CodeVisionAVR

VERSION 2.03.2

HP InfoTech

User Manual

CodeVisionAVR

CodeVisionAVR V2.03.2 User Manual

Revision 8/5.2008

Copyright © 1998-2008 Pavel Haiduc and HP InfoTech S.R.L. All rights reserved.

No part of this document may be reproduced in any form except by written permission of the
author.

All rights of translation reserved.

© 1998-2008 HP InfoTech S.R.L. Page 1

CodeVisionAVR

Table of Contents

Table of CONENTSceiiiiii e ——————— 2
I 11 T 0T 1 o N 8
R O (=T 11 £ SRR 9

2. CodeVisionAVR Integrated Development Environment...........cccccocemiirccemnnscsennssscenssssceessssscees 9
2.1 WOrKiNG WIth FlES ...t e e e e et e e e e e e e rnee e e e e e e e e annes 9
211 Creating @ NEW File ... 9

2.1.2 Opening an EXIStNG File..........ooi i 10

D B B 1=t o 3 (o] Y AP OUPSSRRR 10

b I o 1 (T To = T 1 SRR 11
2.1.4.1 Searching/Replacing TeXL.........coiiuiiieiiiiie et e e a e e rae e e e 12

2.1.4.2 Setting BOOKMAIKS.........uiiiiiiiiee e 12

2.1.4.3 Jumping to a Specific Line Number in the Edited File............ccccoocoiiiii . 12

2.1.4.4 Printing @ TeXt SEIECHONcciiiiieeii e 12

2.1.4.5 Indenting/Unindenting @ Text SeleCtion.............ooiiii e 13

2.1.4.6 Commenting/Uncommenting a Text Selectioncccccoiiiiiiiiiine e, 13

P S A V= L (o o I =T = Lo SRR 13

2.1.4.8 Inserting Special Characters inthe Text.........cccoviiiieiiiiic e 13

2.1.4.9 Using the Auto Complete FUNCHONSoociiiiiiiiieeccee e 14

2.1.4.10 USING COAE FOIAINGveeieiiiiiee ettt 14

215 SAVING @ Fle ..o 15

2.1.6 RENAMING @ FilE...eeiiiiiii e e e e e e e et e e e e e e s s nnnreeeaaeeeaanns 15

2.7 Printing @ Fle ...t e e e e e e e e e e 16

218 ClOSING @ FlE ... 17

2.1.9 Using the Code TempPlatesoooueiiiiiiii e 17
2.1.10 Using the Clipboard HiStOrYuviiiiiiiiiieee e a e 18

2.2 WOrking With PrOJECESeeiiiiei et e e et e e e e e e e s e eeeeaeeas 19

© 1998-2008 HP InfoTech S.R.L. Page 2

CodeVisionAVR

2.2.1 Creating @ NeW ProOJECt.o 19
2.2.3 Adding Notes or Comments to the Project ... 22
2.2.4 Configuring the PrOJECTceiiii it e e e e e s ee e e e e eaaans 23
2.2.4.1 Adding or Removing a File from the Project...........ccccocovviiiiiii i 23
2.2.4.2 Setting the Project Output DIreCtoriesc..oviiiiiiiiiiiiiie e 25
2.2.4.3 Setting the C Compiler OPLioNScooiuiiiiiiiiie e 26
2.2.4.4 Executing an User Specified Program before Buildcccccoooiiiiiieiiic i 35
2.2.4.5 Transferring the Compiled Program to the AVR Chip after Build................cccceen.e 36
2.2.4.6 Executing an User Specified Program after Build ..., 38
2.2.5 Obtaining an Executable Program.............ccoo e 40
2.2.5.1 Compiling the Project.........oooviii i 41
2.2.5.2 BUildING the PrOJECL........uiiiiiiiie et e e e e eea s 43
2.2.5.3 Cleaning Up the Project Output DireCtories...........ccceevviereiiiiiee e 47
2.2.5.4 Using the Code NaVigator...........ocuiiiiiiii e 48
2.2.5.5 Using the Code INformationcooi i 49
2.2.5.6 Using the FUNCtion Call Treecccuuuiiiiiiie et 50
2.2.6 ClOSING @ PrOJECL......eiiiiiiiiee ettt ettt e e et e e e st e e e e nbee e e e nnte e e nees 51
2 I o To] - PSSP P OTPRP 52
2.3.1 The AVR Studio DEDUGQETcoiiiiiiiie ittt e et e et e e e sbeeeeeanes 52
2.3.2 The AVR Chip Programmer.........ccccuiiiiiiieee e e ettt a e e e e e e e e e e e sennaaeeeaaae s 53
2.3.3 The Serial Communication Terminalccoiiiiiiiiiiiie e e 56
2.3.4 EXeCUtiNG USEr PrOgramS........ccii ittt ettt sttt 57
2.3.5 Configuring the TOOIS MENUccoouiiiiiiiiee e 57
D] ST i 1]V F= PSSR 59
24,1 THE VIEW MENU ...ttt et e e e e e e 59
2.4.2 Configuring the EdIMOr........cooiiiii e 60
2.4.2.1 General EdItor SettiNgs........ueiiiiiiiiee e s 60
2.4.2.2 Eitor TeXt SEHNGSuuiiiiiiieei e e e a e e e 62

© 1998-2008 HP InfoTech S.R.L. Page 3

CodeVisionAVR

2.4.2.3 Syntax Highlighting Settingsc..ooiiiiiii e 63
2.4.2.4 Auto Complete SettingsSooveiiiiiiii e 64

2.4.3 Setting the Debugger Pathcooiiiiiiie e 65

2.4.4 AVR Chip Programmer SEIUPcccueiieiiiiiie ittt ee e e e st e e s staeee e sneeeaeanes 66
2.4.5 Serial Communication Terminal Setupooo e 68
2.5 ACCESSING the HEIP ..ot e e e e 69
2.6 Connecting to HP InfoTech's Web Siteoooviiiiiiiie e 69
2.7 Quitting the CodeViSIONAVR IDEccuiiiiiiiiiie ettt b e 69
3. CodeVisionAVR C Compiler Reference ... 70
3.1 THE PrEPIrOCESSON ...cii ittt ettt e ettt e ettt e s e bt e e e anbee e e e anbee e e enteeeeenees 70
3.2 COMIMENES .ttt h e et h e e sttt oo a bt e ettt e bt e e b et e eab e e et e e e nnr e e nre e e nnreenarean 76
3.3 RESEIVEA KEYWOITSeeiiiiiiiiiieiii ettt e e ettt e e e e e e e st e e e e e e e e e senbabeeeaaaeessenssaeeeeaeeeeanans 77
KR [[T 111 =Y RPN 78
RSN B] = T Y/ o1 PP SP U PRP 78
K G 07 0] g 1] = | < T PSSP 79
BT VAMADIES ... e 81
3.7.1 Specifying the RAM and EEPROM Storage Address for Global Variables........................ 83
3.7.2 BIt VAADIES ..o 84
3.7.3 Allocation of Variables to RegiSters...........oociiiiiiiiii e 85
374 STHUCKUIES ...ttt ettt et a bttt sb e s bt nae e e e 86

K AR T U o1] o 1 S PP PP PPPPPTP 89
3.7.6 ENUMEIALIONS. ...ttt et et e e b e s ab b e e e s bt e e 91
3.8 DefiNiNg Dat@ TYPES ... uueeeiiiiiiiie ittt sttt e e nb e e e e bt e e e b e e e e e re e e e neee 92
3.9 TYPE CONVEISIONSuutiiiiieee e ittt e e e e e ettt e e e e e e e et eeeeeaeesaaasasaaaeeaaeeesaasstsaeeeaeessaaasnrreaaeeeeannns 93
T L O] oT=T o= | (o= TP PRRRRN 94
K B I U T ed o o - T PRSPPI 95
K A o]) =T £ J PSPPI 96
3.13 AccesSING the /O REGISTEISveeiiii ittt e e e e e e e e e s e e e e e e e eeanns 99

© 1998-2008 HP InfoTech S.R.L. Page 4

CodeVisionAVR

3.13.1 Bit level access to the I/O RegISters........ooouuiiiiiiiiiiiii e 101
3.14 Accessing the EEPROM........oo e 102
3. A5 USING INTEITUPES ... e e e e e e e s e e et a e e e e e e s s e esnnraeaaeeeeaans 103
3.16 RAM Memory Organizationcocueieeiiiiiee e eiiee e et e eite e e stee e e e see e e e stae e e e ente e e e enneeeeeenes 105
3.17 Using an External Startup Assembly File ... 107
3.18 Including Assembly Language in YOUr Programccooiueieiiiiiiee e 109

3.18.1 Calling Assembly FUNCHONS from C..........ouiiiiiiiii e 110
3.19 Creating LIDIariEscoii ittt ettt e et e e e e e e e e nte e e e e reeeeenees 111
3.20 Using the AVR Studio DEeDUGGET.........ooiiiii e 114
K302t I 1101 SRS 115
322 LIMIEATIONS. ..ttt 115

4. Library Functions ReferenCe.........cccocoiiiiriciiminscer s s e ss s e se s e s se s e s smme e smmen s 116
4.1 Character TYPe FUNCHONSeiiiiiiiii ettt e e s e e s enaee s 117
4.2 Standard C Input/Output FUNCHONSo e 118
4.3 Standard Library FUNCHONSoooiiiiiiiiiiiee et 123
4.4 Mathematical FUNCHONS..........uiiiiiiii e 125
IS (oo I U T oo - RS 128
4.6 Variable Length Argument LiStS MaCrOScuuiiiiiiiiiiiiiee e 133
4.7 Non-local JUMP FUNCHONS ...t neee s 134
4.8 BCD CONVErSION FUNCHONSooitiiiiiiieiiee ettt ettt ne s 136
4.9 Gray Code Conversion FUNCHONSoiciiiiiiiiee et neae e e snnee e e e 136
4.10 MEMOTY ACCESS IMACIOScoiiuiiiiiiiiiiie ettt ettt st e ettt e e abb e e e e sbne e e e annee s 137
L I I T I O 0 o 1T o L R URR 138

4.11.1 LCD Functions for displays with up to 2x40 characterscccccccvveeiieiiiiicciieeeeeee 138

4.11.2 LCD Functions for displays with 4x40 charactersccccoecuiiiiiiiiei i 141

4.11.3 LCD Functions for displays connected in 8 bit memory mapped mode.......................... 143
412 1PC BUS FUNCHONS ...t 145

4.12.1 National Semiconductor LM75 Temperature Sensor Functionsccccccvveeiveeennnn. 147

© 1998-2008 HP InfoTech S.R.L. Page 5

CodeVisionAVR

4.12.2 Maxim/Dallas Semiconductor DS1621 Thermometer/ Thermostat Functions................ 150
4.12.3 Philips PCF8563 Real Time Clock FUNCLONS..........cooiiiiiiiiiiiiiee e 153
4.12.4 Philips PCF8583 Real Time Clock FUNCHONS...........ccccuiiiiiiiic e 156
4.12.5 Maxim/Dallas Semiconductor DS1307 Real Time Clock Functions............ccccccceenieenee. 159
4.13 Maxim/Dallas Semiconductor DS1302 Real Time Clock Functions...........ccccoccveeiiiienenninen. 161
4.14 1 Wire ProtoCol FUNCHONSooiiiiiiiiiieee et 163
4.14.1 Maxim/Dallas Semiconductor DS1820/DS18S20 Temperature Sensors Functions...... 165
4.14.2 Maxim/Dallas Semiconductor DS18B20 Temperature Sensor Functions...................... 169
4.14.3 Maxim/Dallas Semiconductor DS2430 EEPROM Functions...........ccccovieviiiiieceniieenn. 172
4.14.4 Maxim/Dallas Semiconductor DS2433 EEPROM Functions...........ccccovcieiiiniiieniniienen. 175
415 SPIFUNCHONS ...ttt ettt ettt s e sa e e bt e st e sn e e e nar e s e e naneas 178
4.16 Power Management FUNCHONS...........uiiiii it e e e e e e e e e e e e e e e e e ennnes 181
4.17 Delay FUNCLIONS ..ottt et e e e e e et e e e e e e e e e aanbe e e e e e e e e nnnneees 182
5. CodeWizardAVR Automatic Program Generatorccccvcvemiinnieininsssssinssess s s s 183
5.1 Setting the AVR Chip OPtiONSooiiiiiii e 186
5.2 Setting the EXternal SRAM ... e e e e e e s e e e e e e eaaans 188
5.3 Setting the INPU/OULPUL POIScooiiiiiiie e 190
5.4 Setting the External INterruptScooo e e 191
5.5 Setting the TImMers/COUNTEIS.........uiiii e 193
5.6 Setting the UART OF USARTooiiiiiii ittt e e e e et e e e e e e e e ennnreraaaaeeeaans 199
5.7 Setting the ANalog COMPAratorc.eeieiiiiiie e e e e s e e e s eneeee e ennes 202
5.8 Setting the Analog-Digital CONVEIENc.uiiiiiiiie e 204
5.9 Setting the ATmega406 Voltage Reference...........cooi i 206
5.10 Setting the ATmegad406 Coulomb COUNLETc..uviiiiiieee e 207
5.11 Setting the SPI INtErface.coiuiiiii e 209
5.12 Setting the Universal Serial Interface - US| ... 210
5.13 SEHHNG the 12C BUSvoeeeeeeeeeeeeee oo 212
5.13.1 Setting the LIM75 dEVICESuvviiiiiee ittt a e e e 213

© 1998-2008 HP InfoTech S.R.L. Page 6

CodeVisionAVR

5.13.2 Setting the DS1621 dEVICESuviiiiiiiiie et 214
5.13.3 Setting the PCF8563 AEVICESoiiiiiiiiiiiiiiie e 215
5.13.4 Setting the PCF8583 UEVICESuuuiiiie ittt a e e e 216
5.13.5 Setting the DS1307 AEVICESvveiieiiiiie ettt e et e e sttt e e e s nnaee e e e sntaeeeeanes 217

5.14 Setting the 1 WIre BUSeeiii e 219
5.15 Setting the 2 WIre BUSeeiii e e 221
5.16 Setting the CAN CONTrOHIETeoiiiie e e e e e s e e e e e e 222
5.17 Setting the ATmega169/329/3290/649/6490 LCD Controller...........occcvveeiiieeeeiiiieeeeciieeeeee 224
5.18 SettiNG the LCD ...ttt ettt e e e s e ee e aeenbeesaeeeneeeneeeaeesmeeenean 225
5.19 Setting the USB CONIOIENeeiiiiiiee e e 226
5.20 Setting Bit-Banged Peripheralscccuuiiiiiiiii ettt e e a e 227
5.21 Specifying the Project INformation..............ooooiiiiiiiiii e 228

6. License AQreemeNntcoiiiiiiiiiiiriiiss s s e 229
6.1 SOWAIE LICENSEeiiiiiie ettt e e b e e e e sb e e e sabreee e 229
6.2 Liability DiSCIAIMETcco ittt e e e st e e s st e e e e e sbeee s sbreea e 229
6.3 RESIICHONS ...ttt ettt et e e eb e e st e s bt sae e ennee e 229
6.4 OPEratiNng LICENSEcoiiiiiieiiiiiie ettt ettt e e ettt e e et e e e e sste e e e e antaeeeeanteeeesanbaeeeesnseeaaeans 229
6.5 Back-up and TranSTer...... oot e e e e e e e e e e 230
LG =T 1 PSPPSRI 230
6.7 Other Rights and ReSIICHONS.........coiiiiiiiieee e ea e 230

7. Technical Support and Updates ... s 231
8. Contact INFOrmMation ... —————— 232

© 1998-2008 HP InfoTech S.R.L. Page 7

CodeVisionAVR

1. Introduction

CodeVisionAVR is a C cross-compiler, Integrated Development Environment and Automatic Program
Generator designed for the Atmel AVR family of microcontrollers.

The program is designed to run under the Windows 98, Me, NT 4, 2000, XP and Vista 32bit operating
systems.

The C cross-compiler implements all the elements of the ANSI C language, as allowed by the AVR
architecture, with some features added to take advantage of specificity of the AVR architecture and
the embedded system needs.

The compiled COFF object files can be C source level debugged, with variable watching, using the
Atmel AVR Studio debugger.

The Integrated Development Environment (IDE) has built-in AVR Chip In-System Programmer
software that enables the automatical transfer of the program to the microcontroller chip after
successful compilation/assembly. The In-System Programmer software is designed to work in
conjunction with the Atmel STK500, AVRISP, AVRISP Mkll, AVR Dragon, JTAGICE Mkll, AVRProg
(AVR910 application note), Kanda Systems STK200+, STK300, Dontronics DT006, Vogel Elektronik
VTEC-ISP, Futurlec JRAVR and MicroTronics' ATCPU, Mega2000 development boards.

For debugging embedded systems, which employ serial communication, the IDE has a built-in
Terminal.

Besides the standard C libraries, the CodeVisionAVR C compiler has dedicated libraries for:

e Alphanumeric LCD modules

e Philips I°C bus

¢ National Semiconductor LM75 Temperature Sensor

e Philips PCF8563, PCF8583, Maxim/Dallas Semiconductor DS1302 and DS1307 Real Time
Clocks

e Maxim/Dallas Semiconductor 1 Wire protocol

Maxim/Dallas Semiconductor DS1820, DS18S20 and DS18B20 Temperature Sensors
Maxim/Dallas Semiconductor DS1621 Thermometer/Thermostat

Maxim/Dallas Semiconductor DS2430 and DS2433 EEPROMs

SPI

Power management

Delays

Gray code conversion.

CodeVisionAVR also contains the CodeWizardAVR Automatic Program Generator, that allows you to
write, in a matter of minutes, all the code needed for implementing the following functions:

e External memory access setup

e Chip reset source identification

e Input/Output Port initialization

e External Interrupts initialization

e Timers/Counters initialization

e Watchdog Timer initialization

e UART (USART) initialization and interrupt driven buffered serial communication

e Analog Comparator initialization

¢ ADC initialization

e SPI Interface initialization

e Two Wire Interface initialization

e CAN Interface initialization

e I°C Bus, LM75 Temperature Sensor, DS1621 Thermometer/Thermostat and PCF8563, PCF8583,
DS1302, DS1307 Real Time Clocks initialization

e 1 Wire Bus and DS1820/DS18S20 Temperature Sensors initialization

e LCD module initialization.

This product is © Copyright 1998-2008 Pavel Haiduc and HP InfoTech S.R.L., all rights reserved.

© 1998-2008 HP InfoTech S.R.L. Page 8

CodeVisionAVR

1.1 Credits

The HP InfoTech team wishes to thank:

Mr. Jack Tidwell for his great help in the implementation of the floating point routines
Mr. Yuri G. Salov for his excellent work in improving the Mathematical Functions Library
Mr. Olivier Wuillemin and Mr. Franc Marx for their help in beta testing

Mr. Lee H. Theusch for his support in improving the compiler.

2. CodeVisionAVR Integrated Development Environment

2.1 Working with Files

Using the CodeVisionAVR IDE you can view and edit any text file used or produced by the C compiler
or assembler.

2.1.1 Creating a New File

You can create a new source file using the File]New menu command, by pressing the Ctrl+N keys or

the 13 button on the toolbar.
A dialog box appears, in which you must select File Type|Source and press the Ok button.

(% Create Mew File 3]

File Type
@ Source | \/] |
Project | x LCancel |

A new editor window appears for the newly created file.
The new file has the name untitled.c. You can save this file under a new name using the File|Save

As menu command or the & toolbar button.

© 1998-2008 HP InfoTech S.R.L. Page 9

CodeVisionAVR

2.1.2 Opening an Existing File

You can open an existing file using the File]|Open menu command, by pressing the Ctrl+O keys or the
= button on the toolbar.

An Open dialog window appears.

1 4 Open

ol

Loak in:

=

»
e

5

Recent Places

Computer
AL
s

Metwark

LED

Mame

=l led

4

File name:

Files of type:

-

Date modified

29.03.2007 13:50

(L

G 7

Type

= m'

[l

C compiler source file

-

Size

C Compiler source files (".c)

T |

| Cancel

You must select the name and type of file you wish to open.
By pressing the Open button you will open the file in a new editor window.

2.1.3 Files History

The CodeVisionAVR IDE keeps a history of the opened files.
The most recent eight files that where used can be reopened using the File|Reopen menu command

or the E toolbar button.

© 1998-2008 HP InfoTech S.R.L.

Page 10

CodeVisionAVR

2.1.4 Editing a File

A previously opened or a newly created file can be edited in the editor window by using the Tab,
Arrows, Backspace and Delete keys.

Pressing the Home key moves the cursor to the start of the current text line.
Pressing the End key moves the cursor to the end of the current text line.
Pressing the Ctrl+Home keys moves the cursor to the start of the file.
Pressing the CtrI+End keys moves the cursor to the end of the file.

Portions of text can be selected by dragging with the mouse.

You can copy the selected text to the clipboard by using the Edit|Copy menu command, by pressing
the Ctrl+C keys or by pressing the 52 button on the toolbar.

By using the Edit|Cut menu command, by pressing the Ctrl+X keys or by pressing the # button on
the toolbar, you can copy the selected text to the clipboard and then delete it from the file.

Text previously saved in the clipboard can be placed at the current cursor position by using the
Edit|Paste menu command, by pressing the Ctrl+V keys or pressing the B2 button on the toolbar.

Clicking in the left margin of the editor window allows selection of a whole line of text.
Selected text can be deleted using the Edit|Delete menu command, by pressing the Ctrl+Delete keys

or the Pal toolbar button.

Dragging and dropping with the mouse can move portions of text.
Pressing the Ctrl+Y keys deletes the text line where the cursor is currently positioned.

Changes in the edited text can be undone, respectively redone, by using the Edit|Undo, respectively
Edit|Redo, menu commands, by pressing the Ctrl+Z, respectively Shift+Ctrl+Z keys, or by pressing

the X7, respectively ¥ buttons on the toolbar.

Clicking with the mouse right button in the Editor window, opens a pop-up menu that gives access to
the above mentioned functions.

© 1998-2008 HP InfoTech S.R.L. Page 11

CodeVisionAVR

2.1.4.1 Searching/Replacing Text

You can find, respectively replace, portions of text in the edited file by using the Search|Find,
respectively Search|Replace, menu commands, by pressing the Ctrl+F, respectively Ctrl+R keys, or
by pressing the !ﬁ, respectively ,E'}B buttons on the toolbar.

The Search|Find Next, respectively Search|Find Previous, functions can be used to find the next,
respectively previous, occurrences of the search text.

