal 2T 77 Ly 2
20yt 201 28 Keewriosiccez ReaIT. 20 i
— A7_eeaiceer Resrspo |22
XTAL20mhz 18 28
L D I 20 Kevorseo roamsrs | 2 it
20, RE1PSPT RD2/PSP2 21
'
2
-
=
s
s
5u

Plug in your seria port and turn it on (serial baud rate 38400). If it isworking, you will get mostly the hex value "11"

0 O
i)£ X, 1 5 I e e

| ol

GNp

to your PC's serial port. Here's an image from my serial port software:

Jallib Tutorials | Experimenting external parts | 107

“_ RealTerm: Serial Capture Program 2.0.0.57

| Port | Capture| Pins | Send | EchoPart] 120 | 1202 | 12CHise | Mise | An| Clear| Freeze| |

Dizplay Az ™ Half Duplex Birary Sync Chars - Stabus
; ﬁmii 2 m ;ewlzine mode |."-\BCD j Data %:n:l = _ | Disconnect
& Hexspace] | |_ Invert Data one | R¥D ()
(f_'ﬁ H_exS+Ascii e | ﬂ XOR | asc) | THD (3]
£ mpgt Data Frames | j AND | 7 Mumber _ICTS [8)
" Hex Bytes A _|DCD (]
o intlg e 2= | o Changs | [~ Leading Sync | DSR ()
" yint]6 [~ Single Gulp 1D
[Ascii _|Ring (3]
; Binary Rows Cols | EREAK.
—~ nge?tlf TeminalEort| |17 3] |72 %] [Scrolback | Ermor

You can use Activer automation to contral me! Char Count:2100 CP3:0 Paork: 4 38400 8M1 Mone

If it is not working, lets do some troubleshooting. First start by checking over your schematic. If your schematic is
correct, the most likely problem is voltage levels. Check over your PIC's datasheet to see what the PIN types are, if
any of the pins have CMOS level outputs, you will not need voltage conversion resistors.

In the past, | have had issues with the voltage conversion resistors on the SCK line.

Setup the devices

Since the beginning initialization has already been written for you, and you already know how to include your PIC,
you can skip this section and go down to the 23k256 Usage section if you wish.

Take alook at the sample file you have. Asyou know, firstly, we will include your chip, disable all analog pins and
setup serial communication.

i ncl ude 16F877 -- target PICmicro

-- This program assunes a 20 MHz resonator or crystal
-- is connected to pins OSClL and OSC2.

pragma target clock 20 _000_000 -- oscillator frequency

-- configure fuses

pragnma target OSC HS -- HS crystal or resonator
pragma target WDT disabled -- no wat chdog

pragma target LVP disabl ed =

no Low Vol tage Progranm ng

enabl e digital _io() -

di sable analog 1/0O (if any)

-- setup uart for conmunication
const serial_hw baudrate = 38400
i ncl ude serial _hardware

serial _hw_init()

- set the baudrate

As stated before, the 23k256 MUST be connected to the pic's SPI port, so let's setup the SPI port as well asthe
SPI library. We do not need to alias SPI hardware pins to another name. First include the library, then set the pin
directions for the 2 data lines and the clock line:

-- setup spi
i ncl ude spi _nmaster _hw -- includes the spi library
-- define spi inputs/outputs

108 | Jalib Tutorials | Experimenting external parts

pin_sdi _direction = input -- spi input
pi n_sdo_direction = out put -- spi output
pi n_sck_direction = output -- spi clock

Now that SPI data/clock pins are setup, the only pin left to define is the 23k256 chip select pin. If you have more then
one device on the SPI bus, this chip select pin setup should be done at the beginning of your program instead. This
chip select pin can be any digital output pin you choose to use.