The same can be achieved using the F3, respectively Ctrl+F3 keys or the ﬂ respectively the ﬁ
toolbar buttons.

Searching, respectively replacing, portions of text in files can be performed using the Search|Find in
Files, respectively Search|Replace in Files, menu commands, by pressing the Ctri+Shift+F,
respectively Ctrl+Shift+H keys, or by pressing the 9@, respectively !E buttons on the toolbar.

These functions are also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

2.1.4.2 Setting Bookmarks

Bookmarks can be inserted or removed, at the line where the cursor is positioned, by using the
Edit|Toggle Bookmark menu command, by pressing the Shift+Ctrl+0...9 keys or the @ toolbar
button.

The Edit|Jump to Bookmark menu command, the Ctrl+0...9 keys or the *D toolbar button will
position the cursor at the start of the corresponding bookmarked text line.

Jumping to the next bookmark can be achieved by using the Edit|Jump to Next Bookmark menu
command, by pressing the F2 key or by using the %, toolbar button.

Jumping to the previous bookmark can be achieved by using the Edit|Jump to Previous Bookmark
menu command, by pressing the Shift+F2 keys or by using the & toolbar button.

These functions are also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

2.1.4.3 Jumping to a Specific Line Number in the Edited File

You can go to a specific line number in the edited file, by using the Edit|Goto Line menu command,
by pressing the Ctrl+G keys or the ’EI toolbar button.

This function is also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

2.1.4.4 Printing a Text Selection

Portions of text can be selected by dragging with the mouse.

The Edit|Print Selection menu command or the & toolbar button allows the printing of the selected
text.

This function is also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

© 1998-2008 HP InfoTech S.R.L. Page 12

CodeVisionAVR

2.1.4.5 Indenting/Unindenting a Text Selection

Portions of text can be selected by dragging with the mouse.
Selected portions of text can be indented, respectively unindented, using the Edit|iIndent Selection,
respectively Edit|lUnindent Selection, menu commands, by pressing the Ctrl+l, respectively Ctrl+U

keys or the *= | respectively ¥= | toolbar buttons.
These functions are also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

2.1.4.6 Commenting/Uncommenting a Text Selection

Portions of text can be selected by dragging with the mouse.
Selected portions of text can be commented, respectively uncommented, using the Editj Comment
Selection, respectively Edit|Unindent Selection, menu commands, by pressing the Ctri+[,

respectively Ctrl+] keys or the & , respectively K , toolbar buttons.
These functions are also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

2.1.4.7 Match Braces

If the cursor is positioned before an opening, respectively after a closing, brace then selecting the

Edit|Match Braces menu command, pressing the Ctrl+M keys or the 4 toolbar button will position
the cursor after, respectively before, the corresponding matching closing, respectively opening brace.
This function is also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

2.1.4.8 Inserting Special Characters in the Text

Special characters can be inserted in the edited text, at the cursor is position, by using the Edit|Insert
Special Characters menu command, by pressing the Ctrl+. keys or the *B toolbar button.

A pop-up window containing a character map grid will be displayed, allowing the user to select the
appropriate character to be inserted:

gjpnjoporn oo ol 0 | 0| Char code: Ox40
g ojop o000 oo o0 o0

IR g (S & (O[>]+, [-|. |/
01]12[3|4|5]6)7]8[9):]:[<]|=]>]"
@ABCDEFGHIJKLMNO
PORSTUWWXY Z /Y] " _
abcdeflghi |k | mnao
pig o ris tuiww oy z LTI
e
L
R EE BT ® g~ - ®
AR A A R R R A
AAMABEAAECEEEE T T T
BROOOO0 a0 00UYE R
A4la A 848 degle@deiiild
d falad 88 - @000y hy

This function is also available in the pop-up menu, invoked by mouse right clicking in the Editor
window.

© 1998-2008 HP InfoTech S.R.L. Page 13

CodeVisionAVR

2.1.4.9 Using the Auto Complete Functions

The CodeVisionAVR Editor has the possibility to display pop-up hint windows for function parameters
and structure or union members.
These functions can be enabled and configured using the Settings|Editor|Auto Complete menu.

Function parameter auto complete is automatically invoked when the user types the name of a
function defined in the currently edited file, followed by a ‘(‘ auto completion triggering character.
A pop-up hint with parameter list will show like in the example below:

(int a.int b.intc)

fool

The parameter to be specified is highlighted with bold text.

Structure or union members auto complete is invoked after the user writes the name of a
structure/union or pointer to structure/union followed by the ‘.’ or ‘->" auto completion triggering
characters.

A pop-up hint with the members list will show like in the example below:

structl.

The user can select the member to be inserted in the text at the cursor position, by using the arrow
keys, respectively the mouse, and then pressing Enter, respectively the left mouse button.

The structure or union members auto completion works only for global structures/unions defined in the
currently edited source file and after a Project|Compile or Project|Build was performed.

2.1.4.10 Using Code Folding

The CodeVisionAVR Editor has the possibility of displaying staples on the left side of code blocks
delimited by the { } characters.

For each code block there will be also displayed collapse El or expansion & marks on the gutter
located on the left side of the Editor window. Clicking on these marks allow to individually fold or
unfold blocks of code.

The View|Toggle Fold menu and the = toolbar button allow to collapse/expand the block of code
where the cursor is located.

The View|Expand All Folds menu and the T toolbar button allow to expand all folded blocks of
code.

The View|Collapse All Folds menu and the o) toolbar button allow to collapse all blocks of code
delimited by the { } characters.

These commands are also available in the pop-up menu that is invoked by right clicking with the
mouse in the Editor window.

If the Settings|Editor|General|Visual Aids|Save Folded Lines option is enabled, the folded/unfolded
state of the code blocks is saved when the file is closed and it will be restored back, when the file is
opened again.

© 1998-2008 HP InfoTech S.R.L. Page 14

CodeVisionAVR

2.1.5 Saving a File

The currently edited file can be saved by using the File|]Save menu command, by pressing the Ctri+S

keys or by pressing the = button on the toolbar.
When saving, the Editor will create a backup file with a ~ character appended to the extension.
All currently opened files can be saved using the File|Save All menu command, by pressing the

Ctri+Shift+S keys or the &l toolbar button.

2.1.6 Renaming a File

The currently edited file can be saved under a new name by using the File|Save As menu command

or the & toolbar button.
A Save As dialog window will open.

% Save Covavr bin\untitled.c As @
Savein: bin - i_; ; il [l
‘ Marne . Date modified Type Size
kel Mo iterns match your search,

Fecent Places

Computer
AL
==

Metwork

Fl Tl 3

File name: test.c -

Save as fype: C Compiler source file (" .c) - | | Cancel

You will have the possibility to specify the new name and type of the file, and eventually its new
location.

© 1998-2008 HP InfoTech S.R.L. Page 15

CodeVisionAVR

2.1.7 Printing a File

You can print the current file using the File|Print menu command or by pressing the & button on the
toolbar.
The contents of the file will be printed to the Windows default printer.

The paper margins used when printing can be set using the File|Page Setup menu command or the
toolbar button, which opens the Page Setup dialog window.

Page Setup 5
Frinting Optionz b argins
JIPagsHeader 1o 25] Right 13]

| Page Mumbers
- Top: 19 %] Baottorm; 13 %
| Line Mumbers o A] e A]

7 Highlight Syrtax Units: mm = |

| &) Frinter | | o OK | | X Cancel |

The units used when setting the paper margins are specified using the Units list box.
The printer can be configured by pressing the Printer button in this dialog window.
Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

The print result can be previewed using the File|Print Preview menu command or by pressing the
toolbar button.

© 1998-2008 HP InfoTech S.R.L. Page 16

CodeVisionAVR

2.1.8 Closing a File

You can quit editing the current file by using the File]Close menu command or the £ toolbar button.
If the file was modified, and wasn't saved yet, you will be prompted if you want to do that.

Confirm @
'.6.' Save changes to led.c?
[= l | Mo | | Cancel

Pressing Yes will save changes and close the file.
Pressing No will close the file without saving the changes.
Pressing Cancel will disable the file closing process.

2.1.9 Using the Code Templates

The Code Templates window allows easy adding most often used code sequences to the currently
edited file.

Function Call Tree | Code Templates | Clipboard History | | 4|

if)} {
}:

if) |

void main{wvoid) |

}

This is achieved by clicking on the desired code sequence in the Code Templates window and then
dragging and dropping it to the appropriate position in the Editor window.

New code templates can be added to the list by dragging and dropping a text selection from the Editor
window to the Code Templates window.

© 1998-2008 HP InfoTech S.R.L. Page 17

CodeVisionAVR

By right clicking in the Code Templates window you can open a pop-up menu with the following
choices:

e Copy to the Edit Window the currently selected code template

Paste a text fragment from the clipboard to the Code Templates window

Move Up in the list the currently selected code template

Move Down in the list the currently selected code template

Delete the currently selected code template from the list.

2.1.10 Using the Clipboard History

The Clipboard History window allows viewing and accessing text fragments that were recently copied
to the clipboard.

Function Call Tree | Code Templates | Clipboard Histary | 4 | ¢

interropt [TIM1 OVF] wvoid timerl over

vold main(void)

By right clicking in the Clipboard History window you can open a pop-up menu with the following

choices:

e Copy to the Edit Window the currently selected text fragment from the Clipboard History
window

¢ Delete the currently selected text fragment from the list

e Delete All the text fragments from the list.

© 1998-2008 HP InfoTech S.R.L. Page 18

CodeVisionAVR

2.2 Working with Projects

The Project groups the source file(s) and compiler settings that you use for building a particular
program.

2.2.1 Creating a New Project

You can create a new Project using the File]New menu command or by pressing the 3 button on the

toolbar.
A dialog box appears, in which you must select File Type|Project and press the OK button.

(% Create Mew File 3]

File Type
@ Project | x Lancel |

A dialog will open asking you to confirm if you would like to use the CodeWizardAVR to create the new
project.

Cenfirm @

You are about to create a new project.
Do you want to use the CodeWizard AVR?

If you select No then the Create New Project dialog window will open.

© 1998-2008 HP InfoTech S.R.L. Page 19

CodeVisionAVR

You must specify the new Project file name and its location.

Date madified

Type

test

-

& 7

Size

$% Create New Project
Savein: examples
5 Mam E’
cle 2USART_LCD
Recent Places ADCA535
! AVR134
C_ASM
b= DS18B20
"|" Y 051820
Wl 51990
e EEPROM
p L KEYPLAD
g LCDCHAR
Computer LEDDEMO
L- " LED
- MAXK] 241
Metwork
File name:
Save as bpe:

Project files (™ pr)

- |

| Cancel |

The Project file will have the .prj extension.
You can configure the Project by using the Project|Configure menu command or by pressing the &4

toolbar button.

© 1998-2008 HP InfoTech S.R.L.

Page 20

CodeVisionAVR
2.2.2 Opening an Existing Project

You can open an existing Project file using the File|Open menu command or by pressing the &=
button on the toolbar.
An Open dialog window appears.

X Oper =
Look in: MULTFILE - @ T @
5 Marne : Date modified Type Size
= ! | MULTFILE 17.03.2008 14:26 CodeVisionAVR Pr..,

Recent Places

Computer
A
=

Metwark

4 Tl 3

File name: MULTFILE - Cpen

Files of type: Project files {*pr) - | | Cancel |

You must select the file name of the Project you wish to open.
By pressing the Open button you will open the Project file and its source file(s).
You can later configure the Project by using the Project|Configure menu command or by pressing

the $ toolbar button.

© 1998-2008 HP InfoTech S.R.L. Page 21

CodeVisionAVR

2.2.3 Adding Notes or Comments to the Project

With every Project the CodeVisionAVR IDE creates an associated text file where you can place notes

and comments.

You can access this file using the Project|Notes or Windows menu commands.

Project Motes - MULTFILE.PRJ

this is a note

(=l e]S

-

This file can be edited using the standard Editor commands.

The file is automatically saved when you Close the Project or Quit the CodeVisionAVR program.

© 1998-2008 HP InfoTech S.R.L.

Page 22

CodeVisionAVR

2.2.4 Configuring the Project

The Project can be configured using the Project|Configure menu command or the $ toolbar button.

2.2.4.1 Adding or Removing a File from the Project

To add or remove a file from the currently opened project you must use the Project|Configure menu

command or the $ toolbar button.
A Configure Project tabbed dialog window will open.
You must select the Files and Input Files tabs.

] Configure Project MULTFILE.PRJ [5]

Files | C Compiler | Before Build | Afer Build

Input Files | Output Directonies

= @ Chovavrhesamples\MULTFILESMULTFILE. PR

[mainfile.c Fi o Add
= file1.c P

P file2.c =i

b filed.c

| o 0K | ngancell I ? Help

By pressing the Add button you can add a source file to the project.

© 1998-2008 HP InfoTech S.R.L. Page 23

CodeVisionAVR

Multiple files can be added by holding the Ctrl key when selecting in the Add File to Project dialog.

% Add File To Project
Loak in: MULTFILE
> Mame
el b ExE
Recent Places link
obj
Desktop | FILE1
= |=| FILEZ2
Bl B EILE3
Pavel || mainfile
Computer
A
- 4
Metwork
File name:
Files of type:

-

Date madified

17.04.200812:19
17.04,2008 12:19
17.04.200812:19
17.04.200812:19
14.03.2001 0315
14.03.2001 0215
14.03.2001 0315
17.03.2008 14:25

I

"FILE3.C" “FILE1.C" "FILE2 C"

=9

< W5

Type

File Folder
File Folder
File Folder
File Folder
C cornpiler
C cormnpiler
C compiler

C cormnpiler

-

= mv

SOUTCE..
EOUrCE...
EOUrCE..

SOUTCE..

=S

Size

C Compiler files {*.c)

- |

| Cancel

When the project is Open-ed all project files will be opened in the editor.
By clicking on a file, and then pressing the Remove button, you will remove this file from the project.

The project's file compilation order can be changed by clicking on a file and moving it up, respectively
down, using the Move Up, respectively Move Down, buttons.

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

When creating a project with multiple files the following rules must be preserved:
e only .C files must be added to the project's Files list
e there's no need to #include the .C files from the Files list as they will be automatically linked
e data type definitions and function declarations must be placed in header .H files, that will be

#include -ed as necessary in the .C files

e (global variables declarations must be placed in the .C files where necessary

o there's no need to declare global variables, that are not static, in header .H files, because if these
files will be #include -ed more than once, the compiler will issue errors about variable redeclarations.

© 1998-2008 HP InfoTech S.R.L.

Page 24

CodeVisionAVR

2.2.4.2 Setting the Project Output Directories

Selecting the Output Directories tab allows the user to specify distinct directories where will be
placed the files resulted after the compilation and linking.

] Configure Project MULTFILE.PR] (o]

Files C Compiler | Before Build | After Build

Input Files | Dutput Directories

E wecutable Files:

ExE EJ

Object Files: -

obi =
List Files: -
list =
Linker Files:

ik =

|\/ Ok, | |annceI| | ? Help

Pressing the EZ button allows to select an existing directory.

T_he .rom and .hex files resulted after the Build process will be placed in the Executable Files
?’Ir:zcéct))%ct files resulted after the Compile process will be placed in the Object Files directory.

T_he COFF object file that results after the Build process will be also placed in the Object Files
'?t:ic.t:gr.l, st and .map files created during the Build process will be placed in the List Files
?/I;?i(c:)tsxiles created by the linker during the Build process will be placed in the Linker Files directory.

© 1998-2008 HP InfoTech S.R.L. Page 25

CodeVisionAVR

2.2.4.3 Setting the C Compiler Options

To set the C compiler options for the currently opened project you must use the Project|Configure

menu command or the &% toolbar button.

A Configure Project tabbed dialog window will open. You must select the C Compiler and Code

Generation tabs.

Code Generation | Advanced

Chip:| 4Tmegal280 ~|
Clock: 4.000000 %] MHz

temaory Model:

| Smal |
Optirnize far;
| Size - |

Cptimization Level:

| b aximal - |
Pragram Tupe:
|.-i'-.|:||:|li|:ati|:|n - |

[=]printf Features:

it width |

[z]zcant Features:

ik, width |

$ Configure Project MULTFILE.PRJ

File=z C Compiler | Before Build | After Build

Meszagesz | Globally Hdefine | Paths

Rk
Data Stack Size: 1024 bytes
Heap Size: 0 bytes
Intermal Fakd Size: 3192 bytes
External BAM Size: 1] =

External RAk YW ait State

Code Generation
BitWariables Size: |24 w |[¥] Use GPIOR »31

Prarmate char o int | char iz unzigned
| 8 bit enums |¥| Enhanced Core Instructions
| Smart Reqister Allocation
| Autamatic Global Beqgizter Allacation

Store Global Constants in FLASH Memory

I1ze an External Startup Initialization Eile
| Clear Global Y ariables at Program Startup

Stack End Markers

Fil=: Cutput Formatz]: | COF BOM HE® EEP =+

(Rl

\/ 0] | |xgancel| | ? ﬂelp|

You can select the target AVR microcontroller chip by using the Chip combo box.
You must also specify the CPU Clock frequency in MHz, which is needed by the Delay Functions, 1
Wire Protocol Functions and Maxim/Dallas Semiconductor DS1820/DS18S20/DS18B20 Temperature

Sensors Functions.

The required memory model can be selected by using the Memory Model list box.

© 1998-2008 HP InfoTech S.R.L.

Page 26

CodeVisionAVR

The compiled program can be optimized for minimum size, respectively maximum execution speed,
using the Optimize for|Size, respectively Optimize for|Speed, settings.

The amount of code optimization can be specified using the Optimization Level setting.
The Maximal optimization level may make difficult the code debugging with AVR Studio.

For devices that allow self-programming the Program Type can be selected as:

e Application
e Boot Loader

If the Boot Loader program type was selected, a supplementary Boot Loader Debugging in AVR

Studio option is available.

Code Generation | Adyvanced

Chip:|ATmegal2ad +|
Clock: 4.000000 %3] MHz

b emorny todel:

| Smal |
Optirmize far;
| Size - |

Optimization Level:

| b axirmal - |

Program Type:
| Boot Loader - 4096w - |
[z)printf Features:

ik, width |

[2)zcanf Features:

it width - |

ﬂ Configure Project MULTFILE.PRJ

Filez | CCompiler | Befare Build | After Build

tezzages | Globally Hdefine | Paths

Rk
Data Stack Size: 1024 bytes
Heap Size: 0 bytes
Internal Rakd Size: a192 bytes
External FAM Size: 1] butes

External Rakd ' ait State

Code Generation
Bitariables Size: |24 w |[#] Use GPIOR »31

Pramaote char boint | char is unzigned
| 8 bit enumz || Enhanced Core Instruchions
| Smart Register Allocation
o | Automatic Global Beagizter Allocation

Stare Glabal Conztants in FLASH Memar

IJze an External Startup Initialization Eile
| Clear Global Y ariables at Program Startup

Stack End Markers

File: Output Farmat]z): | COF BOM HE* EEP =
Boot Loader Debugaing in &%F Studio

(Bl

[V’ ok l |xgancel| | ? ﬂelp|

If this option is enabled, the compiler will generate supplementary code that allows the Boot Loader to
be source level debugged in the AVR Studio simulator/emulator.

© 1998-2008 HP InfoTech S.R.L.

Page 27

CodeVisionAVR

When programming the chip with the final Boot Loader code, the Boot Loader Debugging option must
be disabled.

The (s)printf features option allows to select which versions of the printf and sprintf Standard C
Input/Oputput Functions will be linked in your project:

¢ int - the following conversion type characters are supported: 'c', 's', 'p', 'i', 'd’, 'u’, X', 'X', '%', no
width or precision specifiers are supported, only the '+' and ' ' flags are supported, no input size
modifiers are supported

¢ int, width - the following conversion type characters are supported: 'c’,'s', 'p', 'i", 'd", 'u’, 'x', 'X', '%',
the width specifier is supported, the precision specifier is not supported, only the '+', -, '0" and ' ' flags
are supported, no input size modifiers are supported

¢ long, width - the following conversion type characters are supported: 'c', 's', 'p', 'i', 'd’, 'u', 'x', "X,
'%' the width specifier is supported, the precision specifier is not supported, only the '+', -, '0"and "'
flags are supported, only the 'l' input size modifier is supported

¢ long, width, precision - the following conversion type characters are supported: 'c’, 's', 'p', "', 'd’,
'u', 'x', 'X', '%', the width and precision specifiers are supported, only the '+','-','0" and ' ' flags are
supported, only the 'l' input size modifier is supported

o float, width, precision - the following conversion type characters are supported: 'c’, 's', 'p', "', 'd’,
u', ‘e, 'E', 'f, X', X', '%', the width and precision specifiers are supported, only the '+','-', '0" and ' ' flags
are supported, only the 'I' input size modifier is supported.

The more features are selected, the larger is the code size generated for the printf and sprintf
functions.

The (s)scanf features option allows to select which versions of the scanf and sscanf Standard C
Input/Oputput Functions will be linked in your project:

¢ int, width - the following conversion type characters are supported: 'c', 's', ', 'd', 'u’, 'X', '%', the
width specifier is supported, no input size modifiers are supported

¢ long, width - the following conversion type characters are supported: 'c', 's', ', 'd’, 'u’, 'X, '%' the
width specifier is supported, only the 'I' input size modifier is supported.

The more features are selected, the larger is the code size generated for the scanf and sscanf
functions.

The Data Stack Size must be also specified.
If the dynamic memory allocation functions from the Standard Library are to be used, the Heap Size

must be also specified.
It can be calculated using the following formulae:

heap size=(n+1)-4+ Zblock_sizei
i=1

where: n is the number of memory blocks that will be allocated in the heap
block _size, is the size of the memory block i

If the memory allocation functions will not be used, then the Heap Size must be specified as zero.

Eventually you may also specify the External RAM Size (in case the microcontroller have external
SRAM memory connected).

The External RAM Wait State option enables the insertion of wait states during access to the external
RAM. This is useful when using slow memory devices.

© 1998-2008 HP InfoTech S.R.L. Page 28

CodeVisionAVR

If an Atmel AT94KO05, AT94K10, AT94K20 or AT94K40 FPSLIC device will be used, than there will be
the possibility to specify the Program RAM Size in Kwords.