-- setup chip select pin

ALI AS sram 23k256_chi p_sel ect is pin_a2

ALI AS sram 23k256_chi p_sel ect _direction is pin_a2_direction
-- initial settings

sram 23k256 chi p_sel ect _direction = out put -- chip select/slave select pin
sram 23k256_chi p_sel ect = high -- start chip slect high (chip
di sabl ed)

Choose SPI mode and rate. 23k256 uses SPl mode 1,1

Wewill start with peed SPI_RATE_FOSC_16. (oscillator/16). These are the speeds that are available:
SPI_RATE_FOSC 4 -- Fastest

SPI_RATE_FOSC 16 -- Mid speed

SPI_RATE _FOSC 64 -- Slower

SPI_RATE_TMR -- Use timer

spi _init(SPI _MODE 11, SPI _RATE FOSC 16) -- init spi, choose nbde and speed

Thislinetellsthe PIC to set the SPI mode before each read & write. If you have multiple devices on the SPI bus using
different modes, you will need to set thisto TRUE

const byte SRAM 23K256_ALWAYS_ SET_SPI _MODE = TRUE
Now we can finally include the library file, and initialize the chip:

i ncl ude sram 23k256 -- setup M crochip 23k256 sram
sram 23k256_i ni t (SRAM 23K256_SEQUENTI AL_MODE, SRAM 23K256_HOLD DI SABLE) - -
init 23k256 in sequential node

23k256 Usage

I'm going to go over this quickly since the code is simple.
Read & Write Byte

Write hex "AA" to address 1:

sram 23k256_write(1l, 0xAA) -- wite byte
Now read it back:

var byte data
sram 23k256 read(1l, data) -- read byte

Byte Array
Y ou can use the 23k256 as a large byte, word or dword array like this;

-- Exanpl e using 23k256 as a 32KByte array (at array address 2)

var byte datal

sram 23k256 byte[2] = OxBB -- set array byte 2 to val ue OxBB

datal = sram 23k256 byte[2] -- read array byte 2, data2 should = OxBB

-- Exanpl e using 23k256 as a 16K word array
var word data2
sram 23k256_word[3] = OxEEFF -- set array word 3 to val ue OXEEFF

Jallib Tutorials | Experimenting external parts| 109

dat a2 = sram 23k256 wor d[3] -- read array word 3, data2 should = OXEEFF

-- Exanpl e using 23k256 as a 8K dword array

var dword dat a3

sram 23k256_dwor d[3] = OxCCDDEEFF -- set array dword 3 to val ue OxCCDDEEFF
dat a3 = sram 23k256_dwor d[3] -- read array dword 3, data2 should =

0x CCDDEEFF

If you are looking for a quick way to write lots of data, you can use the start_write, do_write and stop_write
procedures. Y ou should not use any other SPI devices on the same SPI bus between start_write() and stop_write()

sram_23k256_start_write (word in address) -- sets the address to write to
sram_23k256 _do_write (bytein data) -- send the data
sram_23k256_stop_write() -- stops the write process

Here's an example:

-- Exanple fast wite lots of data
sram 23k256_start_wite (10)
for 1024 | oop
sram 23k256_do_write (0x11)
end | oop
sram 23k256 _stop write()

Thisworks the same for the read procedures:

sram_23k256_start_read (word in address) -- sets the address to read from
sram_23k256_do_read (byte out data) -- get the data
sram_23k256_stop_read() -- stop the read process

-- Exanple fast read lots of data
sram 23k256_start _read (10)
for 1024 | oop
sram 23k256 _do_read (datal)
serial_hw wite (datal)
end | oop
sram 23k256_ st op_read()

Your done, enjoy!

110 | Jalib Tutorials | Experimenting external parts

License

We, Jallib Group, want this book to be as open and free as possible. We decided to release it under Creative Common
Attribution-Noncommercial-Share Alike 3.0 license.

@080

Basically (and repeating what's on Creative Common website), you are free:

* to Share- to copy, distribute, and transmit the work
e toRemix - to adapt the work

Under the following conditions:

» Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way
that suggests that they endorse you or your use of the work).

« Noncommercial - You may not use thiswork for commercial purposes.

e ShareAlike- If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same, similar or a compatible license.