] Configure Project MULTFILE.PRJ [E3m]

File= C Compiler | Before Build | After Build

Code Generation | Advanced | Messages | Globally #define | Paths

. Riautd
Chip: | 4T94K - _
Data Stack Size: 1024 bytes
Clock: 4.000000 *] MH
o A : Heap Size: 0 bytes
temory todel Frogram RAM Size: | m - | K.words
| Small h | Cata BaM Size: 16288 bytes
Optirnize far:
| Size hd | Code Generation
Optimization Level: Bit Variables Size: | 16 - |
| b axirnal - | Fromote char to ink | char iz unzigned
| 8 bit enumz || Enhanced Core Instructions
| Smart Reqister Allocation
_ o | Automatic Global Begister Allocation
[z]priritf Features: Store Global Constants in FLASH Memary
| int, width - | Uge an External Startup Initislization File
[sJscanf Features: | Clear Global Wanables at Program Startup
| i - | Stack End Markers

File Dutput Format(s): | COF ROM HEX EEP = |

[\/ 1];8 l |xgancel| | ? ﬂelp|

The maximum size of the global bit variables, which are placed in the GPIOR (if present) and registers
R2 to R14, can be specified using the Bit Variables Size list box.

The Use GPIOR >31 option, when checked, allows using GPIOR located at addresses above 31 for
global bit variables.

Note that bit variables located in GPIOR above address 31 are accessed using the IN, OUT, OR,
AND instructions, which leads to larger and slower code than for bit variables located in GPIOR with
the address range 0...31, which use the SBI, CBI instructions. Also the access to bit variables located
in GPIOR above address 31 is not atomic.

Therefore it is recommended to leave the Use GPIOR >31 option not checked if the number of global
bit variables is small enough and no additional registers are needed for their storage.

© 1998-2008 HP InfoTech S.R.L. Page 29

CodeVisionAVR

Checking the Promote char to int check box enables the ANSI promotion of char operands to int.
This option can also be specified using the #pragma promotechar compiler directive.

Promoting char to int leads to increases code size and lowers speed for an 8 bit chip microcontroller
like the AVR.

In order to assure code compatibility with other C compilers, the Promote char to int option is
enabled by default for newly created projects.

If the char is unsigned check box is checked, the compiler treats by default the char data type as an
unsigned 8 bit in the range 0...255.

If the check box is not checked the char data type is by default a signed 8 bit in the range —128...127.
This option can also be specified using the #pragma uchar compiler directive.

Treating char as unsigned leads to better code size and speed.

If the 8 bit enums check box is checked, the compiler treats the enumerations as being of 8 bit char
data type, leading to improved code size and execution speed of the compiled program. If the check
box is not checked the enumerations are considered as 16 bit int data type as required by ANSI.

The Enhanced Instructions check box allows enabling or disabling the generation of Enhanced Core
instructions for the new ATmega and AT94K FPSLIC devices.

The Smart Register Allocation check box enables allocation of registers R2 to R14 (not used for bit
variables) and R16 to R21 in such a way that 16bit variables will be preferably located in even register
pairs, thus favouring the usage of the enhanced core MOVW instruction for their access. This option is
effective only if the Enhanced Instructions check box is also checked.

If Smart Register Allocation is not enabled, the registers will be allocated in the order of variable
declaration.

The Smart Register Allocation option should be disabled if the program was developed using
CodeVisionAVR prior to V1.25.3 and it contains inline assembly code that accesses the variables
located in reqisters R2 to R14 and R16 to R21.

The registers in the range R2 to R14, not used for bit variables, can be automatically allocated to char
and int global variables and global pointers by checking the Automatic Global Register Allocation
check box.

If the Store Global Constants in FLASH Memory check box is checked, the compiler will treat the
const type qualifier as equivalent to the flash memory attribute and will place the constants in FLASH
memory. If the option is not checked, constants marked with the const type qualifier will be stored in
RAM memory and the ones marked with the flash memory attribute will be stored in FLASH memory.
The Store Global Constants in FLASH Memory option is, by default, not enabled for newly created
projects.

In order to maintain compatibility with V1.xx projects, the Store Global Constants in FLASH Memory
option must be checked.

An external startup.asm file can be used by checking the Compilation|Use an External Startup File
check box.

The Clear Global Variables at Program Startup check box allows enabling or disabling the
initialization with zero of global variables located in RAM and registers R2 to R14 at program startup
after a chip reset. If an external startup.asm file is used, this option must signal to the compiler if the
variable initialization with zero is performed in this file or not.

For debugging purposes you have the option Stack End Markers. If you select it, the compiler will
place the strings DSTACKEND, respectively HSTACKEND, at the end of the Data Stack, respectively
Hardware Stack areas.

When you debug the program with the AVR Studio debugger you may see if these strings are
overwritten, and consequently modify the Data Stack Size.

When your program runs correctly you may disable the placement of the strings in order to reduce
code size.

© 1998-2008 HP InfoTech S.R.L. Page 30

CodeVisionAVR

Using the File Output Format(s) list box you can select the following formats for the files generated

by the compiler:

e COFF (required by the Atmel AVR Studio debugger), ROM, Intel HEX and EEP (required by the

In-System Programmer) ;

e Atmel generic OBJ, ROM, Intel HEX and EEP (required by the In-System Programmer).

The Advanced tab, which is present only in the Advanced and Professional versions of the compiler,

enables more detailed custom configuration like the number and jump type of the interrupt vectors and

memory usage:

$ Configure Project MULTFILE.PRJ

Interrupt Yectors Table

Type of Jump: |JMP

Int. Wectaors in External File

RAM

Compiler for Data Stack, global
vanables, Hardware Stack and
Heap:

Start: 200 b End: 3FFF

File=z C Compiler | Before Build | After Build

Murber of Yectars: a7 Z]

bl |

A&k area to be allocated by the

h

(Rl

Code Generation | Advanced | Messages | Globally fdefine | Paths

W K

| | x Eancel| | ? Help

The Int. Vectors in External File option enables or disables placing the interrupt vectors in an
external vectors.asm file created by the user. If this option is enabled the compiler will not generate
any interrupt vectors by itself as the vectors will be present in the vectors.asm file.

© 1998-2008 HP InfoTech S.R.L.

Page 31

CodeVisionAVR

The Messages tab allows to individually enable or disable various compiler and linker warnings:

] Configure Project MULTFILE.PRJ [5]

Filez | C Compiler | Before Build | After Build
Code Generation | Advanced | Meszages | Globally Hdefine | Paths

| Enable " amings

Warnings:

constant out of range -

pozzible lozs of precisian

array index iz out of range

global vanable address out of range

interrupt vector exceeds the allowable range

uninitialized FLASH memaory

zUspICious poinker conversion

regizter is already allocated

macro waz redefined

function must have a return value

function declared, but not referenced

function parameter not referenced

function parameter name doesn't match it's previous declaration

local vaniable declared, but not referenced

lacal vanable zet, but not uzed

local wariable iz used before it's walue iz set

global variable/constant declared, but not referenced

label declared, but not referenced

emphy ling

expreszion with poszibly no effect

unknown escape seqUENCE

zhift regult will be 0

overflow iz pozzible in 8 bit addition -
L F

m

~ [RIRIREIRIRKRIRIRKRIRIRRIRIRIRRIRIRR

|\/ Ok | |annceI| | ? Help

The generation of warning messages during compilation can be globally enabled or disabled by using
the Enable Warnings check box.

© 1998-2008 HP InfoTech S.R.L. Page 32

CodeVisionAVR

The Globally #define tab allows to #define macros that will be visible in all the project files.
For example:

] Configure Project MULTFILE.PRJ [E3m]

File= C Compiler | Before Build | After Build

Code Generation | Advanced | Messages | Globally Hdefine | Paths
ABC 1234

|\/ dk. | |xgancel| | ? Help

will be equivalent with placing the macro definition:

#define ABC 1234

in each project's program module.

© 1998-2008 HP InfoTech S.R.L. Page 33

CodeVisionAVR

The Paths tabs allows to specify additional paths for #include and library files.
These paths must be entered one per line in the appropriate edit controls.

] Configure Project MULTFILE.PRJ [E3m]

File= C Compiler | Before Build | After Build

Code Generation | Advanced | Messages | Globally #define | Paths

#include paths [one per ling]:

C:hovawrhing
Ay _header_files

Libram paths [one per line:

Chewvawrhlib
Sy _libraries

|\/ dk. | |xgancel| | ? Help

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2008 HP InfoTech S.R.L. Page 34

CodeVisionAVR

2.2.4.4 Executing an User Specified Program before Build

This option is available if you select the Before Build tab in the Project Configure window.
If you check the Execute User's Program option, then a program, that you have previously specified,
will be executed before the compilation/assembly process.

* Configure Project MULTFILE.PRJ ==

Filez | C Compiler| Before Build | After Build

| Emecute Uszer's Program

Program Directory and Filer ame:
Command Line Parameters:

Working Directony:

|v" Q. | |annceI| | ? Help

The following parameters can be specified for the program to be executed:
e Program Directory and File Name

e Program Command Line Parameters

e Program Working Directory.

© 1998-2008 HP InfoTech S.R.L. Page 35

CodeVisionAVR

2.2.4.5 Transferring the Compiled Program to the AVR Chip after
Build

This option is available if you select the After Build tab in the Project Configure window.

] Configure Project MULTFILE.PRJ [E3m]

Filez | C Compiler | Before Build | After Build

| Program the Chip Execute User's Program
+f | berge data from a RO File for FLASH Programming

.ROM File Path: c:\cavrprojectshbootloader bootloader. ram |E;|

Chip Prograrmrming Options

SCK Freq. : | 230400 - [Hz | Program Fuse Bit[z]:
FLASH Lack Bits T CReELOo
@ Mo Protection [CKSEL1=0
o [~ CKSELZ=0
Programming dizabled [T CESEL3=0
Programming and Werfication dizabled F gﬂ%nzg
CKOUT=0
Boot Lock Bit 0 Boaot Lock Bit 1 ||: CEDIVE=0 =
@ BO1=1BO2=1 @ B11=1B12-1 F Ly
BO1=0 BO2=1 B11=0812=1 F v
BO1=0BO2=0 B11=0B12=0 IE D
BO1=1 B02=0 B11=1812=0 |= OCDEN=0

|

[T BODLEVELD=D

o | Check Signature Check Erasure Freserve EEPROM || Vernfy

|\/ ak. | |xgancel| | ? Help

If you check the Program the Chip option, then after successful compilation/assembly your program
will be automatically transferred to the AVR chip using the built-in Programmer software.

The following steps are executed automatically:
e Chip erasure

FLASH and EEPROM blank check

FLASH programming and verification
EEPROM programming and verification
Fuse and Lock Bits programming

© 1998-2008 HP InfoTech S.R.L. Page 36

CodeVisionAVR

The Merge data from a .ROM File for FLASH Programming option, if checked, will merge in the
FLASH programming buffer the contents of the .ROM file, created by the compiler after Make, with the
data from the .ROM file specified in .ROM File Path.

This is useful, for example, when adding a boot loader executable compiled in another project, to an
application program that will be programmed in the FLASH memory.

You can select the type of the chip you wish to program using the Chip combo box.

The SCK clock frequency used for In-System Programming with the STK500, AVRISP or AVRISP Mkl
can be specified using the SCK Freq. listbox. This frequency must not exceed V4 of the chip's clock
frequency.

If the chip you have selected has Fuse Bit(s) that may be programmed, then a supplementary
Program Fuse Bit(s) check box will appear.
If it is checked, than the chip's Fuse Bit(s) will be programmed after Build.

The Fuse Bit(s) can set various chip options, which are described in the Atmel data sheets.

If a Fuse Bit(s) check box is checked, then the corresponding fuse bit will be set to 0, the fuse being
considered as programmed (as per the convention from the Atmel data sheets).

If a Fuse Bits(s) check box is not checked, then the corresponding fuse bit will be set to 1, the fuse
being considered as not programmed.

If you wish to protect your program from copying, you must select the corresponding option using the
FLASH Lock Bits radio box.

If you wish to check the chip's signature before programming you must use the Check Signature
option.

To speed up the programming process you can uncheck the Check Erasure check box.
In this case there will be no verification of the correctness of the FLASH erasure.

The Preserve EEPROM checkbox allows preserving the contents of the EEPROM during chip
erasure.

To speed up the programming process you can uncheck the Verify check box.
In this case there will be no verification of the correctness of the FLASH and EEPROM programming.

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2008 HP InfoTech S.R.L. Page 37

CodeVisionAVR

2.2.4.6 Executing an User Specified Program after Build

This option is available if you select the After Build tab in the Project Configure window.
If you check the Execute User's Program option, then a program, that you have previously specified,
will be executed after the compilation/assembly process.

* Configure Project MULTFILE.PRJ ==

Filez | C Compiler | Before Build | After Build

Program the Chip | Execute zer's Program |$F‘ragram Eettings|

|v" Q. | |annceI| | ? Help

© 1998-2008 HP InfoTech S.R.L. Page 38

CodeVisionAVR

Using the Program Settings button you can modify the:
e Program Directory and File Name

e Program Command Line Parameters

e Program Working Directory

ﬁ User Program Settings 3]

Pragram Directony and FileM ame: -
| ==

Command Line Parameters:

Yworking Directony:

&
[\/ [1]8 l |xgancel|

Pressing the EZ button allows to select a directory and file.
Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2008 HP InfoTech S.R.L. Page 39

CodeVisionAVR

2.2.5 Obtaining an Executable Program

Obtaining an executable program requires the following steps:

1. Compiling the Project's C program modules, using the CodeVisionAVR C Compiler, and obtaining
object files needed by the linker

2. Linking the object files files created during compilation and obtaining a single assembler source
file

3. Assembling the assembler source file, using the Atmel AVR assembler AVRASM2.

Compiling, executes step 1.
Building, executes step 1, 2 and 3.

Compilation is performed only for the program modules that were modified since the previous similar

process.
This leads to significant project build reduction times, compared with the old CodeVisionAVR V1.xx,
where all the program modules were compiled even if they were not changed.

© 1998-2008 HP InfoTech S.R.L. Page 40

CodeVisionAVR

2.2.5.1 Compiling the Project

To compile the Project you must use the Project|Compile File menu command, press the F9 key or
the ™k button of the toolbar. The CodeVisionAVR C Compiler will be executed, producing the object
files needed by the linker.

Compilation will be performed only for the program modules that were modified since the previous
similar process.

The compilation process can be stopped using the Project|Stop Compilation menu command or by
pressing the & button on the toolbar.

After the compilation is complete, an Information window will open, showing the compilation results.

€ Information [£5]

Cormpiler

Chip: ATmegadhlh

Clock frequency: 3686400 MHz
Pragran type: Application
kemorny model: Small

Optimize for: Size

[2]printf features: int, width
[#)zcant featuras: int, width
Pramaote char to ink: Mo

char iz unzigned: Yes

global const stored in FLASH: Mo
2 bit enums: ez

Enhanced core instructions: On
Autornatic regizter allocation: OFf

2M linelz) compiled

Mo erars

Mo warnings

Bit wariables size: 0 botefz]

Drata Stack area: 60k ta DFh

Drata Stack size: 128 botelz)
Eztimated Data Stack usage: 4 byte(s]
Rk Global variables size: 0 bute(s)

Hardware Stack area: EOh ta 26Fh
Hardware Stack size: 384 byte(s]

Heap zize: 0 byte(z]
EEPROM uzage: 0 bypte(z], 0.0% of EEPROM

© 1998-2008 HP InfoTech S.R.L. Page 41

CodeVisionAVR

Eventual compilation errors and/or warnings will be listed in the Message window located under the
Editor window, or in the Code Navigator window.

Meszages

Warning: C:hevavriexampleshLEDed.o[32): alabal vanable "z’ declared, but not referenced

By left clicking with the mouse on the error or warning message, the source line with the problem will
be highlighted.

Right clicking with mouse opens a pop-up menu that contains the option to Copy the error message to
the clipboard:

Mezsages

W arning: C:hovavrexamplesLED4ed. o[32]: global wanable wwz' declared, but not referenced

Copy

The Project|Go to Next Error, respectively Project|Go to Previous Error menu commands, the F8,

respectively Ctrl+F8 keys or the =, respectively 4@ toolbar buttons, allow moving to the next,
respectively previous error message.

The Project|Go to Next Warning, respectively Project|Go to Previous Warning menu commands,

the F4, respectively Ctrl+F4 keys or the @ respectively 4@ toolbar buttons, allow moving to the next,
respectively previous warning message.

If the message refers also to a previous declaration or definition from a file that is different than the
one where the error was signaled, right clicking with the mouse opens a pop-up menu with the Jump
to Previous Declaration or Definition option:

Messages

Emor: C:hovavriexamplesSMIULTFILE “file1. cf3]: function parameter #1 doesn't match it's previous declaration from file: C:hcvavrsexamplesiMULT FILEileT.h,

line: 3

Jumnp to Previcus Declaration or Definition

Copy

Selecting this option will highlight the source line where the previous declaration or definition was
made.

The size of the Message window can be modified using the horizontal slider bar placed between it
and the Editor window.

© 1998-2008 HP InfoTech S.R.L. Page 42

CodeVisionAVR

2.2.5.2 Building the Project

To build the Project you must use the Project|Build menu command, press the Shift+F9 keys or the
“% button of the toolbar. The CodeVisionAVR C Compiler will be executed, producing the object files
needed by the linker.

Compilation will be performed only for the program modules that were modified since the previous
similar process.

If the complete recompilation of all the program modules is needed, then the Project|Build All menu
command or the "2 button of the toolbar must be used.

After successful compilation the object files will be linked and an assembly .asm file will be produced.
If no compilation or linking errors were encountered, then the Atmel AVR assembler AVRASM2 will be
executed, obtaining the output file types specified in Project|Configure|C Compiler|Code
Generation.

The build process can be stopped using the Project|Stop Compilation menu command or by
pressing the & button on the toolbar.

Eventual compilation errors and/or warnings will be listed in the Message window located under the
Editor window, or in the Code Navigator window.

Meszages

Wharning: C:hovawrexampleshLEDYed. o[32] global wanable wyz' declared, but not referenced

The Project|Go to Next Error, respectively Project|Go to Previous Error menu commands, the F8,

respectively Ctrl+F8 keys or the @» respectively 4@ toolbar buttons, allow moving to the next,
respectively previous error message.

The Project|Go to Next Warning, respectively Project|Go to Previous Warning menu commands,

the F4, respectively Ctrl+F4 keys or the E» respectively @ toolbar buttons, allow moving to the next,
respectively previous warning message.

By left clicking with the mouse on the error or warning message, the source line with the problem will
be highlighted.

Right clicking with mouse opens a pop-up menu that contains the option to Copy the error message to
the clipboard:

hMezzages

W arning: C:hovavrexamplessLED\ed.o[32]: global warable sz’ declared, but not referenced

Copy

© 1998-2008 HP InfoTech S.R.L. Page 43

CodeVisionAVR

If the message refers also to a previous declaration or definition from a file that is different than the
one where the error was signaled, right clicking with the mouse opens a pop-up menu with the Jump
to Previous Declaration or Definition option:

Messages

Emar: T4

Jump to Previcus Declaration or Definition

Copy

examples\MULTFILEMle] . 2[3): function parameter #1 doesn't match it's previous declaration from file: C:hevavrsexamples\MULTFILE fled b, line: 3

Selecting this option will highlight the source line where the previous declaration or definition was

made.

After the build process is completed, an Information window will open showing the build results.
Pressing the Compiler tab will display compilation results.

€ Information

Compiler |.-’-'-.sseml:nler I F'rn:ngrammer|

[l

Chip: ATmegadhlh

Clock frequency: 3686400 MHz
Pragran type: Application
kemorny model: Small

Optimize for: Size

[2]printf features: int, width
[#)zcant featuras: int, width
Pramaote char to ink: Mo

char iz unzigned: Yes

global const stored in FLASH: Mo
2 bit enums: ez

Enhanced core instructions: On
Autornatic regizter allocation: OFf

2M linelz) compiled
Mo erars
1 warningls)

Bit wariables size: 0 botefz]

Drata Stack area: 60k ta DFh
Drata Stack size: 128 botelz)
Eztimated Data Stack usage: 4 byte(s]

Rakd Global variables area: EOR ko EOh
Fiakd Global variables size: 1 bpte(z]

Hardware Stack area: ETh to 26Fh
Hardware Stack size: 333 byte(z)

Heap size: 0 byte(z]

EEFPROM uzage: 0 bwte(z], 0.0% of EEPROM
Frogram size: 131 words [262 butes], 3.2% of FLASH

*« Program the chip

| X Cancel

© 1998-2008 HP InfoTech S.R.L.

Page 44

CodeVisionAVR

Pressing the Assembler tab will display assembly results.

€ Information [=5]
Compiler | Aszzembler | Programmer
AVRASH: AYF macro aszembler 2.1.9 [build 30 Jul 5 2006 171:06:15]
Coppright [C] 1995-2006 ATMEL Corporation
ATmegalh1s memony uze summary [bytes]:
Segment Begin End Code Data Used Size UseX
[.cseg] OxO00000 02000106 252 10 262 8192 32%
[dzeg] Ox000060 OxOOO0eT O 1 1 H12 0.2%
[.eseg] 0000000 0R00Q0001 O 1 1 &2 0.2%
Azzembly complete, O errors.
% Program the chip | x Cancel

© 1998-2008 HP InfoTech S.R.L.

Page 45

CodeVisionAVR

Pressing the Programmer tab will display the Chip Programming Counter, which shows how many
times was the AVR chip programmed so far.

€ Information [=5]

Compiler | &ssembler | Frogrammer

Chip Programming Courter; 2

| Set Counter

% Program the chip | x Cancel

Pressing the Set Counter button will open the Set Programming Counter window:

Set Programming Coun.., [£5]

Mew Counter Walue: 0 *_A]

| s/ ok ||anncel|

This dialog window allows setting the new Chip Programming Counter value.

Pressing the Program the chip button allows automatic programming of the AVR chip after
successful build. Pressing Cancel will disable automatic programming.

© 1998-2008 HP InfoTech S.R.L. Page 46

CodeVisionAVR

2.2.5.3 Cleaning Up the Project Output Directories

The various files created during the Project Build process can be deleted using the Project|Clean Up
menu or by pressing the % button on the toolbar.

The following Project Output Directories will be cleaned:

e Object Files directory - all files will be deleted, except the .cof COFF obiject file

e List Files directory - all files will be deleted, except the .asm and .vec assembly source files
e Linker Files directory — all files will be deleted.

© 1998-2008 HP InfoTech S.R.L. Page 47

CodeVisionAVR

2.2.5.4 Using the Code Navigator

The Code Navigator window allows displaying or opening of the project source files, along with errors
or warnings that occured during the compile or build processes.

Code Mavigatar | Code Information | Code Templates | Clipboard Histary

...g;!»,: CodetizsiondyF
-@ Project: LED

T3 Motes
-] lede

—E Errars
o L94: undefined symbol 'k
—@ W arnings
: b E L51: local vaniable 'g' was declared, but not referenced
—@ Headers

~[#] megad515.h
[Other Files

The project's program modules are listed as children of the Project [node.
Other opened files, that are not part of the project, are listed as children of the Other Files [node.
By clicking on a file [node, the appropriate file is maximized or opened.

After a Compile or Build process there is also displayed a list of header .h files that were #included in
the project's program modules during this process.

The headers files are available as children of the Headers El node. By clicking on a header file
node, the appropriate header file is maximized or opened.

If during compilation there are errors or warnings, these are also displayed in the Code Navigator
window.

By clicking on the error & or warning & node, the corresponding source line is highlighted in the
appropriate file.

The Code Navigator tree branches can be expanded, respectively collapsed, by clicking on the +,
respectively -, buttons.

By right clicking in the Code Navigator window you can open a pop-up menu with the following
choices:

Open a file

Save the currently edited file

Save All opened files

Close currently edited file

Close All opened files

Toggle on or off alphabetically sorting the files in the Code Navigator

Toggle on or off expanding the Errors and Warnings branches after a Compile or Build process
Toggle on or off expanding the header file branches.

© 1998-2008 HP InfoTech S.R.L. Page 48

CodeVisionAVR

2.2.5.5 Using the Code Information

The Code Information window allows for easy access to declarations and definitions made in the
currently edited source file.

Code Mavigator | Code Information | Function Call Tree | Code Templates | 4

—D led.c
—@ Includes
- megassl5h
=M} Macros

) move

% Typedefsz
= ---PE abi

-A¥ Global/Static Variables

X led_status - RAM:D0EOK

X w-» EEPROM:0001h

b X Wz -x hob uzed, removed by the linker
- Fi} Functionz

----- FE main[vaoid)

b FEY timer!_overflawvoid)

The Code Information window is accessed using the tab with the same name and appears after the
first Compile or Build process of the currently opened project.

The information is displayed in the form of a tree with several types of nodes:

¢ Includes & node which displays all the header .h files #included in the currently edited source file.
Clicking on a header & node moves the cursor to the corresponding #include directive in the edited
source file.

¢ Macros %0 node which displays all the preprocessor macros defined in the currently edited source
file. Clicking on a macro m node moves the cursor to the corresponding #define directive in the edited
source file.

o Typedefs % node which displays all the data types defined in the currently edited source file.
Clicking on a type definition * node moves the cursor to the corresponding data type definition in the
edited source file. If the defined data type is a structure, union or enumeration, then it's members are
displayed as additional ¢ nodes.

o Global/Static Variables *¥ node which displays all the global and static variables declared in the
currently edited source file. Clicking on a RAM variable ¥ node or EEPROM variable ¥ node moves
the cursor to the corresponding declaration in the edited source file.

¢ Global Constants £ node which displays all the global constants declared in the currently edited
source file. Clicking on a constant # node moves the cursor to the corresponding declaration in the
edited source file.

e Functions ! node which displays all the functions that were defined in the currently edited source
file. Clicking on a function ! node moves the cursor to the corresponding definition in the edited
source file.

The Code Information tree branches can be expanded, respectively collapsed, by clicking on the +,
respectively -, buttons.

© 1998-2008 HP InfoTech S.R.L. Page 49

CodeVisionAVR

By right clicking in the Code Information window you can open a pop-up menu with the following
choices:

e Toggle on or off alphabetically sorting the items in the Code Information tree

e Toggle on or off expanding the Code Information tree branches.

2.2.5.6 Using the Function Call Tree

The Function Call Tree window displays the function call sequence that uses the largest amount of
Data Stack during program execution.

Code Mavigator | Code Information | Function Call Tree | Code Templates | 4

= F1 main

------ & DSTALCK Func.: 0, Total: 0

- F1) timer]_overflow

------ &) DSTACK Func.: 4, Tatal 4

The Function Call Tree window is accessed using the tab with the same name and appears after the
first Compile or Build process of the currently opened project.

The Data Stack usage information is represented in the form of a tree with two types of nodes:

e Function % nodes. Clicking on a function name moves the cursor to the corresponding definition
in the source file.

e DSTACK & nodes display the data stack used by the parent function and the total level of the
Data Stack when the program is executed inside the function.

© 1998-2008 HP InfoTech S.R.L. Page 50

CodeVisionAVR

2.2.6 Closing a Project

You can quit working with the current Project by using the File|Close Project menu command or the
@ toolbar button.

If the Project files were modified, and were not saved yet, you will be asked if you want to do that.

Confirm 3]

'.6.' Save changes to led.c?

[Yes] | Mo | | Cancel

Pressing Yes will save changes and close the project.
Pressing No will close the project without saving the changes.
Pressing Cancel will disable the project closing process.

When saving, the IDE will create a backup file with a .prj~ extension.

© 1998-2008 HP InfoTech S.R.L. Page 51

CodeVisionAVR

2.3 Tools

Using the Tools menu you can execute other programs without exiting the CodeVisionAVR IDE.

2.3.1 The AVR Studio Debugger

The CodeVisionAVR C Compiler is designed to work in conjunction with the Atmel AVR Studio
debugger version 4.14 or later, for which it will generate an extended COFF object file that allows
watching structures and unions.

Older versions of AVR Studio don't support the extended COFF object file format, so these
can't be used with CodeVisionAVR.

Before you can invoke the debugger, you must first specify its location and file name using the
Settings|Debugger menu command.

@& Debugger Settings [mE3m]

Directary and Filenane:
C:\Program Files\AtmelaYR T ooksidwiStudind RS udion |

"

| 4" 1] ||xgancel|| ?Helpl

Pressing the EZ button allows to select the debugger's directory and file.
Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

The debugger is executed by selecting the Tools|Debugger menu command or by pressing the #
button on the toolbar.

© 1998-2008 HP InfoTech S.R.L. Page 52

CodeVisionAVR

2.3.2 The AVR Chip Programmer

The CodeVisionAVR IDE has a built-in In-System AVR Chip Programmer that lets you easily

transfer your compiled program to the microcontroller

for testing.

The Programmer is designed to work with the Atmel STK500, AVRISP, AVRISP Mkll, AVR Dragon,
JTAGICE MkIl, AVRProg (AVR910 application note), Kanda Systems STK200+, STK300, Dontronics
DTO006, Vogel Elektronik VTEC-ISP, Futurlec JRAVR or the MicroTronics ATCPU, Mega2000

development boards.

The type of the used programmer and the printer port can be selected by using the

Settings|Programmer menu command.

The Programmer is executed by selecting the Tools|Chip Programmer menu command or by

pressing the % button on the toolbar.

Checksum: 0000

Chip Programring Options
FLASH Lock Bits

| Check Signature || Check Erasure

%% CodeVisionAVR Chip Programmer - STK500/AVRISP (5]
File Edit Program Read Compare Help
Chip: |.&TmegaEEED T| |§ Program gul |G} Rezet Ehip|
SCK Freq. : | 5700 — | Hz
FLASH EEPROM
Start: 0 h End: 1FFFF h Start: 0 h End: FFF h

Checksum: FOOO0R

| Program Fuze Bit[s]:

@ Mo Pratection E EEEE::?:S -
L CKSELZ=0
Frogramming disabled [CKSEL3<0
Prograrmming and Yerification dizabled F gﬂﬁzg
[T CrouT=0 E
Boat Lack Bit 0 Boat Lack Bit 1 [T CcrDivE=0
O BOI-1B0-1 @ B11-1B12-1 |- S0OTRST-0
B01=0B02=1 B11=0B12=1 |[C BOOTSZ1=0
[T EESAVE=0
BO1=0B02=0 B11=0B12=0 |[7 wDTOM=0
BO1=1 BOZ=0 B11=1 B12=0 F %TéﬁEENN;]D il

—_—

Prezerse EEPROM || Verify

You can select the type of the chip you wish to program using the Chip combo box.

© 1998-2008 HP InfoTech S.R.L.

Page 53

CodeVisionAVR

The SCK clock frequency used for In-System Programming with the STK500, AVRISP or AVRISP Mkl
can be specified using the SCK Freq. listbox. This frequency must not exceed V4 of the chip's clock
frequency.

If the chip you have selected has Fuse Bit(s) that may be programmed, then a supplementary
Program Fuse Bit(s) check box will appear.
If it is checked, than the chip's Fuse Bit(s) will be programmed when the Program|All menu command

is executed or when the * Program All button is pressed.

The Fuse Bit(s) can set various chip options, which are described in the Atmel data sheets.

If a Fuse Bit(s) check box is checked, then the corresponding fuse bit will be set to 0, the fuse being
considered as programmed (as per the convention from the Atmel data sheets).

If a Fuse Bits(s) check box is not checked, then the corresponding fuse bit will be set to 1, the fuse
being considered as not programmed.

If you wish to protect your program from copying, you must select the corresponding option using the
FLASH Lock Bits radio box.

The Programmer has two memory buffers:

e The FLASH memory buffer

e The EEPROM memory buffer.

You can Load or Save the contents of these buffers using the File menu.
Supported file formats are:

e Atmel .rom and .eep

e Intel HEX

e Binary .bin

After loading a file in the corresponding buffer, the Start and End addresses are updated accordingly.
You may also edit these addresses if you wish.

The contents of the FLASH, respectively EEPROM, buffers can be displayed and edited using the
Edit|[FLASH , respectively Editf EEPROM menu commands.

When one of these commands is invoked, an Edit window displaying the corresponding buffer
contents will open:

Edlit FLASH Buffer

x0
0000x
00013
0D0Zx
0003
0004x
00053
alafal >3
0007k
0D08x
0009
000Ax
000Bx
000Cx
000Dk
0D0Ex

i
W
[
b
S
I

bbb by b by b b b b b b b b B3
R R R R R R R B I

R R R R R R

w
-1
I
[
w
o
?]‘al
I
m
w
(]
b
=]
k]

bbb b b b b b b b b b b 0
R R G G R B

B k) ok B k] b ok k| k] k) k| k] Ry
b k) k) k| k] k] B k] B ki k] ok hy

Wi b k) k] k] k] W] k] W] k] k| k] k| R k] R R

T
=
T
=
T
=
T
=
T
=
T
=
T

L T BT = BT B T NP NP N ™ Y S|
S I I R R B R]
R R R R B R |
R R R R R R R R
b k) k] k| k] k] B k] B k| k] ok ky
b k) k) k| k] k] B k] B ki k] ok hy
[I T T T R QR R R Qe R QY B |
R R L R B B]
R R |

R R R R R R]
b k] k] b k| k] k| kb bk ok k
B ow b B ok W] ok k| k] k) b b by
m ow) on oW on] b om] k| ok kb b by b
R R R R
R R R]
b k) bl B k] W] k) k| k] kf k| bk ky
b k) k] b k] W] k| k) k] b b bk k

Wi b k) k] k] k] W] k] W] k] k| k] k| R k] R R
W m Wy g b b by b kb b b b
B ow b B ok W] ok k| k] k) b b by
L BT I TS N TS O TS I T I T
b ow ok b ok b ok k| k] k) k] k] by by

i
i
i
i
i
i
i
i
i
i
i
i
i
i

R R R R
mow) on b on] b)) k) b kb b by b
b k) k] b k] W] k| k) k] b b bk k
L I I I I BT I B A I A A
R R R R
R R R R

W k] k] R k] B k] k| R k] Rk

o
F
T
F
T
F
T
F
T
F
T
F
T
F
T
F
T
F

R R R R R R]
Wbk by b by bt b b b b b b b b b
R R R R R R
Wbk by b by bt b b b b b b b b b
b b k) b k) by k) k] W) ok b k] ko b b by b

ok W] b W] b W b W] ol k] k] kb kb
Wbk b W] W) W) k] W) kg b b b b b kg b
b k) k] k| k] k] k] k] b k] b k| k) k| k] R

000Fx FF FFF FFFF FFF FFF FFFF FFF
0010x FE FEFF FFFF FEF. FFF FFEF FFF.
4 2

|F2 - editz value; Tab - saves edited value: Arow keps, Tab, Shitt-Tab, PgUp. PaDn - moves selection: Mouse right click - fills memary block,

The buffer's contents, at the highlighted address, can be edited by pressing the F2 key and typing in
the new value. The edited value is saved by pressing the Tab or arrow keys.

The highlighted address can be modified using the arrow, Tab, Shift+Tab, PageUp or PageDown
keys.

© 1998-2008 HP InfoTech S.R.L. Page 54

CodeVisionAVR

The Fill Memory Block window can be opened by right clicking in the Edit window:

-

% Fill Memory Block 5]

Start Address: 0 b
End Address: 1FFFF h
Fill % alue: 0 h

| \/ ok | |annceI|

This window lets you specify the Start Address, End Address and Fill Value of the memory area to
be filled.

If you wish to check the chip's signature before any operation you must use the Check Signature
option.

To speed up the programming process you can uncheck the Check Erasure check box.
In this case there will be no verification of the correctness of the FLASH erasure.

The Preserve EEPROM checkbox allows preserving the contents of the EEPROM during chip
erasure.

To speed up the programming process you also can uncheck the Verify check box.
In this case there will be no verification of the correctness of the FLASH and EEPROM programming.

For erasing a chip's FLASH and EEPROM you must select the Program|Erase menu command.
After erasure the chip's FLASH and EEPROM are automatically blank checked.

For simple blank checking you must use the Program|Blank Check menu command.

If you wish to program the FLASH with the contents of the FLASH buffer you must use the
Program|FLASH menu command.

For programming the EEPROM you must use the Program|EEPROM menu command.

After programming the FLASH and EEPROM are automatically verified.

To program the Lock, respectively the Fuse Bit(s) you must use the Program|Fuse Bit(s),
respectively Program|Lock Bits menu commands.

The Program|All menu command allows to automatically:
e Erase the chip

FLASH and EEPROM blank check

Program and verify the FLASH

Program and verify the EEPROM

Program the Fuse and Lock Bits.

If you wish to read the contents of the chip's FLASH, respectively EEPROM, you must use the
Read|FLASH, respectively Read|EEPROM menu commands.

For reading the chip's signature you must use the Read|Chip Signature menu command.

To read the Lock, respectively the Fuse Bits you must use the Read|Lock Bits,

respectively Read|Fuse Bits menu commands.

For some devices there's also the Read|Calibration Byte(s) option available.
It allows reading the value of the calibration bytes of the chip's internal RC oscillator.

© 1998-2008 HP InfoTech S.R.L. Page 55

CodeVisionAVR

If the programmer is an Atmel STK500, AVRISP, AVRISP Mkll or AVRProg (AVR910 application
note), then an additional menu command is present: Read|Programmer's Firmware Version. It
allows reading the major and minor versions of the above mentioned programmers' firmware.

For comparing the contents of the chip's FLASH, respectively EEPROM, with the corresponding
memory buffer, you must use the Compare|FLASH, respectively Compare| EEPROM menu
commands.

For exiting the Programmer and returning to the CodeVisionAVR IDE you must use the File|Close
menu command.

2.3.3 The Serial Communication Terminal

The Terminal is intended for debugging embedded systems, which employ serial communication
(RS232, RS422, RS485).

The Terminal is invoked using the Tools|Terminal menu command or the £ button on the toolbar.

The characters can be displayed in ASCII or hexadecimal format. The display mode can be toggled
using the Hex/ASCII button.
The received characters can be saved to a file using the Rx File button.

Any characters typed in the Terminal window will be transmitted through the PC serial port.

The entered characters can be deleted using the Backspace key.

By pressing the Send button, the Terminal will transmit a character whose hexadecimal ASCII code
value is specified in the Hex Code edit box.

By pressing the Tx File button, the contents of a file can be transmitted through the serial port.

By pressing the Reset button, the AVR chip on the STK200+/300, VTEC-ISP, DT006, ATCPU or
Mega2000 development board is reseted.

At the bottom of the Terminal window there is a status bar in which are displayed the:
computer's communication port;

communication parameters;

handshaking mode;

received characters display mode;

type of emulated terminal;

the state of the transmitted characters echo setting.

© 1998-2008 HP InfoTech S.R.L. Page 56

CodeVisionAVR

2.3.4 Executing User Programs

User programs are executed by selecting the corresponding command from the Tools menu.
You must previously add the Program's name to the menu.

2.3.5 Configuring the Tools Menu

You can add or remove User Programs from the Tools menu by using the Tools|Configure menu
command.
A Configure Tools dialog window, with a list of User Programs, will open.

% Configure Tools ==

= Toolz =
N T oAdd

------ 2l aviasm? exe

|\/ Ok | |annceI| | ? Help

Using the Add button you can add a Program to the Tools menu.
Using the Remove button you can remove a Program from the Tools menu.

© 1998-2008 HP InfoTech S.R.L. Page 57

CodeVisionAVR

Using the Settings button you can modify the:

e Tool Menu Name

e Tool Directory and File Name

e Command Line Parameters

e Working Directory of a selected Program from the list

$T00| Settings 3]

Tool Marme:
avrasms. exe

Tool Directory and Filer ame:
Chowavrbinhavrasm?, exe |EJ

Command Line Parameters:

“Wwharking Directon:
C:veveavrsbint, |EJ

|~./ QK||x§ancel|

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

The command line can accept the following parameters:

%P substitutes the full project path

%p substitutes the project name without path

%h substitutes the name of the .hex file created by the compiler

%e substitutes the name of the .eep file created by the compiler
Y%f<project_file_number> substitutes the project’s source file name without path
%F<project_file_number> substitutes the project’s source file name with full path.

© 1998-2008 HP InfoTech S.R.L.

Page 58

CodeVisionAVR
2.4 IDE Settings

The CodeVisionAVR IDE is configured using the View and Settings menus.

2.4.1 The View Menu

The following settings can be configured using the View menu command:

e The View|Visible Non-Printable Characters option allows to turn on or off the displaying of non-

printable characters in the Editor window. The T toolbar button can be also used for this purpose.

e The View|Toolbar option allows to turn on or off the displaying of the various toolbars containing

the IDE command buttons;

e The View|Code Navigator/Code Information/Code Templates/Clipboard History option allows
to turn on or off the displaying of the Navigator, Code Templates and Clipboard History window
at the left of the Editor window. The [z toolbar button can be also used for this purpose;

e The View|Messages option allows to turn on or off the displaying of the Message window located

under the Editor window. The E toolbar button can be also used for this purpose;

¢ The View|Information Window after Compile/Build option allows to turn on or off the displaying
of the Information window after the Compile or Build processes.

© 1998-2008 HP InfoTech S.R.L. Page 59

CodeVisionAVR

2.4.2 Configuring the Editor

The Editor can be configured using the Settings|Editor menu command.

The Editor configuration changes can be saved, respectively canceled, using the OK, respectively

Cancel buttons.

By pressing the Default button the default Editor settings are restored.

2.4.2.1 General Editor Settings

The following groups of Editor settings can be established by clicking on the General tab:

% Editor Settings @
General | Tewt | Spntax Highlighting | Auto Complete Sample Text:
File Load/S ave 5
| Auto Load Modified Files 3
| Create Backup Files f | i)
&uta Save Interval: Dizabled - - - B - B
T flzsh char *pflash = (flash int *) 0O
Wizual Aids z eeprom int *peeprom = (eeprom int *)
| Show Line Numbers 3
10 void main(woid) -
| Save Bookmarks 11 g ..cl nives E
7| Enable Code Folding 12 | | |int Number = 123;
| Save Folded Lines e int HexNumber = Ox1FLT7;
. 14 float FloatMumber = 0.123e+Z;
Collapse Mark Text: i Window Text - 15[[lchar = = "o-;
Collapse Mark Bg. [] Window - 1g || |char text[] = "Helle werld";
17 while (Number)
Black Staples Caolor: | Silver - 12 | [
) 13 *peeprox++ = *pflash++;
b atching Brace Text: W /indow Text - 20 Hurber--;
Matching Brace Bg.:] Yellow - 55 ol }: -
F 1 3
| o 0K | | X Cancel | | ; Diefault | | ? Help

¢ File Load/Save settings;
e Visual Aids settings.

The File Load/Save settings allow for the following options to be set:

e Auto Load Modified Files enables or disables the automatic reloading, in the CodeVisionAVR
Editor, of source files that were externally modified by some other program (another editor for
example). If this option is disabled, the user will be prompted before the modified file will be reloaded
in the Editor.

e Create Backup Files enables or disables the creation of backup copies of the files modified in the
Editor. Backup copies will have the ~ character appended to their extension.

e Auto Save Interval specifies at which time interval all the modified source files will be
automatically saved by the Editor.

© 1998-2008 HP InfoTech S.R.L. Page 60

CodeVisionAVR

The Visual Aids settings allow for the following options to be set:

e Show Line Numbers enables or disables the displaying of line numbers on the gutter located on
the left side of the Editor windows;

e Save Bookmarks enables or disables saving the bookmarks set in each edited source file;

e Enable Code Folding enables or disables displaying of staples on the left side of code blocks
delimited by the { } characters. If this option is enabled, block collapse/expansion marks will be also
displayed on the gutter located on the left side of the Editor window.

e Save Folded Lines enables or disables saving the state of the folded blocks of lines for each
edited source file;

¢ Collapse Mark Text specifies the text foreground color of the collapse marks;

e Collapse Mark Bg. specifies the text background color of the collapse marks;

¢ Block Staples Color specifies the foreground color of the folding block staples. The background
color of the staples will be the same as the Default Background Color of the Editor window.

¢ Matching Brace Text specifies the text foreground color of the matching braces, which are
automatically highlighted by the Editor when the user places the cursor before them;

¢ Matching Brace Bg. specifies the text background color of the highlighted matching braces.