Full license lecal code can be read at: http://creativecommons.or g/licenses/by-nc-sa/3.0/legal code

Thislicense applies to the book content itself, not on codes, libraries, examples, etc... you may find, or when
it's explicitely stated work is released under another license. For instance, most work on Jallib is released under
BSD and ZL 1B license, not under this Creative Common license. In doubt, please ask on Jallib Group (http://
groups.google.com/group/jallib)

http://groups.google.com/group/jallib
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://groups.google.com/group/jallib
http://groups.google.com/group/jallib

112 | Jallib Tutorias | License

Appendix

114 | Jallib Tutorias | Appendix

Materials, tools and other additional how-tos

Jallib Tutorials | Appendix | 115

Building a serial port borad with the max232 device

Matthew Schinkel
Jallib Group

In thistutorial, we're going to build a seria port that can connect your PIC's TX and RX pinsto your pc or other
hardware using a max232 chip.

Many circuits will require some seria port communication, you may buy yourself ars232 to TTL adapter off the net
for aslittle as $10, or you can build one yourself. The max232 is a very popular chip. It converts your 5v circuit to the
12v required for serial communication to things like your PC. Many microcontrollers have RX and TX output pins.
Here is aimage of the max232 adapter | purchased. It hasinput pinsfor RX, TX, CT, RT aswell as GND and 5v. The
RX and TX pins can be directly connected to your PIC.

" .

[
Now, lets build our own!

First get yourself a RS232 port, you can cut up one of your serial port cords, or buy a port from the store for adollar
or two.

T ey

[
-
-

| am going to use a cut serial port cord since it already has leads on it, and islong enough to reach my pc. Use your
multi-meter to find the pin numbers, and touch up the wires with solder so they’ Il go into your breadboard easily.

Now build the circuit, Asyou can see, you will need the max232 chip from your local electronics store and a few 1uf
capacitors.

116 | Jallib Tutorials | Appendix

BY

?

=1o
IHF
: W

i —fe
MAX232 o5
1 i
'-.':alu"' 2 3 Wi 2
it e 4
' W ;)
- 54 ca GNO
B)
{ o
T — i T Tiour |1 El N [
1 Tan T20UT |] B
o—2d ROUT 2 RN |2 il ¢ 8]
=2 RECUT @ REiN |=ie e 5
MAXZ2a2F Sl e
T GND
GHD

Great job, now connect the RX and TX pinsto your circuit, and plug the rs232 port directly your pc, or to a usb-to-
seria adapter, or even to a bluetooth-to-serial adapter for short range wireless.

| strongly suggest you make this on a PCB with pinsthat will plug to your breadboard. you'll useit alot!
Inthisimage, | did not complete my PIC circuit, but | think you get the idea:

Jallib Tutorials | Appendix | 117

You can use serial_hardware lib or serial_software lib to transmit data to your pc, check for it in the other jalib
projects. | suggest the software realterm for sending/receiving data to your PIC

Open Source REALTERM http://realterm.sourceforge.net/
It can be downloaded for free from http://sourceforge.net/projects/realterm/files/
Open the software, click “Port”, choose your speed and port number and press “open”

Hex output

118 | Jallib Tutorials | Appendix

“_ RealTerm: Serial Capture Program 2.0.0.57

O B3 7 L = B LA B

0 =0) D 00 O e O L0 O o T

L 6
4
; E
E‘
L 6
g

B3 S

Display | Post | Capture | Pz Send |EchoPor| 120 | 1202 | 120Miee | Mise | \n| Clear| Freeze| |
Stalug
EOL Y
I Send ASCII rf' $B|| g Connected
= afane
o [L RAD (2)
- Ssrdblgmh3|3| Sendascll | +E1lj i THD ()
[el T | : = e | _IETS
- 0]] tF| ngpents [T 2] ™ Ltsal [StipSpaces || *oic) | s DEDE]-F
Dump Fie bo Port — _|D3RIE
o hbemphaptune. it =1 _! Sand Fia | x St.;.p| Delaps |0 5|0 =i Fing (9]
A BREAK.
Bepeats [1 [[0 2 I Enar
Yol Can uss Ackiy el autormation to contral med Char Courg:610 CP5:0 Port: 4 33200 SM1 Mane
Ascii output

¢ RealTerm: Serial Capture Program 2.0.0.57

HMF3 5D (L
[HEFHH [iLF
AAAAR . TET s
ALAMIE .HFP]
Diff Make Mothing Else Matters.npdis
CONF3181 .8T10pks
CONF?456 .