© 1998-2008 HP InfoTech S.R.L. Page 61

CodeVisionAVR

2.4.2.2 Editor Text Settings

The following Editor settings can be established by clicking on the Text tab:

l‘;&, Editor Settings (=25
General | Text | Spntax Highlighting | Auto Complete Sample Text:
1 T pr
V| Auto Indent | Backzpace Unindents 2
o
Optirmal Fill | Conwvert Tabs to Spaces j
J| Discard Trailing Spaces ‘E = 2 = :
Tab Size: 4 *_A] Block Indent Size: 4 *_A] : flzsh char *pflash = [flash int *)
. i 2 eeprom int *peeprom = (eeprom int *)
Fort: B Courier New - anlSlZE:lE v| 3
Default Text Colar: W indow Text - 10 E"":id main (void) =
11 |H{
Default Background Color: [Window = 12 int Number = 123;
- — 13 int HexMumker = 0xlFR7;
Highlighted Text Color: [Highlight Text - 14 float FloztNumber = 0.1Z3e+Z;
Highlighted Backg. Color. [Highlight -| |RE=Ilctar = = "D's
14 char text[] = "Hello world"™;
Mon-Printable Test Color. [Silver = 17 while (Number)
18 (H [
153 *peeproxr++ = *pflash+t+;
20 Number--;
21| | IE il
221 Ll
P T I
| o 0K | | x Cancel | | ; Detault | | ? Help

¢ Auto Indent enables or disables text auto indenting during file editing;

¢ Backspace Unindents when enabled, sets the Editor to align the insertion point to the previous
indentation level (outdents it) when the user presses the Backspace key, if the cursor is on the first
nonblank character of a line. If this option is disabled, pressing the Backspace key just deletes the
character located on the left of the cursor.

e Optimal Fill enables or disables the beginning of every auto indented line with the minimum
number of characters possible, using tabs and spaces as necessary;

e Convert Tabs to Spaces enables or disables the automatic replacement, while typing, of tab
characters with the appropriate number of spaces, as specified by the Tab Size option;

o Discard Trailing Spaces enables or disables the automatic deletion from the end of each line, of
spaces that are not followed by text,

e Tab Size specifies the number of spaces the Editor cursor is moved when the user presses the
Tab key;

¢ Block Indent Size specifies the number of spaces the Editor indents a marked block of text;

¢ Font specifies the font type used by the Editorl;

o Font Size specifies the font size used by the Editorl;

o Default Text Color specifies the foreground color of the default (normal) text in the Editor and
Terminal windows;

o Default Background Color specifies the background color of the default (normal) text in the Editor
and Terminal windows;

¢ Highlighted Text Color specifies the foreground color of the text highlighted by the user in the
Editor window;

¢ Highlighted Background Color specifies the background color of the text highlighted by the user
in the Editor window;

© 1998-2008 HP InfoTech S.R.L. Page 62

CodeVisionAVR

¢ Non-Printable Text Color specifies the foreground color of the non-printable character markers
displayed in the Editor window when the View|Visible Non-Printable Characters menu option is
checked. The background color of the non-printable character markers will be the same as the Default
Background Color of the Editor window.

2.4.2.3 Syntax Highlighting Settings

The following Editor settings can be established by clicking on the Syntax Highlighting tab:

&% Editor Settings (3]
General | Test | Syntax Highlighting | Auto Complete Sample Text:
1 % Mul -
| Syntax Highlighting Enabled 2
Syrtax Highlighter: | C - | 3
Language element: | Syrmbal - | 5 = kb a k
Text Calar: -ll"""llir-":l':""l"'TEHt = : flzsh char *pflash = (flash int *)
Bal:kgrl:lund |:|:|||:|r: I:l Windl:lw - ; e2Rrom 1nc “peeprom = e2Tom 1nc 7))
Text Attributes IJze Editor Colars for 15; E-.;cid mzin (void))
Bold Text 11 (R4 1
Italic: Bl int Mumber = 123:
13 int HexMumber = 0Ox1F4A7;
Sl ¥| Background 14 | | [float FloatMumber = 0.123e+2;
15 char c = 'D';
IJzer Defined Keywords: 15 char text[] = "Hells world";:
17 while (Number)
18 |6 [
19 *peepror++ = *pflash++
20 Number—--;
21 |5 ¥
22 | Ch =
Fi il 2
H E e
| o 0K | | X LCancel | | ol Default | | ? Help

¢ Syntax Highlighting Enabled enables or disables source file syntax highlighting;

o Syntax Highlighter list box selects the programming language for which the syntax highlighting
settings will be applied. The CodeVisionAVR Editor supports syntax highlighting for the C and Atmel
AVR Assembler programming languages.

e Language Element list box selects the element for which the text colors and attributes will be set;
e Text Color specifies the text foreground color for the above selected Language Element;

e Background Color specifies the text background color for the above selected Language
Element;

o Text Attributes specifies how the text is displayed for the above selected Language Element.
Text attributes can be combined by appropriately checking the Bold, Italic and Underlined check
boxes. The displayed font will be the one selected in the Text|Font settings.

The Text, respectively Background, check boxes from the Use Editor Colors group box, when
checked will set the foreground, respectively background, text colors for the selected Language
Element to the default ones specified in the Text|Default Text Color, respectively Text|Default
Background Color settings.

© 1998-2008 HP InfoTech S.R.L. Page 63

CodeVisionAVR

The User Defined Keywords list can contain additional keywords for which syntax highlighting is
required. Their text colors and attributes can be specified when selecting the Language Element as
User defined keyword.

The results of the applied syntax highlighting settings can be viewed in the Sample Text portion of the
window.

2.4.2.4 Auto Complete Settings

The following Editor settings can be established by clicking on the Auto Complete tab:

&4 Editor Settings [=23]
General | Text | Spntax Highlighting | Auto Complete Sample Text:
1) I -
¥ | Auto Complete Function Parameters 2
o
¥ | Auto Complete Structure or Union Members a
Drelay: 3 = b a E
I—-l T flzsh char *pflash = (f{lash int *)
g eeprom int *peeprom = (eeprom int *)
0.1 zec 1.5 zec 3 . Fesr .
Hint 4/findam 10 E void main(woid) L
Text Colar: W indow Text - 11 |8 {
12 int Humker = 123;
Backaround Calor [] Window - 13 int HexMNumber = 0OxlF27;
14 float FloatHNumber = 0.123e+Z;
15 char o = 'D';
1& char text[] = "Hello world";
17 while (Number)
18 |H (
153 *peeprox++ = *pflash++;
20 Nurmber--;
21 (W i
221 Ll i
F T I
| o 0K | | X Cancel | | ; Diefault | | ? Help |

¢ Auto Complete Function Parameters enables or disables displaying a pop-up hint window with
the function parameters declaration, after the user writes the function name followed by a ‘(* auto
completion triggering character. The function parameter auto completing works only for the functions
defined in the currently edited source file.

e Auto Complete Structure or Union Members enables or disables displaying a pop-up hint
window with the structure/union members list, after the user writes the structure/union or pointer to
structure/union name followed by the *." or *->’ auto completion triggering characters. The structure or
union members auto completion works only for global structures/unions defined in the currently edited
source file and after a Project|Compile or Project|Build was performed.

The Delay slider specifies the time delay that must elapse between entering the auto completion
triggering characters and the displaying of the pop-up hint window. If the user writes any other
character before this time delay, no pop-up hint window will show.

The Hint Window group box allows setting the Text and Background Colors of the auto complete
pop-up hint window.

© 1998-2008 HP InfoTech S.R.L. Page 64

CodeVisionAVR

These colors will be also applied to the character grid pop-up hint window that is invoked using the
Edit|Insert Special Characters menu, the Insert Special Characters right-click pop-up menu or by
pressing the Ctrl+. keys.

2.4.3 Setting the Debugger Path

The CodeVisionAVR C Compiler is designed to work in conjunction with the Atmel AVR Studio
debugger version 4.14 or later.

Before you can invoke the debugger, you must first specify its location and file name using the
Settings|Debugger menu command.

é,& Debugger Settings [E53m]

Directory and Filename:
C:\Program Files\AtmelhvR ToolsdrStudiod AR Studio. |

"

| \/ ok ||anncel|| ?ﬂelpl

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

Pressing the EEZ button opens a dialog window that allows selecting the debugger's directory and
filename.

© 1998-2008 HP InfoTech S.R.L. Page 65

CodeVisionAVR

2.4.4 AVR Chip Programmer Setup

Using the Settings|Programmer menu command, you can select the type of the in-system
programmer that is used, and the computer's port to which the programmer is connected.
The current version of CodeVisionAVR supports the following in-system programmers:

Kanda Systems STK200+ and STK300

Atmel STK500 and AVRISP (serial connection)
Atmel AVRISP Mkl (USB connection)

Atmel AVR Dragon (USB connection)

Atmel JTAGICE MKII (USB connection)

Atmel AVRProg (AVR910 application note)
Dontronics DT006

Vogel Elektronik VTEC-ISP

Futurlec JRAVR

MicroTronics ATCPU and Mega2000

The STK200+, STK300, DT006, VTEC-ISP, JRAVR, ATCPU and Mega2000 in-system programmers
use the parallel printer port.
The following choices are available through the Printer Port radio group box:

e LPT1, at base address 378h;
e LPT2, at base address 278h;
e LPT3, at base address 3BCh.

é&, Prograrmrmer Settings @

AR Chip Programmer Type:
|Kanda Systems STK200+/300 = |

Printer Port: |LF'T'|:3?Eh "|
Delay Muliplier. 1 %]

o | AT megal &9 CEDIVE Fuse Waming

| u./ ok | |anncei | ? ﬂelp|

The Delay Multiplier value can be increased in case of programming problems on very fast machines.
Of course this will increase overall programming time.

The Atmega169 CKDIV8 Fuse Warning check box, if checked, will enable the generation of a
warning that further low voltage serial programming will be impossible for the Atmega169 Engineering
Samples, if the CKDIV8 fuse will be programmed to 0.

For usual Atmega169 chips this check box must be left unchecked.

© 1998-2008 HP InfoTech S.R.L. Page 66

CodeVisionAVR

The STK500, AVRISP and AVRProg programmers use the RS232C serial communication port, which
can be specified using the Communication Port list box.

Eiig« Prograrrmer Settings [E3m]

AWE Chip Programmer Type:
| tmel STKS00/AYRISP v

Communication Port; Comz -

o | ATmegalB9 CEDIWE Fuse ‘Warning

| W 0K | |annce‘ | ? ﬂe|p|

The Atmel AVRISP MkII, AVR Dragon and JTAGICE MKkIl use the USB connection for communication
with the PC.

Usage of this programmer requires the Atmel's AVR Studio V4.14 or later software to be installed on
the PC.

The Atmel AVR Dragon and JTAGICE Mkll can use two programming modes:
o JTAG
e ISP

These can be selected using the Programming Mode list box:

é&, Prograrmrmer Settings @

AR Chip Programmer Type:
| tmel JTAGICE MKIL[USE) |

Prograrming Mode: JTAG -

o | AT megal &9 CEDIVE Fuse Waming

| \/ dk. | |annce‘ | ? HE|F'|

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2008 HP InfoTech S.R.L. Page 67

CodeVisionAVR

2.4.5 Serial Communication Terminal Setup

The serial communication Terminal is configured using the Settings|Terminal menu command.

&% Terminal Settings [
] SR — Handzhaking Appearance

Part [COMI 7] g Hone e .

— = O 25 A]
Baud rate: | 9500 = | zondoff

e BTS/CTS Colurmnz: 80 Z]
Data bits: | & | DTR/DSH - +

N Append LF P

Stop bits: | 1 = | 7] On Reception Font ‘ R ‘
Parity: | i — - | | On Tranzmission

E mulation: | TTY - | | Echo

|\/ 0Ok | |xgancell | ? Help

In the Terminal Settings window you can select the:

computer's communication port used by the Terminal: COM1 to COM6;

Baud rate used for communication: 110 to 115200;

number of data bits used in reception and transmission: 5 to 8;

number of stop bits used in reception and transmission: 1, 1.5 or 2;

parity used in reception and transmission: None, Odd, Even, Mark or Space;

type of emulated terminal: TTY, VT52 or VT100;

type of handshaking used in communication: None, Hardware (CTS or DTR) or Software
(XON/XOFF);

possibility to append LF characters after CR characters on reception and transmission;
enabling or disabling the echoing of the transmitted characters

number of character Rows and Columns in the Terminal window

Font type used for displaying characters in the Terminal window.

Changes can be saved, respectively canceled, using the OK, respectively Cancel buttons.

© 1998-2008 HP InfoTech S.R.L.

Page 68

CodeVisionAVR

2.5 Accessing the Help

The CodeVisionAVR help system is accessed by invoking the Help|Help menu command or by
pressing the 7 toolbar button.

2.6 Connecting to HP InfoTech's Web Site

The Help|HP InfoTech on the Web menu command or the @ toolbar button opens the default web
browser and connects to HP InfoTech's web site http://www.hpinfotech.com

2.7 Quitting the CodeVisionAVR IDE

To quit working with the CodeVisionAVR IDE you must select the File|Exit menu command.
If some source files were modified and were not saved yet, you will be prompted if you want to do that.

© 1998-2008 HP InfoTech S.R.L. Page 69

http://www.hpinfotech.com/

CodeVisionAVR

3. CodeVisionAVR C Compiler Reference

This section describes the general syntax rules for the CodeVisionAVR C compiler.

Only specific aspects regarding the implementation of the C language by this compiler are exposed.
This help is not intended to teach you the C language; you can use any good programming book to do
that.

You must also consult the appropriate AVR data sheets from Atmel.

3.1 The Preprocessor

The Preprocessor directives allows you to:

e include text from other files, such as header files containing library and user function prototypes
e define macros that reduce programming effort and improve the legibility of the source code

e set up conditional compilation for debugging purposes and to improve program portability

e issue compiler specific directives

The Preprocessor output is saved in a text file with the same name as the source, but with the .i
extension.

The #include directive may be used to include another file in your source.
You may nest as many as 300 #include files.
Example:

/* File will be looked for in the /inc directory of the compiler. */
#include <file name>

or

/* File will be looked for in the current project directory.
If it's not located there, then it will be included from
the /inc directory of the compiler. */

#include "file name"

The #define directive may be used to define a macro.
Example:

#define ALFA Oxff

This statement defines the symbol 'ALFA' to the value Oxff.
The C preprocessor will replace 'ALFA’ with 0xff in the source text before compiling.

Macros can also have parameters. The preprocessor will replace the macro with it's expansion and
the formal parameters with the real ones.
Example:

#define SUM(a,b) a+b
/* the following code sequence will be replaced with int i=2+3; */
int 1=SUM (2, 3);

© 1998-2008 HP InfoTech S.R.L. Page 70

CodeVisionAVR

When defining macros you can use the # operator to convert the macro parameter to a character
string.
Example:

#define PRINT MESSAGE (t) printf (#t)

/* oo */
/* the following code sequence will be replaced with printf ("Hello"); */
PRINT MESSAGE (Hello) ;

Two parameters can be concatenated using the ## operator.
Example:

#define ALFA (a,b) a ## b

/* the following code sequence will be replaced with char xy=1; */
char ALFA(x,y)=1;

A macro definition can be extended to a new line by using \ .
Example:

#define MESSAGE "This is a very \
long text..."

A macro can be undefined using the #undef directive.
Example:

#undef ALFA

The #ifdef, #ifndef, #else and #endif directives may be used for conditional compilation.
The syntax is:

#ifdef macro name
[set of statements 1]
#else

[set of statements 2]
#endif

If 'alfa’ is a defined macro name, then the #ifdef expression evaluates to true and the set of
statements 1 will be compiled.

Otherwise the set of statements 2 will be compiled.

The #else and set of statements 2 are optional.

If 'alfa' is not defined, the #ifndef expression evaluates to true.

The rest of the syntax is the same as that for #ifdef.

The #if, #elif, #else and #endif directives may be also used for conditional compilation.

#if expressionl

[set of statements 1]
#elif expression?
[set of statements 2]
#else

[set of statements 3]
#endif

If expression1 evaluates to true, the set of statements 1 will be compiled.
If expression2 evaluates to true, the set of statements 2 will be compiled.
Otherwise the set of statements 3 will be compiled.

The #else and set of statements 3 are optional.

© 1998-2008 HP InfoTech S.R.L. Page 71

CodeVisionAVR

There are the following predefined macros:

__CODEVISIONAVR__ the version and revision of the compiler represented as an integer,
example for V2.01.0 this will be 2010

__STDC__ equalsto 1

__LINE___ the current line number of the compiled file

__FILE__ the current compiled file

_ _TIME__ the current time in hh:mm:ss format

__UNIX_TIME__ unsigned long that represents the number of seconds elapsed since midnight
UTC of 1 January 1970, not counting leap seconds

__DATE__ the current date in mmm dd yyyy format

__BUILD___ the build number

_CHIP_ATXXXXX_ where ATXXXXX is the chip type, in uppercase letters, specified in the
Project|Configure|C Compiler|Code Generation|Chip option

_MCU_CLOCK_FREQUENCY_ the AVR clock frequency specified in the Project|Configure|C
Compiler|Code Generation|Clock option, expressed as an integer in Hz

_MODEL_TINY_ if the program is compiled using the TINY memory model

_MODEL_SMALL_ if the program is compiled using the SMALL memory model

_MODEL_MEDIUM_ if the program is compiled using the MEDIUM memory model

_MODEL_LARGE_ if the program is compiled using the LARGE memory model

_OPTIMIZE_SIZE_ if the program is compiled with optimization for size (Project|Configure|C
Compiler|Code Generation|Optimize for: Size option or #pragma optsize+)

_OPTIMIZE_SPEED _ if the program is compiled with optimization for speed
(Project|Configure|C Compiler|Code Generation|Optimize for: Speed option or #pragma optsize-

_WARNINGS_ON_ if the warnings are enabled by the Project|Configure|C
Compiler|Messages|Enable Warnings option or #pragma warn+

_WARNINGS_OFF_ if the warnings are disabled by the Project|Configure|C
Compiler|Messages|Enable Warnings option or #pragma warn-

_PROMOTE_CHAR_TO_INT_ON_ if the automatic ANSI char to int type promotion is enabled by
the Project|Configure|C Compiler|Code Generation|Promote char to int option or #pragma
promotechar+

_PROMOTE_CHAR_TO_INT_OFF_ if the automatic ANSI char to int type promotion is disabled
by the Project|Configure|C Compiler|Code Generation|Promote char to int option or #pragma
promotechar-

_ENHANCED_CORE_ if the program is compiled using the enhanced core instructions available
in the new ATmega chips

_HEAP_START_ the heap starting address

_HEAP_SIZE_ the heap size specified in the Project|Configure|C Compiler|Code
Generation|Heap size option

_UNSIGNED_CHAR_ if the Project|Configure|C Compiler|Code Generation|char is unsigned
compiler option is enabled or #pragma uchar+ is used

_8BIT_ENUMS _ if the Project|Configure|C Compiler|Code Generation|8 bit enums compiler
option is enabled or #pragma 8bit_enums+ is used.

The #line directive can be used to modify the predefined __LINE__ and __FILE__ macros.
The syntax is:

#line integer constant ["file name"]
Example:
/* This will set _ LINE to 50 and

__FILE to "file2.c" */
#line 50 "file2.c"

/* This will set LINE to 100 */
#1ine 100

© 1998-2008 HP InfoTech S.R.L. Page 72

CodeVisionAVR

The #error directive can be used to stop compilation and display an error message.
The syntax is:

#error error message
Example:
#error This is an error!

The #warning directive can be used to display a warning message.
The syntax is:

#warning warning message
Example:
#warning This is a warning!

The #message directive can be used to display a message dialog window in the CodeVisionAVR IDE.
The syntax is:

#message general message
Example:

#message Hello world

The #pragma directive allows compiler specific directives.
You can use the #pragma warn directive to enable or disable compiler warnings.
Example:

/* Warnings are disabled */
#pragma warn-
/* Write some code here */

/* Warnings are enabled */
#pragma warn+

The compiler's code optimizer can be turned on or off using the #pragma opt directive. This directive
must be placed at the start of the source file.

The default is optimization turned on.

Example:

/* Turn optimization off, for testing purposes */
#pragma opt-

or

/* Turn optimization on */
#pragma opt+

If the code optimization is enabled, you can optimize some portions or all the program for size or
speed using the #pragma optsize directive.

The default state is determined by the Project|Configure|C Compiler|Code
Generation|Optimization menu setting.

© 1998-2008 HP InfoTech S.R.L. Page 73

CodeVisionAVR

Example:

/* The program will be optimized for minimum size */
#pragma optsize+

/* Place your program functions here */

/* Now the program will be optimized for maximum execution speed */
#pragma optsize-

/* Place your program functions here */

The automatic saving and restoring of registers affected by the interrupt handler, can be turned on or
off using the #pragma savereg directive.
Example:

/* Turn registers saving off */
#pragma savereg-

/* interrupt handler */
interrupt [1] void my irg(void) {
/* now save only the registers that are affected by the routines in the
interrupt handler, for example R30, R31 and SREG */
#asm
push r30
push r31
in r30, SREG
push r30
#endasm

/* place the C code here */
VA
/* now restore SREG, R31 and R30 */
#asm
pop r30
out SREG, r30
pop r31l
pop r30
#endasm
}
/* re-enable register saving for the other interrupts */
fpragma savereg+

The default state is automatic saving of registers during interrupts.
The #pragma savereg directive is maintained only for compatibility with versions of the compiler prior
to V1.24.1. This directive is not recommended for new projects.

The automatic allocation of global variables to registers can be turned on or off using the #pragma
regalloc directive.

The default state is determined by the Project|Configure|C Compiler|Code Generation|Automatic
Global Register Allocation check box.

Example:

/* the following global variable will be automatically
allocated to a register */

#pragma regalloc+

unsigned char alfa;

© 1998-2008 HP InfoTech S.R.L. Page 74

CodeVisionAVR

/* the following global variable will not be automatically
allocated to a register and will be placed in normal RAM */
#pragma regalloc-

unsigned char beta;

The ANSI char to int operands promotion can be turned on or off using the #pragma promotechar
directive.
Example:

/* turn on the ANSI char to int promotion */
#pragma promotechar+

/* turn off the ANSI char to int promotion */
#pragma promotechar-

This option can also be specified in the Project|Configure|C Compiler|Code Generation|Promote
char to int menu.

Treating char by default as an unsigned 8 bit can be turned on or off using the #pragma uchar
directive.
Example:

/* char will be unsigned by default */
#pragma uchar+

/* char will be signed by default */
#pragma uchar-

This option can also be specified in the Project|Configure|C Compiler|Code Generation|char is
unsigned menu.

The #pragma library directive is used for specifying the necessity to compile/link a specific library file.
Example:

#pragma library mylib.lib

The #pragma glbdef+ directive is used for compatibility with projects, created with versions of
CodeVisionAVR prior to V1.0.2.2, where the Project|Configure|C Compiler|Global #define option
was enabled.

It signals the compiler that macros are globally visible in all the program modules of a project.

This directive must be placed in beginning of the first source file of the project.

By default this directive is not active, so macros are visible only in the program module where they are
defined.

The #pragma vector directive is used for specifying that the next declared function is an interrupt
service routine.
Example:

/* Vector numbers are for the AT90S8515 */
/* Specify the vector number using the #pragma vector directive */
#pragma vector=8

/* Called automatically on TIMERO overflow */

__interrupt void timerO overflow(void) {
/* Place your code here */

}

© 1998-2008 HP InfoTech S.R.L. Page 75

CodeVisionAVR

The #pragma vector preprocessor directive and the __interrupt keyword are used for compatibility
with other C compilers for the Atmel AVR.

The #pragma keep+ directive forces a function, global variable or global constant to be linked even if
it wasn't used anywhere in the program.
Example:

/* force the next function to be linked even if it's not used */
#pragma keep+

int funcl (int a, int b)
{

return atb;

}

/* the next function will not be linked if it's not used
#pragma keep-

int func2(int a, int b)
{

return a-b;

}

3.2 Comments

The character string "/*" marks the beginning of a comment.
The end of the comment is marked with ™*/".
Example:

/* This is a comment */
/* This 1is a

multiple line comment */

One-line comments may be also defined by using the string "//".
Example:

// This i1s also a comment

Nested comments are not allowed.

© 1998-2008 HP InfoTech S.R.L. Page 76

CodeVisionAVR

3.3 Reserved Keywords

Following is a list of keywords reserved by the compiler.
These can not be used as identifier names.

break
bit

bool
_Bool
case
char
const
continue
default
defined
do
double
eeprom
___eeprom
else
enum
extern
flash
__flash
float
for

goto

if
inline
int
interrupt
__interrupt
long
register
return
short
signed
sizeof
sfrb
sfrw
static
struct
switch
typedef
union
unsigned
void
volatile
while

© 1998-2008 HP InfoTech S.R.L.

Page 77

CodeVisionAVR

3.4 Identifiers

An identifier is the name you give to a variable, function, label or other object.

An identifier can contain letters (A...Z, a...z) and digits (0...9), as well as the underscore character (_).
However an identifier can only start with a letter or an underscore.

Case is significant; i.e. variable1 is not the same as Variable1.

Identifiers can have up to 64 characters.

3.5 Data Types

The following table lists all the data types supported by the CodeVisionAVR C compiler, their range of
possible values and their size:

Type Size (Bits) | Range

bit 1 0,1

bool, Bool 8 0,1

char 8 -128 to 127

unsigned char 8 0 to 255

signed char 8 -128 to 127

int 16 -32768 to 32767

short int 16 -32768 to 32767

unsigned int 16 0 to 65535

signed int 16 -32768 to 32767

long int 32 -2147483648 to 2147483647
unsigned long int 32 0 to 4294967295

signed long int 32 -2147483648 to 2147483647
float 32 11.175e-38 to +3.402e38
double 32 11.175e-38 to +3.402e38

The bit data type is not allowed as the type of an array element or structure/union member.
If the Project|Configure|C Compiler|Code Generation|char is unsigned option is checked or
#pragma uchar+ is used, then char has by default the range 0..255.

© 1998-2008 HP InfoTech S.R.L. Page 78

CodeVisionAVR

3.6 Constants

Integer or long integer constants may be written in decimal form (e.g. 1234), in binary form with 0b
prefix (e.g. 0b101001), in hexadecimal form with 0x prefix (e.g. 0xff) or in octal form with 0-prefix (e.g.
0777).

Unsigned integer constants may have the suffix U (e.g. 10000U).

Long integer constants may have the suffix L (e.g. 99L).

Unsigned long integer constants may have the suffix UL (e.g. 99UL).

Floating point constants may have the suffix F (e.g. 1.234F).

Character constants must be enclosed in single quotation marks. E.g. 'a'.

Literal string constants must be enclosed in double quotation marks. E.g. "Hello world".

Constant expressions are automatically evaluated during compilation.

Program constants can be declared as global (accessible to all the functions in the program) or local
(accessible only inside the function they are declared).
The constant declarations syntax is similar to that of variables, but preceded by the const keyword:

const <type definition> <identifier> = constant expression;

Example:

/* Global constants declaration */

const char char constant='a';

const int b=1234+5;

const long long int constantl=99L;

const long long int constant2=0x10000000;
const float pi=3.14;

void main (void) {

/* Local constants declaration */
const long £=22222222;

const float x=1.5;

}

Constants can be grouped in arrays, which can have up to 64 dimensions.
The first element of an array has always the index 0.
Example:

const char string constant2[]="This is a string constant";
const int abc[3]={1,2,3};
/* The first two elements will be 1 and 2,
the rest will be 0 */
const int integer array2[10]={1,2};
/* multidimensional array */
const int multidim array([2][3]1={{1,2,3},{4,5,6}};

If the Project|Configure|C Compiler|Code Generation|Store Global Constants in FLASH Memory
option is enabled, global constants that were declared using the const keyword will be placed by the
compiler in FLASH memory.

If the above option is not enabled, global constants declared using the const keyword will be located
in RAM memory.

Local constants will be always placed in RAM memory.

© 1998-2008 HP InfoTech S.R.L. Page 79

CodeVisionAVR

The flash or __flash keywords can be used to specify that a constant must be placed in FLASH
memory, no matter what is the state of the Store Global Constants in FLASH Memory option:

flash <type definition> <identifier> = constant expression;
__flash <type definition> <identifier> = constant expression;
Example:

flash int integer constant=1234+5;

flash char char constant='a';

flash long long int constantl=99L;

flash long long int constant2=0x10000000;
flash int integer arrayl[]={1,2,3};

flash char string constantl[]="This is a string constant located in FLASH";

In order to preserve valuable RAM memory, CodeVisionAVR automatically places in FLASH memory
the constant literal char strings, enclosed in double quotation marks, that are passed as function

arguments,.
Example:

/* this function displays a string located in RAM */
void display ram(char *s) {

/X oo, */

/* this function displays a string located in FLASH */
void display flash(flash char *s) {

/* oo, */

void main (void) {

/* this will not work !!!
because the function addresses the string as beeing
located in RAM, but the literal string "Hello world"
is constant and is placed in FLASH */

display ram("Hello world");

/* this will work !!!
because the function addresses the literal string
as beeing located in FLASH */

display flash("Hello world");

}

© 1998-2008 HP InfoTech S.R.L.

Page 80

CodeVisionAVR

3.7 Variables

Program variables can be global (accessible to all the functions in the program) or local (accessible
only inside the function they are declared).

If not specifically initialized, the global variables are automatically set to 0 at program startup.

The local variables are not automatically initialized on function call.

The syntax is:

[<memory attribute>] [<storage modifier>] <type definition> <identifier>
[= constant expression];

Example:

/* Global variables declaration */
char a;

int Db;

/* and initialization */

long ¢c=1111111;

void main (void) {

/* Local variables declaration */
char d;

int e;

/* and initialization */

long £=22222222;

}

Variables can be grouped in arrays, which can have up to 64 dimensions.

The first element of an array has always the index 0.

If not specifically initialized, the elements of global variable arrays are automatically set to 0 at
program startup.

Example:

/* All the elements of the array will be 0 */
int global arrayl[32];

/* Array is automatically initialized */
int global array2[]={1,2,3};

int global array3[4]={1,2,3,4};

char global array4[]="This is a string";

/* Only the first 3 elements of the array are
initialized, the rest 29 will be 0 */
int global array5[32]={1,2,3};

/* Multidimensional array */
int multidim array([2][31={{1,2,3},{4,5,6}};

void main (void) {
/* local array declaration */
int local arrayl[10];

/* local array declaration and initialization */
int local array2[3]1={11,22,33};
char local array3[7]="Hello";

}

© 1998-2008 HP InfoTech S.R.L. Page 81

CodeVisionAVR

Local variables that must conserve their values during different calls to a function must be declared as
static. Example:

int alfa(void) {

/* declare and initialize the static variable */
static int n=1;

return nt++;

}

void main (void) {
int 1i;

/* the function will return the value 1 */
i=alfal();

/* the function will return the value 2 */
i=alfal();
}

If not specifically initialized, static variables are automatically set to 0 at program startup.

Variables that are declared in other files must be preceded by the extern keyword.
Example:

extern int xyz;
/* now include the file which contains
the variable xyz definition */

#include <file xyz.h>

To instruct the compiler to allocate a variable to registers, the register modifier must be used.
Example:

register int abc;

The compiler may automatically allocate a variable to registers, even if this modifier is not used.

The volatile modifier must be used to warn the compiler that it may be subject to outside change
during evaluation.

Example:

volatile int abc;

Variables declared as volatile will not be allocated to registers.

All the global variables, not allocated to registers, are stored in the Global Variables area of RAM.
All the local variables, not allocated to registers, are stored in dynamically allocated space in the Data
Stack area of RAM.

If a global variable declaration is preceded by the eeprom or __eeprom memory attribute, the variable
will be located in EEPROM.

Example:

eeprom float xyz=12.9;
__eeprom int w([5]1={1,2,3,4,5};

© 1998-2008 HP InfoTech S.R.L. Page 82

CodeVisionAVR

3.7.1 Specifying the RAM and EEPROM Storage Address for Global

Variables

Global variables can be stored at specific RAM and EEPROM locations at design-time using the @

operator.
Example:

/* the integer variable "a" is stored

in RAM at address 80h */
int a @0x80;

/* the structure "alfa" is stored
in RAM at address 90h */
struct sl {
int a;
char c;
} alfa @0x90;

/* the float variable "b" is stored
in EEPROM at address 10h */
float b @0x10;

/* the structure "beta" is stored
in RAM at address 20h */
eeprom struct s2 {
int 1i;
long 3j;
} beta Q0x20;

© 1998-2008 HP InfoTech S.R.L.

Page 83

CodeVisionAVR

3.7.2 Bit Variables

The global bit variables located in the GPIOR register(s) and R2 to R14 memory space.
These variables are declared using the bit keyword.
The syntax is:

bit <identifier>;
Example:

/* declaration and initialization for an ATtiny2313 chip
which has GPIOR0O, GPIOR1 and GPIOR2 registers */

bit alfa=1; /* bit0 of GPIORO */

bit beta; /* bitl of GPIOR0O */

void main (void)
{
if (alfa) beta=!beta;

Memory allocation for the global bit variables is done, in the order of declaration, starting with bit 0 of
GPIORQO, then bit 1 of GPIORO0 and so on, in ascending order.

After all the GPIOR registers are allocated, further bit variables are allocated in R2 up to R14.

If the chip does not have GPIOR registers, the allocation begins directly from register R2.

The size of the global bit variables allocated to the program can be specified in the
Project|Configure|C Compiler|Code Generation|Bit Variables Size list box.

This size should be as low as possible, in order to free registers for allocation to other global variables.
If not specifically initialized, the global bit variables are automatically set to 0 at program startup.

The compiler allows also to declare up to 8 local bit variables which will be allocated in register R15.
Example:

void main (void)

{

bit alfa; /* bit 0 of R15 */
bit beta; /* bit 1 of R15 */
/* .. */

}

In expression evaluation bit variables are automatically promoted to unsigned char.

As there is no support for the bit data type in the COFF object file format, the CodeVisionAVR compiler
generates debugging information for the whole register where a bit variable is located.

Therefore when watching bit variables in the AVR Studio debugger, the value of the register is
displayed instead of a single bit from it.

However it is quite simple to establish the value of the bit variable based on the register bit number
allocated for it, which is displayed in the Code Information tab of the CodeVisionAVR IDE, and the
register value displayed in hexadecimal in AVR Studio's Watch window.

© 1998-2008 HP InfoTech S.R.L. Page 84

CodeVisionAVR

3.7.3 Allocation of Variables to Registers

In order to fully take advantage of the AVR architecture and instruction set, the compiler allocates
some of the program variables to chip registers.

The registers from R2 up to R14 can be allocated for global bit variables.

The register R15 can be allocated to local bit variables.

You may specify how many registers in the R2 to R14 range are allocated for global bit variables
using the Project|Configure|C Compiler|Code Generation|Bit Variables Size list box. This value
must be as low as required by the program.

If the Project|Configure|C Compiler|Code Generation|Automatic Global Register Allocation
option is checked or the #pragma regalloc+ compiler directive is used, the rest of registers in the R2
to R14 range, that aren't used for global bit variables, are allocated to char and int global variables
and global pointers.

If the Project|Configure|C Compiler|Code Generation|Smart Register Allocation option is
checked, the allocation of registers R2 to R14 (not used for bit variables) is performed in such a way
that 16bit variables will be preferably located in even register pairs, thus favouring the usage of the
enhanced core MOVW instruction for their access.

Otherwise the allocation is performed in order of variable declaration until the R14 register is allocated.

If the automatic register allocation is disabled, you can use the register keyword to specify which
global variable to be allocated to registers.
Example:

/* disable automatic register allocation */

#pragma regalloc-

/* allocate the variable 'alfa' to a register */

register int alfa;

/* allocate the variable 'beta' to the register pair R10, R11 */
register int beta @10;

Local char, int and pointer local variables are allocated to registers R16 to R21.

If the Project|Configure|C Compiler|Code Generation|Smart Register Allocation option is
checked, the allocation of these registers for local variables is performed in such a way that 16bit
variables will be preferably located in even register pairs, thus favouring the usage of the enhanced
core MOVW instruction for their access.

Otherwise the local variables are automatically allocated to registers in the order of declaration.

The Project|Configure|C Compiler|Code Generation|Smart Register Allocation option should be
disabled if the program was developed using CodeVisionAVR prior to V1.25.3 and it contains inline
assembly code that accesses the variables located in registers R2 to R14 and R16 to R21.

© 1998-2008 HP InfoTech S.R.L. Page 85

CodeVisionAVR

3.7.4 Structures

Structures are user-defined collections of named members.

The structure members can be any of the supported data types, arrays of these data types or pointers
to them.

Structures are defined using the struct reserved keyword.

The syntax is:

[<memory attribute>] struct [<structure tag-name>] {
[<type> <variable-name>[,<variable-name>, ...]];
[<type> [<bitfield-id>]:<width>[, [<bitfield-id>]:<width>, ...11;

} [<structure variables>];
Example:

/* Global structure located in RAM */
struct ram structure {

char a,b;

int c¢;

char d[30],e[10];

char *pp;

} sr;

/* Global constant structure located in FLASH */
flash struct flash structure {

int a;

char b[30], c[10];

} ost;

/* Global structure located in EEPROM */
eeprom struct eeprom structure {

char a;

int b;

char c[15];

} se;

void main (void) {

/* Local structure */

struct local structure {
char a;
int b;
long c;
}osl;

The space allocated to the structure in memory is equal to sum of the sizes of all the members.

© 1998-2008 HP InfoTech S.R.L. Page 86

CodeVisionAVR

Structures can be grouped in unidimmensional arrays.
Example how to initialize and access an global structure array stored in EEPROM:

/* Global structure array located in EEPROM */

eeprom struct eeprom structure {

char a;
int b;
char c[15];
}osel2]={{"
{l
void main (void) {

char k1,k2,k3,k4;

int i1, i2;

/* define a pointer to the structure */

,"Hello"},
"world"}};

struct eeprom structure eeprom *ep;

/* direct access to structure members */

kl=se[0].a;
il=se[0].b;
k2=se[0].c[2];
k3=se[l].a;
i2=se[1l] .b;
kd=se[l].c[2];

/* same access to structure members using a pointer */
ep=&se; /* initialize the pointer with the structure address */

kl=ep->a;
il=ep->b;
k2=ep->c[2];

++ep; /* increment the pointer */

k3=ep->a;
i2=ep->b;
kd=ep->c[2];
}

Because some AVR devices have a small amount of RAM, in order to keep the size of the Data Stack
small, it is recommended not to pass structures as function parameters and use pointers for this

purpose.
Example:

struct alpha ({
int a,b, c;
} s={2,3};
/* define the function */

struct alpha *sum struct (struct alpha *sp)

/* member c=member a + member b */

sp->c=sp->a + sp->b;

/* return a pointer to the structure */

return sp;

}

void main (void) {

int i;

/* s->c=s->a + s->b */
/* i=s->c */
i=sum_struct (&s)->c;

}

© 1998-2008 HP InfoTech S.R.L.

Page 87

CodeVisionAVR

Structure members can be also declared as bit fields, having a width from 1 to 32.
Bit fields are allocated in the order of declaration starting from the least significant bit.

Example:

/* this structure will occupy 1 byte in RAM
as the bit field data type is unsigned char */
struct alphal {
unsigned char a:1; /* bit 0 */
unsigned char b:4; /* bits 1..4 */
unsigned char c:3; /* bits 5..7 */

}i

/* this structure will occupy 2 bytes in RAM
as the bit field data type is unsigned int */
struct alpha2 ({
unsigned int a:2; /* bits 0..1 */
unsigned int b:8; /* bits 2..9 */
unsigned int c:4; /* bits 10..13 */
/* bits 14..15 are not used */

}i

/* this structure will occupy 4 bytes in RAM
as the bit field data type is unsigned long */
struct alpha3 {
unsigned long a:10; /* bits 0..9 */
unsigned long b:8; /* bits 10..17 */
unsigned long c:6; /* bits 18..23 */
/* bits 24..31 are not used */

}i

© 1998-2008 HP InfoTech S.R.L. Page 88

CodeVisionAVR

3.7.5 Unions

Unions are user-defined collections of named members that share the same memory space.

The union members can be any of the supported data types, arrays of these data types or pointers to
them.

Unions are defined using the union reserved keyword.

The syntax is:

[<memory attribute>] [<storage modifier>] union [<union tag-name>] {
[<type> <variable-name>[,<variable-name>, ...]];
[<type> <bitfield-id>:<width>[,<bitfield-id>:<width>, ...11];

} [<union variables>];

The space allocated to the union in memory is equal to the size of the largest member.
Union members can be accessed in the same way as structure members. Example:

/* union declaration */

union alpha {
unsigned char 1sb;
unsigned int word;
} data;

void main (void) {
unsigned char k;

/* define a pointer to the union */
union alpha *dp;

/* direct access to union members */
data.word=0x1234;
k=data.lsb; /* get the LSB of 0x1234 */

/* same access to union members using a pointer */

dp=&data; /* initialize the pointer with the union address */
dp->word=0x1234;

k=dp->1sb; /* get the LSB of 0x1234 */

}

Because some AVR devices have a small amount of RAM, in order to keep the size of the Data Stack
small, it is recommended not to pass unions as function parameters and use pointers for this purpose.
Example:

#include <stdio.h> /* printf */
union alpha {
unsigned char 1sb;
unsigned int word;
} data;
/* define the function */
unsigned char low(union alpha *up) {
/* return the LSB of word */
return up->1sb;
}
void main (void) {
data.word=0x1234;
printf ("the LSB of %x is %2x",data.word, low(&data));
}

© 1998-2008 HP InfoTech S.R.L. Page 89

CodeVisionAVR

Union members can be also declared as bit fields, having a width from 1 to 32.
Bit fields are allocated in the order of declaration starting from the least significant bit.

Example:

/* this union will occupy 1 byte in RAM
as the bit field data type is unsigned char */
union alphal {
unsigned char a:1l; /* bit 0 */
unsigned char b:4; /* bits 0..3 */
unsigned char c:3; /* bits 0..2 */

s

/* this union will occupy 2 bytes in RAM
as the bit field data type is unsigned int */
union alpha?2 {
unsigned int a:2; /* bits 0..1 */
unsigned int b:8; /* bits 0..7 */
unsigned int c:4; /* bits 0..3 */
/* bits 8..15 are not used */

}i

/* this union will occupy 4 bytes in RAM
as the bit field data type is unsigned long */
union alpha3 {
unsigned long a:10; /* bits 0..9 */
unsigned long b:8; /* bits 0..7 */
unsigned long c:6; /* bits 0..5 */
/* bits 10..31 are not used */

}i

© 1998-2008 HP InfoTech S.R.L. Page 90

CodeVisionAVR

3.7.6 Enumerations

The enumeration data type can be used in order to provide mnemonic identifiers for a set of char or
int values.

The enum keyword is used for this purpose.

The syntax is:

[<memory attribute>] [<storage modifier>] enum [<enum tag-name>] {
[<constant-name [[=constant-initializer], constant-name, ...]>]}
[<enum variables>];

Example:

/* The enumeration constants will be initialized as follows:
sunday=0 , monday=1 , tuesday=2 ,..., saturday=6 */
enum days {
sunday, monday, tuesday, wednesday,
thursday, friday, saturday} days of week;

/* The enumeration constants will be initialized as follows:
january=1 , february=2 , march=3 ,..., december=12 */
enum months {
january=1, february, march, april, may, june,
july, august, september, october, november, december}
months of year;

void main {

/* the variable days of week is initialized with
the integer value 6 */

days of week=saturday;

}

Enumerations can be stored in RAM, EEPROM or FLASH.

The eeprom or __eeprom memory attributes must be used to specify enumeration storage in
EEPROM.

Example:

eeprom enum days {
sunday, monday, tuesday, wednesday,
thursday, friday, saturday} days of week;

The flash or __flash memory attributes must be used to specify enumeration storage in FLASH
memory.
Example:

flash enum months {
january, february, march, april, may, Jjune,
july, august, september, october, november,
december}
months of year;

It is recommended to treat enumerations as having 8 bit char data type, by checking the 8 bit enums
check box in Project|Configure|CompilerCode Generation. This will improve the size and execution
speed of the compiled program.

© 1998-2008 HP InfoTech S.R.L. Page 91

CodeVisionAVR

3.8 Defining Data Types

User defined data types are declared using the typedef reserved keyword.

The syntax is:
typedef <type definition> <identifier>;

The symbol name <identifier> is assigned to <type definition>.
Examples:

/* type definitions */
typedef unsigned char byte;
typedef struct {

int a;

char b[5];

} struct type;

/* variable declarations */
byte alfa;

/* structure stored in RAM */
struct type structl;

/* structure stored in FLASH */
flash struct type struct2;

/* structure stored in EEPROM */
eeprom struct type struct3;

© 1998-2008 HP InfoTech S.R.L.

Page 92

CodeVisionAVR

3.9 Type Conversions

In an expression, if the two operands of a binary operator are of different types, then the compiler will
convert one of the operands into the type of the other.
The compiler uses the following rules:

If either of the operands is of type float then the other operand is converted to the same type.

If either of the operands is of type long int or unsigned long int then the other operand is converted
to the same type.

Otherwise, if either of the operands is of type int or unsigned int then the other operand is converted
to the same type.

Thus char type or unsigned char type gets the lowest priority.

Using casting you can change these rules.
Example:

void main(void) {

int a, c;

long b;

/* The long integer variable b will be treated here as an integer */
c=a+ (int) b;

}

It is important to note that if the Project|Configure|C Compiler|Code Generation|Promote char to
int option isn't checked or the #pragma promotechar+ isn't used, the char, respectively unsigned
char, type operands are not automatically promoted to int , respectively unsigned int, as in compilers
targeted for 16 or 32 bit CPUs.

This helps writing more size and speed efficient code for an 8 bit CPU like the AVR.