OMF745

MF74

i
Jew
madonn: [
UAH.HP3 (sl
van_halen_clip.MP3 il

Display |Pmt | Copture | Pine | Send | EchoPor | 120 | 1202 | 12CMisc | Misc |
Diplay 45 | [Half Duplew
pd *gf_g" ! newline mode
" Heufspacal | | Jrrvet Data
;_ Hex + Bz | |
r :':.;Ea Drata Frames =
:jﬁ-g Bvies |2 =
" untle [" Single _ Guip |
" Asci
£ Binaiy Rows Lol
kil Teminal Fort| [16° 2] [0 2] 1 Sciolback
o can uss Ackivel automation bo corrol me! Char Courg: 774

CP3:0

yn| Clear| Freeze| |

Statusz
Connected
R0 2y

_ITHD (3

|CTS (8

DCD 1)

DSR Bl

Ring (3]

BREAFK

Enai

Port: 4 332400 EM1 Moneg

Jallib Tutorials | Appendix | 119

In Circuit Programming

Matthew Schinkel
Jallib Group

Intro to in-circuit programming & ICSP

What is ICSP?

ICSP stands for In-Circuit Serial Programming. More information can be found at http://wwZ1.microchip.cony
downloads/en/DeviceDoc/30277d.pdf

Benefits of ICSP

Y ou may program your PIC whileit isin your breadboard circuit

Y ou may program your PIC whileit is on a soldered circuit board

Y ou will save time programming so you can write more code faster

Y ou can reset your circuit from your PC

Y ou can program surface mount PIC's that are on soldered circuit board

Y ou won't bend or break any pins

Y ou won't damage your PIC by placing it in your breadboard wrong

With aremote desktop software like VNC, you can program your PIC from anywhere around the world.

| can program my PIC in my livingroom on my laptop while | watch tv with my wife! (I keep my messin my
office)

© oo N O M®WDNE

Intro to ICSP & in-circuit programming

When | got started in micro-controllers and JAL, | needed to choose a programmer. At thetime, | did not know
anything about choosing a programmer, so | just went on ebay and bought one that is able to program many different
PIC's.

For years, | used this programmer by putting my 16f877 chip into it, programming it, and putting it into my
circuit. | broke pins and wasted alot of time. Little did | know, my programmer has an ICSP output for in-circuit
programming. My programmer even says ICSP on it, but | did not know what ICSPis.

Eventually | got sick and tired of moving my micro-controller back and forth from the breadboard to the programmer,
and | had herd some talk about ICSP. | found alCSP circuit on the net, and | took a harder look at my programmer,

it has 6 pins sticking up labeled ICSP. However, | did not know what pin was what, they where not marked well, and
I could not find info about my programmer. One of the pinswas marked pin 1 on the programmer. If you know your
ICSP pinouts already, you may skip to the circuit diagram.

| searched for 6-pin ICSP in Google with no results, mostly | found 5 pin circuits. So, | took out my volt-meter and
logic probe (and oscill oscope, although it is not needed) and measured the voltages off each pin while programming a
chip and while not. | could see on the breadboard that pin 6 is connected to ground. Here'swhat | got:

PIN # Whileldle While Programming

1 Ov 12v

2 Ov Ov

3 5v Pulsing Ov to 5v (random)

3 Ov Pulsing Ov to 5v (square wave)
4 Ov 5v

5 Ov Ov

http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf

120 | Jallib Tutorials | Appendix

Get the pin names

The pin names for ICSP are VPP1, LOW, DATA, CLK, VCC, GND. So lets match them up:
Ov pin 2 must be pin “GND”, | think this one is actually not connected

Ov pin 6 must be pin “GND”

pin1& 5 seem to be programming enable pins, VPP1 and VCC

The two pulsing pins must be “CLK” and “DATA” (you may have to guess which iswhich if you don't have a
oscilloscope.