To prevent overflow on 8 bit addition or multiplication, casting may be required.

The compiler issues warnings in these situations.

Example:

void main (void) {
unsigned char a=30;
unsigned char b=128;
unsigned int c;

/* This will generate an incorrect result, because the multiplication
is done on 8 bits producing an 8 bit result, which overflows.
Only after the multiplication, the 8 bit result is promoted to
unsigned int */

c=a*b;

/* Here casting forces the multiplication to be done on 16 bits,
producing an 16 bit result, without overflow */
c=(unsigned int) a*b;

}

© 1998-2008 HP InfoTech S.R.L. Page 93

CodeVisionAVR

The compiler behaves differently for the following operators:
+=

V A >— 2 o0 * |
Y ﬁ /| | 1

For these operators, the result is to be written back onto the left-hand side operand (which must be a
variable). So the compiler will always convert the right hand side operand into the type of left-hand
side operand.

3.10 Operators

The compiler supports the following operators:

+
* /
S ++
! 1=
< >
<= >=
& &&
| [
~ 2
<< >>
_ 1=
— o _
= -
& *=
A |=
>>= <<=
sizeof

© 1998-2008 HP InfoTech S.R.L. Page 94

CodeVisionAVR

3.11 Functions

You may use function prototypes to declare a function.

These declarations include information about the function parameters.

Example:
int alfa(char parl, int par2, long par3);
The actual function definition may be written somewhere else as:

int alfa(char parl, int par2, long par3) {
/* Write some statements here */

}

The old Kernighan & Ritchie style of writing function definitions is not supported.

Function parameters are passed through the Data Stack.

Function values are returned in registers R30, R31, R22 and R23 (from LSB to MSB).

© 1998-2008 HP InfoTech S.R.L.

Page 95

CodeVisionAVR

3.12 Pointers

Due to the Harvard architecture of the AVR microcontroller, with separate address spaces for data
(RAM), program (FLASH) and EEPROM memory, the compiler implements three types of pointers.
The syntax for pointer declaration is:

[<memory attribute>] type * [<memory attribute>]
[* [<memory attribute>] ...] pointer name;

or

type [<memory attribute>] * [<memory attribute>]
[* [<memory attribute>] ...] pointer name;

where type can be any data type.

Variables placed in RAM are accessed using normal pointers.
For accessing constants placed in FLASH memory, the flash or __flash memory attributes are used.
For accessing variables placed in EEPROM, the eeprom or __eeprom memory attributes are used.

Although the pointers may point to different memory areas, they are by default stored in RAM.
Example:

/* Pointer to a char string placed in RAM */
char *ptr to ram="This string is placed in RAM";

/* Pointer to a char string placed in FLASH */
flash char *ptr to flashl="This string is placed in FLASH";
char flash *ptr to flash2="This string is also placed in FLASH";

/* Pointer to a char string placed in EEPROM */
eeprom char *ptr to eeproml="This string is placed in EEPROM";
char eeprom *ptr to eeprom2="This string is also placed in EEPROM";

In order to store the pointer itself in other memory areas, like FLASH or EEPROM, the flash (__flash)
or eeprom (__eeprom) pointer storage memory attributes must be used as in the examples below:

/* Pointer stored in FLASH to a char string placed in RAM */
char * flash flash ptr to ram="This string is placed in RAM";

/* Pointer stored in FLASH to a char string placed in FLASH */
flash char * flash flash ptr to flash="This string is placed in FLASH";

/* Pointer stored in FLASH to a char string placed in EEPROM */
eeprom char * flash eeprom ptr to eeprom="This string is placed in EEPROM";

/* Pointer stored in EEPROM to a char string placed in RAM */
char * eeprom eeprom ptr to ram="This string is placed in RAM";

/* Pointer stored in EEPROM to a char string placed in FLASH */
flash char * eeprom eeprom ptr to flash="This string is placed in FLASH";

/* Pointer stored in EEPROM to a char string placed in EEPROM */
eeprom char * eeprom eeprom ptr to eeprom="This string is placed in
EEPROM" ;

© 1998-2008 HP InfoTech S.R.L. Page 96

CodeVisionAVR

In order to improve the code efficiency several memory models are implemented.

The TINY memory model uses 8 bits for storing pointers to the variables placed in RAM. In this
memory model you can only have access to the first 256 bytes of RAM.

The SMALL memory model uses 16 bits for storing pointers the variables placed in RAM. In this
memory model you can have access to 65536 bytes of RAM.

In both TINY and SMALL memory models pointers to the FLASH memory area use 16 bits.

Because in these memory models pointers to the FLASH memory are 16 bits wide, the total size of the
constant arrays and literal char strings is limited to 64K.

However the total size of the program can be the full amount of FLASH.

In order to remove the above mentioned limitation, there are available two additional memory models:
MEDIUM and LARGE.

The MEDIUM memory model is similar to the SMALL memory model, except it uses pointers to
constants in FLASH that are 32 bits wide. The pointers to functions are however 16 bit wide because
they hold the word address of the function, so 16 bits are enough to address a function located in all
128kbytes of FLASH.

The MEDIUM memory model can be used only for chips with 128kbytes of FLASH.

The LARGE memory model is similar to the SMALL memory model, except it uses pointers to the
FLASH memory area that are 32 bits wide.
The LARGE memory model can be used for chips with 256kbytes or more of FLASH.

In all memory models pointers to the EEPROM memory area are 16 bit wide.

Pointers can be grouped in arrays, which can have up to 8 dimensions.
Example:

/* Declare and initialize a global array of pointers to strings
placed in RAM */
char *strings[3]={"One","Two","Three"};

/* Declare and initialize a global array of pointers to strings
placed in FLASH
The pointer array itself is also stored in FLASH */

flash char * flash messages[3]={"Message 1", "Message 2", '"Message 3"};

/* Declare some strings in EEPROM */
eeprom char ml[]="aaaa";
eeprom char m2[]="bbbb";

void main (void) {

/* Declare a local array of pointers to the strings placed in EEPROM
You must note that although the strings are located in EEPROM,
the pointer array itself is located in RAM */

char eeprom *ppl[2];

/* and initialize the array */
ppl[0]=ml;

ppll]l=m2;

}

© 1998-2008 HP InfoTech S.R.L. Page 97

CodeVisionAVR

Pointers to functions always access the FLASH memory area. There is no need to use the flash or
__flash memory attributes for these types of pointers.
Example:

/* Declare a function */
int sum(int a, int b) {
return a+tb;

}

/* Declare and initialize a global pointer to the function sum */
int (*sum ptr) (int a, int b)=sum;

void main (void) {
int i;

/* Call the function sum using the pointer */
i=(*sum ptr) (1,2);
}

© 1998-2008 HP InfoTech S.R.L. Page 98

CodeVisionAVR

3.13 Accessing the 1/O Registers

The compiler uses the sfrb and sfrw keywords to access the AVR microcontroller's 1/0 Registers,
using the IN and OUT assembly instructions.
Example:

/* Define the SFRs */
sfrb PINA=0x19; /* 8 bit access to the SFR */
sfrw TCNT1=0x2c; /* 16 bit access to the SFR */

void main (void) {

unsigned char a;

a=PINA; /* Read PORTA input pins */
TCNT1=0x1111; /* Write to TCNT1L & TCNT1H registers */
}

The addresses of 1/O registers are predefined in the following header files, located in the \INC
subdirectory:

tinyl3.h
tiny22.h
tiny2313.h
tiny24.h
tiny25.h
tiny26.h
tiny261.h
tiny44.h
tiny45.h
tiny461l.h
tiny48.h
tiny84.h
tiny85.h
tiny861.h
tiny88.h
90can32.h
90can64.h
90canl28.h
90pwm2.h
90pwm2b.h
90pwm216.h
90pwm3.h
90pwm3b.h
90pwm316.h
90usbl286.h
90usbl287.h
90usbl62.h
90usb646.h
90usb647.h
90usb82.
90s2313.
90s2323.
90s2333.
90s2343.
90s4414.
90s4433.
90s4434.
90s8515.
90s8534.
90s8535.

m e e ji e e S Sie Hie S ge)

© 1998-2008 HP InfoTech S.R.L. Page 99

CodeVisionAVR

megal03.h
megal28.h
megal280.h
megal28l.h
megal6.h
megal6l.
megal62.
megal63.
megalocd.
megal65.
megal68.
megal68p.h
megal69.h
mega2560.h
megaz2561.h
mega32.h
mega323.h
mega324.h
mega325.h
mega325p.h
mega3250.h
mega3250p.h
mega328p.h
mega329.h
mega329p.h
mega3290.h
mega3290p.h
mega406.h
mega48.h
megad48p.h
mega603.h
mega64d.h
mega640.h
mega644.h
mega644p.h
mega645.h
mega6450.h
mega649.h
mega6490.h
megal8.h
mega8515.h
mega8535.h
mega88.h
mega88p.h
43usb355.h
76c711.h
86rf40l.h
94k.h

[oaiie gie e e gie)

The header file, corresponding to the chip that you use, must be included at the beginning of your
program.

Alternatively the io.h header file can be included. This file contains the definitions for the 1/O registers
for all the chips supported by the compiler.

© 1998-2008 HP InfoTech S.R.L. Page 100

CodeVisionAVR

3.13.1 Bit level access to the I/O Registers

The bit level access to the /O registers is accomplished using bit selectors appended after the name
of the 1/O register.

Because bit level access to 1/0O registers is done using the CBI, SBI, SBIC and SBIS instructions, the
register address must be in the 0 to 1Fh range for sfrb and in the 0 to 1Eh range for sfrw.

Example:

sfrb PORTA=0x1b;
sfrb DDRA=0x18;
sfrb PINA=0x19;

void main (void) {
/* set bit 0 of Port A as output */
DDRA.0=1;

/* set bit 1 of Port A as input */
DDRA.1=0;

/* set bit 0 of Port A output */
PORTA.0=1;

/* test bit 1 input of Port A */
if (PINA.1l) { /* place some code here */ };

To improve the readability of the program you may wish to #define symbolic names to the bits in I/O
registers:

sfrb PINA=0x19;

#define alarm input PINA.2

void main (void)

{

/* test bit 2 input of Port A */

if (alarm input) { /* place some code here */ };
VAT Lo/

}

It is important to note that bit selector access to I/O registers located in internal RAM above address
5Fh (like PORTF for the ATmega128 for example) will not work, because the CBI, SBI, SBIC and
SBIS instructions can't be used for RAM access.

© 1998-2008 HP InfoTech S.R.L. Page 101

CodeVisionAVR

3.14 Accessing the EEPROM

Accessing the AVR internal EEPROM is accomplished using global variables, preceded by the
eeprom or __eeprom memory attributes.
Example:

/* The value 1 is stored in the EEPROM during chip programming */
eeprom int alfa=1;

eeprom char beta;
eeprom long arrayl([5];

/* The string is stored in the EEPROM during chip programming */
eeprom char string[]="Hello";

void main (void) {
int i;

/* Pointer to EEPROM */
int eeprom *ptr to eeprom;

/* Write directly the value 0x55 to the EEPROM */
alfa=0x55;

/* or indirectly by using a pointer */

ptr to eeprom=&alfa;

*ptr to eeprom=0x55;

/* Read directly the value from the EEPROM */
i=alfa;

/* or indirectly by using a pointer */
i=*ptr to eeprom;

}

Pointers to the EEPROM always occupy 16 bits in memory.

© 1998-2008 HP InfoTech S.R.L. Page 102

CodeVisionAVR

3.15 Using Interrupts

The access to the AVR interrupt system is implemented with the interrupt keyword.
Example:

/* Vector numbers are for the AT90S8515 */

/* Called automatically on external interrupt */
interrupt [2] void external intO0(void) {
/* Place your code here */

}

/* Called automatically on TIMERO overflow */
interrupt [8] void timer0 overflow(void) {
/* Place your code here */

}

Interrupt vector numbers start with 1.

The compiler will automatically save the affected registers when calling the interrupt functions and
restore them back on exit.

A RETI assembily instruction is placed at the end of the interrupt function.

Interrupt functions can't return a value nor have parameters.

You must also set the corresponding bits in the peripheral control registers to configure the interrupt
system and enable the interrupts.

Another possibility to declare an interrupt service routine is by using the #pragma vector
preprocessor directive and the __interrupt keyword.

#pragma vector is used for specifying that the next declared function is an interrupt service routine.
Example:

/* Vector numbers are for the AT90S8515 */

/* Specify the vector number using the #pragma vector directive */
#pragma vector=2

/* Called automatically on external interrupt */
__interrupt void external intO(void) {
/* Place your code here */

}

/* Specify the vector number using the #pragma vector directive */
#pragma vector=8

/* Called automatically on TIMERO overflow */

__interrupt void timerO overflow(void) {
/* Place your code here */

}

The #pragma vector preprocessor directive and the __interrupt keyword are used for compatibility
with other C compilers for the Atmel AVR.

© 1998-2008 HP InfoTech S.R.L. Page 103

CodeVisionAVR

The automatic saving and restoring of registers affected by the interrupt handler, can be turned on or
off using the #pragma savereg directive.
Example:

/* Turn registers saving off */
#pragma savereg-

/* interrupt handler */
interrupt [1] void my irqg(void) {
/* now save only the registers that are affected by the routines in the
interrupt handler, for example R30, R31 and SREG */
#asm
push r30
push r31
in r30, SREG
push r30
#endasm

/* place the C code here */
/* o0 %/
/* now restore SREG, R31 and R30 */
#asm
pop r30
out SREG, r30
pop r31
pop r30
#endasm
}
/* re-enable register saving for the other interrupts */
#pragma savereg+

The default state is automatic saving of registers during interrupts.
The #pragma savereg directive is maintained only for compatibility with versions of the compiler prior
to V1.24.1. This directive is not recommended for new projects.

© 1998-2008 HP InfoTech S.R.L. Page 104

CodeVisionAVR

3.16 RAM Memory Organization

A compiled program has the following memory map:

0
Working Registers
20h
I/O Registers
60h (or 100h) DSTACKEND
Data Stack

Y initial value

60h (or 100h)+
Data Stack Size

Global Variables

60h (or 100h)+ HSTACKEND
Data Stack Size+
Global Var. Size Hardware Stack

SP initial value

_HEAP_START_

Heap

RAM End

The Working Registers area contains 32x8 bit general purpose working registers.

The compiler uses the following registers: R0, R1, R15, R22, R23, R24, R25, R26, R27, R28, R29,
R30 and R31.

Also some of the registers from R2 to R15 may be allocated by the compiler for global and local bit
variables. The rest of unused registers, in this range, are allocated for global char and int variables
and global pointers.

Registers R16 to R21 are allocated for local char and int variables.

© 1998-2008 HP InfoTech S.R.L. Page 105

CodeVisionAVR

The I/0O Registers area contains 64 addresses for the CPU peripheral functions as Port Control
Registers, Timer/Counters and other 1/O functions. You may freely use these registers in your
assembly programs.

The Data Stack area is used to dynamically store local variables, passing function parameters and
saving registers RO, R1, R15, R22, R23, R24, R25, R26, R27, R30, R31 and SREG during interrupt
routine servicing.

The Data Stack Pointer is implemented using the Y register.

At start-up the Data Stack Pointer is initialized with the value 5Fh (or FFh for some chips)+Data Stack
Size.

When saving a value in the Data Stack, the Data Stack Pointer decrements.

When the value is retrieved, the Data Stack Pointer is incremented back.

When configuring the compiler, in the Project|Configure|C Compiler|Code Generation menu, you
must specify a sufficient Data Stack Size, so it will not overlap the I/O Register area during program
execution.

The Global Variables area is used to statically store the global variables during program execution.
The size of this area can be computed by summing the size of all the declared global variables.

The Hardware Stack area is used for storing the functions return addresses.

The SP register is used as a stack pointer and is initialized at start-up with value of the
_HEAP_START_ -1 address.

During the program execution the Hardware Stack grows downwards to the Global Variables area.

When configuring the compiler you have the option to place the strings DSTACKEND, respectively
HSTACKEND, at the end of the Data Stack, respectively Hardware Stack areas.

When you debug the program with AVR Studio you may see if these strings are overwritten, and
consequently modify the Data Stack Size using the Project|Configure|C Compiler|Code
Generation menu command.

When your program runs correctly, you may disable the placement of the strings in order to reduce
code size.

The Heap is a memory area located between the Hardware Stack and the RAM end.

It is used by the memory allocation functions from the Standard Library: malloc, calloc, realloc and
free.

The Heap size must be specified in the Project|Configure|C Compiler|Code Generation menu.
It can be calculated using the following formulae:

heap size=(n+1)-4+ Zblock_sizel.

i=1

where: n is the number of memory blocks that will be allocated in the Heap
block _size, is the size of the memory block i

If the memory allocation functions will not be used, then the Heap size must be specified as zero.

© 1998-2008 HP InfoTech S.R.L. Page 106

CodeVisionAVR

3.17 Using an External Startup Assembly File

In every program the CodeVisionAVR C compiler automatically generates a code sequence to make
the following initializations immediately after the AVR chip reset:
1. interrupt vector jump table

global interrupt disable

EEPROM access disable

Watchdog Timer disable

external RAM access and wait state enable if necessary
clear registers R2 ... R14

clear the RAM

initialize the global variables located in RAM

initialize the Data Stack Pointer register Y

10 initialize the Stack Pointer register SP

11. initialize the UBRR register if necessary

CoN>O WD

The automatic generation of code sequences 2 to 8 can be disabled by checking the Use an External
Startup Initialization File check box in the Project|Configure|C Compiler|Code Generation dialog
window. The C compiler will then include, in the generated .asm file, the code sequences from an
external file that must be named STARTUP.ASM . This file must be located in the directory where
your main C source file resides.

You can write your own STARTUP.ASM file to customize or add some features to your program. The
code sequences from this file will be immediately executed after the chip reset.

A basic STARTUP.ASM file is supplied with the compiler distribution and is located in the .\BIN
directory.

Here's the content of this file:

;CodeVisionAVR C Compiler
; (C) 1998-2008 Pavel Haiduc, HP InfoTech s.r.l.

.EQU CLEAR START=0X60 ;START ADDRESS OF RAM AREA TO CLEAR
; SET THIS ADDRESS TO 0X100 FOR THE
;ATmegal28 OR ATmega64 CHIPS

.EQU CLEAR SIZE=256 ;SIZE OF RAM AREA TO CLEAR IN BYTES
CLI ; DISABLE INTERRUPTS
CLR R30

OUT EECR,R30 ;DISABLE EEPROM ACCESS

;DISABLE THE WATCHDOG
LDI R31,0x18
OUT WDTCR,R31
OUT WDTCR,R30

OUT MCUCR,R30 ;MCUCR=0, NO EXTERNAL RAM ACCESS

;CLEAR R2-R14
LDI R24,13

LDI R26,2
CLR R27
__CLEAR_REG:
ST X+,R30
DEC R24

BRNE _ CLEAR REG

© 1998-2008 HP InfoTech S.R.L. Page 107

CodeVisionAVR

; CLEAR RAM
LDI R24,LOW(_ CLEAR SIZE)
LDI R25,HIGH(_ CLEAR SIZE)
LDI R26,LOW(__CLEAR START)
LDI R27,HIGH(CLEAR START)

CLEAR_RAM:

ST X+,R30
SBIW R24,1
BRNE _ CLEAR RAM

; GLOBAL VARIABLES INITIALIZATION

LDI R30,LOW(_ GLOBAL INI TBL*2)
LDI R31,HIGH(GLOBAL INI TBL*2)

__GLOBAL_INI NEXT:

LPM
ADIW R30,1

MOV R24,R0

LPM

ADIW R30,1

MOV R25,R0

SBIW R24,0

BREQ _ GLOBAL_ INI END
LPM

ADIW R30,1

MOV R26,R0

LPM

ADIW R30,1

MOV R27,RO

LPM

ADIW R30,1

MOV R1,RO

LPM

ADIW R30,1

MOV R22,R30

MOV R23,R31

MOV R31,RO

MOV R30,R1
__GLOBAL_INI LOOP:

LPM

ADIW R30,1

ST X+,R0

SBIW R24,1

BRNE _ GLOBAL INI LOOP

MOV R30,R22

MOV R31,R23

RJMP _ GLOBAL_ INI NEXT
__ GLOBAL_INI END:

The __CLEAR_START and __ CLEAR_SIZE constants can be changed to specify which area of RAM

to clear at program initialization.

The __GLOBAL_INI_TBL label must be located at the start of a table containing the information
necessary to initialize the global variables located in RAM. This table is automatically generated by the

compiler.

© 1998-2008 HP InfoTech S.R.L.

Page 108

CodeVisionAVR

3.18 Including Assembly Language in Your Program

You can include assembly language anywhere in your program using the #asm and #endasm
directives.
Example:

void delay(unsigned char i) {
while (i--) {
/* Assembly language code sequence */
#asm
nop
nop
#endasm
bi
}

Inline assembly may also be used.
Example:

#asm("sei") /* enable interrupts */

The registers RO, R1, R22, R23, R24, R25, R26, R27, R30 and R31 can be freely used in assembly
routines.

However when using them in an interrupt service routine the programmer must save, respectively
restore, them on entry, respectively on exit, of this routine.

© 1998-2008 HP InfoTech S.R.L. Page 109

CodeVisionAVR

3.18.1 Calling Assembly Functions from C

The following example shows how to access functions written in assembly language from a C
program:

// function in assembler declaration
// this function will return a+b+c
#pragma warn- // this will prevent warnings
int sum abc(int a, int b, unsigned char c) {
#asm
1ldd r30,y+3 ;R30=LSB a
1dd r31,y+4 ;R31=MSB a
1ldd r26,y+l ;R26=LSB b
1ldd r27,y+2 ;R27=MSB b
add r30,r26 ; (R31,R30)=a+b
adc r31,r27
1d r26,Vy ;R26=c
clr r27 ;promote unsigned char c to int
add r30,r26 ; (R31,R30)=(R31,R30)+c
adc r31,r27
#endasm
}

#pragma warn+ // enable warnings

void main (void) {

int r;

// now we call the function and store the result in r
r=sum_abc (2,4, 6);

}

The compiler passes function parameters using the Data Stack.

First it pushes the integer parameter a, then b, and finally the unsigned char parameter c.

On every push the Y register pair decrements by the size of the parameter (4 for long int, 2 for int, 1
for char).

For multiple byte parameters the MSB is pushed first.

As it is seen the Data Stack grows downward.

After all the functions parameters were pushed on the Data Stack, the Y register points to the last
parameter c, so the function can read its value in R26 using the instruction: Id r26,y.

The b parameter was pushed before c, so it is at a higher address in the Data Stack.