Lets make a new chart. | believe most | CSP ports have pinsin this order:

PIN # PIN NAME Whileidle While
Programming

1 VPP1 Ov 12v

2 Not Connected Ov Ov

3 DATA 5v Pulsing Ov to 5v
(random)

4 CLK Ov Pulsing Ov to 5v
(square wave)

5 VCC Ov 5v

6 GND Ov Ov

Build a circuit with ICSP

V CC can be connected to your PIC’s 5v supply for power-off programming. It does not work on my circuit because
there istoo much current drain. Do not connect both VCC directly to your power supply since there may be avoltage
difference. In my circuit, | will not use the VCC pin, and | will program my chips while my circuit power supply is
ON

GND must be connected to your circuits ground. Follow this circuit diagram:

Jallib Tutorials | Appendix | 121

——=
1k
R2
ICSP
WPR1
2z
paTAl %
cuw|—2
veol—2
aNp|—%
S TCHA out 1o cireui
_{3_1—_ 1 BacLrarR S re7ren B30 Bdomne
2 Branano rospec B2 Fo
S 3 BRatian ros B 2%
o 3 BracianziREr. real 37
T 5 BRasnREF+ RE/PGM §—0
& Rraqrock roz N 35
s 7 Bresimnaiss Rt B33 I%I
G4 & BREC/RDANS ReoANT B2 lUS
EATiTS I%I 2 Kreimimians woo 32 "o
’+—‘] vz :? RE2CSIANT 45pasan vss z; H “i'
oD RO7/PSPT &0
. 12 Ryos roaspaps 122
bt o 13 BoscascLmn RDS/PSPS 22 T o
nsczecLkauT RoaPspall 27 e
RCO/T10SDITCKI rezmxoT B35
“0gt #Bar RC1T10SKCORZ ReaTxckE 22
RCz/cCPi resspo 24
HTALCOmb= RCarscrisCL RCA/SDISDA B—22
P — |:|| FDO/P S PO RoaPsPa 22
| RD1PSPI rozipepz 21

Your done! Try to program your chip!

122 | Jallib Tutorials | Appendix

Changelog
Jallib Group
Jallib Group
Jallib Tutorial Book Changes & Updates
Table 3: Version 0.3 (Release Date: To Be Released)
Date Comments
2010/0127 Fixed 12C bus schematic and modified 12C titles
2010/01/21 Added ADC introduction, re-organized PWM
tutorials and titles
2010/01/20 Better quality Images on Getting Started, serial
board, blink aled tutorials.
2010/01/19 Added serial & rs-232 tutorial
2010/01/15 New ICSP Schematic

Table 4: Version 0.2 (Release date: 2009/12/30)

Date Comments

2009/12/06 Added SD Card tutorial
2009/12/06 Added PATA Hard Disk tutoria
2009/12/06 Added ICSP tutorial

Table 5: Version 0.1 (Release date: 2009/11/22)

Date Comments

2009/11/22 Initial Release

	Contents
	Back to basics...
	Installation
	Getting Started
	Blink A Led (Your First Project)
	Serial Port and RS-232 for communication

	PIC internals
	Pulse Width Modulation (PWM)
	Dimming a LED with PWM
	Producing sounds with PWM and a piezo buzzer

	Analog-to-Digital Conversion (ADC)
	I²C
	Building an I²C slave, some theory (part 1)
	Setting up and checking an I²C bus (part 2)
	Implementing an I²C slave with jallib (part 3)

	SPI Introduction

	Experimenting external parts
	SD Memory Cards
	Hard Disks - IDE/PATA
	Interfacing a Sharp GP2D02 IR ranger
	Interfacing a HD44780-compatible LCD display
	Memory with 23k256 sram

	License
	Appendix
	Materials, tools and other additional how-tos
	Building a serial port borad with the max232 device
	In Circuit Programming

	Changelog