The function will read it using: Idd r27,y+2 (MSB) and Idd r26,y+1 (LSB).

The MSB was pushed first, so it is at a higher address.

The a parameter was pushed before b, so it is at a higher address in the Data Stack.

The function will read it using: Idd r31,y+4 (MSB) and Idd r30,y+3 (LSB).

The functions return their values in the registers (from LSB to MSB):
e R3O0 for char and unsigned char

e R30, R31 for int and unsigned int

e R30, R31, R22, R23 for long and unsigned long.

So our function must return its result in the R30, R31 registers.

After the return from the function the compiler automatically generates code to reclaim the Data Stack
space used by the function parameters.

The #pragma warn- compiler directive will prevent the compiler from generating a warning that the
function does not return a value.

This is needed because the compiler does not know what it is done in the assembler portion of the
function.

© 1998-2008 HP InfoTech S.R.L. Page 110

CodeVisionAVR

3.19 Creating Libraries

In order to create your own libraries, the following steps must be followed:

1. Create a header .h file with the prototypes of the library functions.
Select the File]New menu command or press the (3 toolbar button.

The following dialog window will open:

File Type

@ Source

FProject

[Create Mew File

s

LV

ak

X Cancel

Select Source and press the OK button.

A new editor window will be opened for the untitled.c source file.

Type in the prototype for your function. Example:

/* this #pragma directive will prevent the compiler from generating a
warning that the function was declared, but not used in the program */

#pragma used+

/* library function prototypes */
int sum(int a, int b);

int mul (int a, int Db);

#pragma used-

/* this #pragma directive will tell the compiler to compile/link the

functions from the mylib.lib library */

#pragma library mylib.lib

Save the file, under a new name, in the \INC directory using the File|Save As menu command, for

example mylib.h :

ﬂ Save Chovavrwork\untitled.c As

Savein: inc
= Mame
e 1WIRE

Recent Places

[=]43USB355
! E= 76C1
|=] 86RF401
Desktop | |90C8534
i | |90can32
Ul | |90canid
Pavel |=/90canl28
=/90pwm2
A _ 80pwmzb
Computer /90pwm3
_ =/90pwm3b
A S00wm216
- 4
Metwork

File name: mylib

-

Date modified

01-Mar-01 03:15
05-Par-07 13:38
05-Par-07 13:40
05-Mar-07 13:41
05-Mar-07 13:55
05-Mar-07 14:03
05-Mar-07 14:07
05-Mar-07 14:08
05-Mar-07 14:10
05-Mar-07 14:12
05-Par-07 14:13
05-Mar-07 14:15
17-Apr-07 1412

I

G 7

-3 Ev

Type

C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...
C compiler header...

C compiler header...

-

=S

Size

m

Save as type:

| C Compiler header file (*h)

- | | Cancel

© 1998-2008 HP InfoTech S.R.L.

Page 111

CodeVisionAVR

2. Create the library file.
Select the File|[New menu command or press the New toolbar button.
The following dialog window will open:

[Create Mew File
File Type

)

@ Source | \/ ok |

Project x LCancel

Select Source and press the OK button.
A new editor window will be opened for the untitled.c source file.
Type in the definitions for your functions.

Example:

int sum(int a, int b) {
return a+tb;

}

int mul (int a, int b) {
return a*b;

}

Save the file, under a new name, for example mylib.c , in any directory using the File|Save As menu

command:

ﬂ Save Chovavrinduntitled.c As

Save in: work
< .
Mame Date modif.. Type
e

Recent Places

Computer
[W8
=
Metwork
File name: mylib

Size

Ma items match your search.,

= Ev

-

EX5

Save as type: C Compiler source file {*.c)

i |

| Cancel

© 1998-2008 HP InfoTech S.R.L.

Page 112

CodeVisionAVR

Finally use the File|Convert to Library menu command or the] toolbar button, to save the currently
opened .c file under the name mylib.lib in the .\LIB directory:

ﬂ Mew Library Name @
rwlite. lib
| u./ ok | |x Eancel|

In order to use the newly created mylib.lib library, just #include the mylib.h header file in the

beginning of your program.
Example:

#include <mylib.h>

Library files usually reside in the .\LIB directory, but paths to additional directories can be added in the
Project|Configure|C Compiler|Paths]Library paths menu.

© 1998-2008 HP InfoTech S.R.L.

Page 113

CodeVisionAVR

3.20 Using the AVR Studio Debugger

CodeVisionAVR is designed to work in conjunction with the Atmel AVR Studio debugger version 4.14
or later.

The compiler will generate for the AVR Studio debugger an extended COFF object file that
allows watching structures and unions. AVR Studio 4 prior to version 4.06 does not support
the extended COFF object file format, so it can't be used with CodeVisionAVR.

In order to be able to do C source level debugging using AVR Studio, you must select the COFF
Output File Format in the Project|Configure|C Compiler|Code Generation menu option.

The AVR Studio Debugger is invoked using the Tools|Debugger menu command or the § toolbar
button.

After AVR Studio is launched, the user must first select File]|Open File (Ctr+O keys) in order to load
the COFF file to be debugged.

After the COFF file is loaded, and no AVR Studio project file exists for this COFF file, the debugger will
open a Select device and debug platform dialog window.

In this window the user must specify the Debug Platform: ICE or AVR Simulator and the AVR Device
type.

Pressing the Finish button will create a new AVR Studio project associated with the COFF file.

If an AVR Studio project associated with the COFF file already exists, the user will be asked if the
debugger may load it.

Once the program is loaded, it can be launched in execution using the Debug|Run menu command,
by pressing the F5 key or by pressing the Run toolbar button.

Program execution can be stopped at any time using the Debug|Break menu command, by pressing
Ctri+F5 keys or by pressing the Break toolbar button.

To single step the program, the Debug|Step Into (F11 key), Debug|Step Over (F10 key),
Debug|Step Out (Shift+F11 keys) menu commands or the corresponding toolbar buttons should be
used.

In order to stop the program execution at a specific source line, the Debug|Toggle Breakpoint menu
command, the F9 key or the corresponding toolbar button should be used.

In order to watch program variables, the user must select Debug|Quickwatch (Shift+F9 keys) menu
command or press the Quickwatch toolbar button, and specify the name of the variable in the
QuickWatch window in the Name column.

The AVR chip registers can be viewed using the View|Register menu command or by pressing the
Alt+0 keys. The registers can be also viewed in the Workspace|l/O window in the Register 0-15 and
Register 16-31 tree branches.

The AVR chip PC, SP, X, Y, Z registers and status flags can be viewed in the Workspace|l/O window
in the Processor tree branch.

The contents of the FLASH, RAM and EEPROM memories can be viewed using the View|Memory
menu command or by pressing the Alt+4 keys.

The 1/O registers can be viewed in the Workspace|l/O window in the 1/0 branch.

To obtain more information about using AVR Studio please consult it's Help system.

© 1998-2008 HP InfoTech S.R.L. Page 114

CodeVisionAVR

3.21 Hints

In order to decrease code size and improve the execution speed, you must apply the following rules:

e If possible use unsigned variables;

e Use the smallest data type possible, i.e. bit and unsigned char;

e The size of the bit variables, allocated to the program in the Project|Configure|C Compiler|Code

Generation|Bit Variables Size list box, should be as low as possible, in order to free registers for

allocation to other global variables;

e If possible use the smallest possible memory model (TINY or SMALL);

e Always store constant strings in FLASH by using the flash or __flash memory models;

e After finishing debugging your program, compile it again with the Stack End Markers option
disabled.

3.22 Limitations

The current version of the CodeVisionAVR C compiler has the following limitations:

the long long, double, _Complex and _Imaginary data types are not supported

signal handling (signal.h) is not implemented yet

date and time functions (time.h) are not implemented yet

extended multibyte/wide character utilities (wchar.h) are not implemented

wide character classification and mapping utilities (wctype.h) are not implemented

the size of the compiled code is limited for the Evaluation version

the libraries for Philips PCF8563, Philips PCF8583, Maxim/Dallas Semiconductor DS1302,
DS1307, 4x40 character LCD functions are not available in the Evaluation version.

© 1998-2008 HP InfoTech S.R.L. Page 115

CodeVisionAVR

4. Library Functions Reference

You must #include the appropriate header files for the library functions that you use in your program.
Example:

/* Header files are included before using the functions */
#include <math.h> // for abs
#include <stdio.h> // for putsf

void main (void) {

int a,b;

a=-99;

/* Here you actually use the functions */
b=abs (a) ;

putsf ("Hello world");

}

© 1998-2008 HP InfoTech S.R.L. Page 116

CodeVisionAVR

4.1 Character Type Functions

The prototypes for these functions are placed in the file ctype.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

unsigned char isalnum(char c)

returns 1 if ¢ is alphanumeric.
unsigned char isalpha(char c)

returns 1 if ¢ is alphabetic.
unsigned char isascii(char c)

returns 1 if ¢ is an ASCII character (0..127).
unsigned char iscntrl(char c)

returns 1 if ¢ is a control character (0..31 or 127).
unsigned char isdigit(char c)

returns 1 if ¢ is a decimal digit.
unsigned char islower(char c)

returns 1 if ¢ is a lower case alphabetic character.
unsigned char isprint(char c)

returns 1 if ¢ is a printable character (32..127).
unsigned char ispunct(char c)

returns 1 if ¢ is a punctuation character (all but control and alphanumeric).
unsigned char isspace(char c)

returns 1 c is a white-space character (space, CR, HT).
unsigned char isupper(char c)

returns 1 if ¢ is an upper-case alphabetic character.
unsigned char isxdigit(char c)

returns 1 if ¢ is a hexadecimal digit.
char toascii(char c)

returns the ASCII equivalent of character c.
unsigned char toint(char c)

interprets ¢ as a hexadecimal digit and returns an usigned char from 0 to 15.

© 1998-2008 HP InfoTech S.R.L. Page 117

CodeVisionAVR

char tolower(char c)
returns the lower case of c if ¢ is an upper case character, else c.
char toupper(char c)

returns the upper case of c if c is a lower case character, else c.

4.2 Standard C Input/Output Functions

The prototypes for these functions are placed in the file stdio.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

The standard C language I/O functions were adapted to work on embedded microcontrollers with
limited resources.

The lowest level Input/Output functions are:
char getchar(void)

returns a character received by the UART, using polling.
void putchar(char c)

transmits the character c using the UART, using polling.

Prior to using these functions you must:
e initialize the UART's Baud rate

e enable the UART transmitter

e enable the UART receiver.

Example:

#include <mega8515.h>
#include <stdio.h>

/* quartz crystal frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#define baud 9600

void main (void) {
char k;

/* initialize the USART control register
TX and RX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x18;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL=(xtal/16/baud-1) & OxFF;

© 1998-2008 HP InfoTech S.R.L. Page 118

CodeVisionAVR

while (1) {
/* receive the character */
k=getchar();
/* and echo it back */
putchar (k) ;
}i

}

If you intend to use other peripherals for Input/Output, you must modify accordingly the getchar and
putchar functions like in the example below:

#include <stdio.h>

/* inform the compiler that an alternate version
of the getchar function will be used */
#define ALTERNATE GETCHAR

/* now define the new getchar function */

char getchar (void) {
/* write your code here */

}

/* inform the compiler that an alternate version
of the putchar function will be used */
#define ALTERNATE PUTCHAR

/* now define the new putchar function */

void putchar (char c) {

/* write your code here */

}

All the high level Input/Output functions use getchar and putchar.

void puts(char *str)

outputs, using putchar, the null terminated character string str, located in RAM, followed by a new
line character.

void putsf(char flash *str)

outputs, using putchar, the null terminated character string str, located in FLASH, followed by a
new line character.

void printf(char flash *fmtstr [, arg1, arg2, ...])

outputs formatted text, using putchar, according to the format specifiers in the fmtstr string.
The format specifier string fmtstr is constant and must be located in FLASH memory.
The implementation of printf is a reduced version of the standard C function.
This was necessary due to the specific needs of an embedded system and because the full
implementation would require a large amount of FLASH memory space.

© 1998-2008 HP InfoTech S.R.L. Page 119

CodeVisionAVR

The format specifier string has the following structure:
%[flags] [width] [.precision] [1]type char

The optional flags characters are:

"' left-justifies the result, padding on the right with spaces. If it's not present, the result will be right-
justified, padded on the left with zeros or spaces;

'+' signed conversion results will always begin with a '+' or '-' sign;

'"if the value isn't negative, the conversion result will begin with a space. If the value is negative
then it will begin with a '-' sign.

The optional width specifier sets the minimal width of an output value. If the result of the conversion is
wider than the field width, the field will be expanded to accommodate the result, so not to cause field
truncation.

The following width specifiers are supported:

n - at least n characters are outputted. If the result has less than n characters, then it's field will be
padded with spaces. If the '-' flag is used, the result field will be padded on the right, otherwise it will be
padded on the left;

On - at least n characters are outputted. If the result has less than n characters, it is padded on the
left with zeros.

The optional precision specifier sets the maximal number of characters or minimal number of integer
digits that may be outputted.
For the 'e', 'E' and 'f' conversion type characters the precision specifier sets the number of digits that
will be outputted to the right of the decimal point.
The precision specifier always begins with a '.' character in order to separate it from the width
specifier.
The following precision specifiers are supported:

none - the precision is set to 1 for the 'i", 'd", 'u’, 'x', 'X' conversion type characters. For the 's' and
'p' conversion type characters, the char string will be outputted up to the first null character;

.0 - the precision is set to 1 for the 'i', 'd’, 'u’, 'x', 'X' type characters;

.n - n characters or n decimal places are outputted.
For the 'i", 'd', 'U', 'x', X' conversion type characters, if the value has less than n digits, then it will be
padded on the left with zeros. If it has more than n digits then it will not be truncated.
For the 's' and 'p' conversion type characters, no more than n characters from the char string will be
outputted.
For the 'e', 'E' and 'f' conversion type characters, n digits will be outputted to the right of the decimal
point.
The precision specifier has no effect on the 'c' conversion type character.

The optional 'I' input size modifier specifies that the function argument must be treated as a long int for
the 'i', 'd', 'u’, 'x', 'X' conversion type characters.

The type_char conversion type character is used to specify the way the function argument will be
treated.
The following conversion type characters are supported:

'i' - the function argument is a signed decimal integer;

'd"' - the function argument is a signed decimal integer;

'u' - the function argument is an unsigned decimal integer;

'e' - the function argument is a float, that will be outputted using the [-]d.dddddd e[-]dd format

'E' - the function argument is a float, that will be outputted using the [-]d.dddddd E[-]dd format

'f' - the function argument is a float, that will be outputted using the [-]ddd.dddddd format

'x' - the function argument is an unsigned hexadecimal integer, that will be outputted with
lowercase characters;

'X' - the function argument is an unsigned hexadecimal integer, that will be outputted with with
uppercase characters;

'c' - the function argument is a single character;

's' - the function argument is a pointer to a null terminated char string located in RAM;

© 1998-2008 HP InfoTech S.R.L. Page 120

CodeVisionAVR

'p' - the function argument is a pointer to a null terminated char string located in FLASH,;
'%' - the '%' character will be outputted.

void sprintf(char *str, char flash *fmtstr [, arg1, arg2, ...])

this function is identical to printf except that the formatted text is placed in the null terminated
character string str.

void snprintf(char *str, unsigned char size, char flash *fmtstr [, arg1, arg2, ...])
for the TINY memory model.

void snprintf(char *str, unsigned int size, char flash *fmtstr [, arg1, arg2, ...])
for the other memory models.

this function is identical to sprintf except that at most size (including the null terminator)
characters are placed in the character string str.

In order to reduce program code size, there is the Project|Configure|C Compiler|Code
Generation|(s)printf Features option.

It allows linking different versions of the printf and sprintf functions, with only the features that are
really required by the program.

The following (s)printf features are available:

¢ int - the following conversion type characters are supported: 'c’, 's', 'p', 'i', 'd", 'u’, X', 'X', '%', no
width or precision specifiers are supported, only the '+' and ' ' flags are supported, no input size
modifiers are supported

e int, width - the following conversion type characters are supported: 'c', 's', 'p', 'i', 'd', 'u’, 'x', 'X', '%',
the width specifier is supported, the precision specifier is not supported, only the '+', '-', '0' and ' ' flags
are supported, no input size modifiers are supported

¢ long, width - the following conversion type characters are supported: 'c', 's', 'p', 'i', 'd’, 'u'’, 'x', 'X',
'%' the width specifier is supported, the precision specifier is not supported, only the '+','-', '0"and "'
flags are supported, only the 'l' input size modifier is supported

¢ long, width, precision - the following conversion type characters are supported: 'c', 's', 'p', 'i', 'd’,
'u', X', 'X', '%', the width and precision specifiers are supported, only the '+', '-', '0" and ' ' flags are
supported, only the 'l' input size modifier is supported

o float, width, precision - the following conversion type characters are supported: 'c’, 's', 'p', "', 'd’,
'u', 'e', 'E', ', 'X', X', '%', the width and precision specifiers are supported, only the '+','-', '0' and ' ' flags
are supported, only the 'I' input size modifier is supported.

The more features are selected, the larger is the code size generated for the printf and sprintf
functions.

void vprintf(char flash *fmtstr, va_list argptr)

this function is identical to printf except that the argptr pointer, of va_list type, points to the
variable list of arguments. The va_list type is defined in the stdarg.h header file.

void vsprintf(char *str, char flash *fmtstr, va_list argptr)

this function is identical to sprintf except that the argptr pointer, of va_list type, points to the
variable list of arguments. The va_list type is defined in the stdarg.h header file.

© 1998-2008 HP InfoTech S.R.L. Page 121

CodeVisionAVR

void vsnprintf(char *str, unsigned char size, char flash *fmtstr, va_list argptr)
for the TINY memory model.

void vsnprintf(char *str, unsigned int size, char flash *fmtstr, va_list argptr)
for the other memory models.

this function is identical to vsprintf except that at most size (including the null terminator)
characters are placed in the character string str.

char *gets(char *str, unsigned char len)

inputs, using getchar, the character string str terminated by the new line character.
The new line character will be replaced with 0.
The maximum length of the string is len. If len characters were read without encountering the new line
character, then the string is terminated with 0 and the function ends.
The function returns a pointer to str.

signed char scanf(char flash *fmtstr [, arg1 address, arg2 address, ...])

formatted text input by scanning, using getchar, a series of input fields according to the format
specifiers in the fmtstr string.
The format specifier string fmtstr is constant and must be located in FLASH memory.
The implementation of scanf is a reduced version of the standard C function.
This was necessary due to the specific needs of an embedded system and because the full
implementation would require a large amount of FLASH memory space.
The format specifier string has the following structure:

%[width] [1]type char

The optional width specifier sets the maximal number of characters to read. If the function encounters
a whitespace character or one that cannot be converted, then it will continue with the next input field, if
present.

The optional 'I' input size modifier specifies that the function argument must be treated as a long int for
the 'i', 'd', 'u', 'x' conversion type characters.

The type_char conversion type character is used to specify the way the input field will be processed.

The following conversion type characters are supported:
'd' - inputs a signed decimal integer in a pointer to int argument;
'I' - inputs a signed decimal integer in a pointer to int argument;
'u' - inputs an unsigned decimal integer in a pointer to unsigned int argument;
'X' - inputs an unsigned hexadecimal integer in a pointer to unsigned int argument;
'c' - inputs an ASCII character in a pointer to char argument;
's' - inputs an ASCII character string in a pointer to char argument;
'%' - no input is done, a '%' is stored.

The function returns the number of successful entries, or -1 on error.
signed char sscanf(char *str, char flash *fmtstr [, arg1 address, arg2 address, ...])

this function is identical to scanf except that the formatted text is inputted from the null terminated
character string str, located in RAM.

In order to reduce program code size, there is the Project|Configure|C Compiler|Code
Generation|(s)scanf Features option.

It allows linking different versions of the scanf and sscanf functions, with only the features that are
really required by the program.

© 1998-2008 HP InfoTech S.R.L. Page 122

CodeVisionAVR

The following (s)scanf features are available:

e int, width - the following conversion type characters are supported: 'c', 's', ', 'd', 'u’, 'X', '%', the
width specifier is supported, no input size modifiers are supported

¢ long, width - the following conversion type characters are supported: 'c', 's', ', 'd', 'u’, 'X, '%' the
width specifier is supported, only the 'I' input size modifier is supported.

The more features are selected, the larger is the code size generated for the scanf and sscanf
functions.

4.3 Standard Library Functions

The prototypes for these functions are placed in the file stdlib.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

unsigned char cabs(signed char x)

returns the absolute value of the byte x.
unsigned int abs(int x)

returns the absolute value of the integer x.
unsigned long labs(long int x)

returns the absolute value of the long integer x.
float fabs(float x)

returns the absolute value of the floating point number x.
int atoi(char *str)

converts the string str to integer.
long int atol(char *str)

converts the string str to long integer.
void itoa(int n, char *str)

converts the integer n to characters in string str.
void Itoa(long int n, char *str)

converts the long integer n to characters in string str.
void ftoa(float n, unsigned char decimals, char *str)

converts the floating point number n to characters in string str.
The number is represented with a specified number of decimals.

void ftoe(float n, unsigned char decimals, char *str)
converts the floating point number n to characters in string str.

The number is represented as a mantissa with a specified number of decimals and an integer power
of 10 exponent (e.g. 12.35e-5).

© 1998-2008 HP InfoTech S.R.L. Page 123

CodeVisionAVR

float atof(char *str)
converts the characters from string str to floating point.
int rand (void)
generates a pseudo-random number between 0 and 32767.
void srand(int seed)
sets the starting value seed used by the pseudo-random number generator in the rand function.
void *malloc(unsigned int size)

allocates a memory block in the heap, with the length of size bytes.
On success the function returns a pointer to the start of the memory block, the block being filled with
zeroes.
The allocated memory block occupies size+4 bytes in the heap.
This must be taken into account when specifying the Heap size in the Project|Configure|C
Compiler|Code Generation menu.
If there wasn't enough contiguous free memory in the heap to allocate, the function returns a null
pointer.

void *calloc(unsigned int num, unsigned int size)

allocates a memory block in the heap for an array of num elements, each element having the size
length.
On success the function returns a pointer to the start of the memory block, the block being filled with
zeroes.
If there wasn't enough contiguous free memory in the heap to allocate, the function returns a null
pointer.

void *realloc(void *ptr, unsigned int size)

changes the size of a memory block allocated in the heap.
The ptr pointer must point to a block of memory previously allocated in the heap.
The size argument specifies the new size of the memory block.
On success the function returns a pointer to the start of the newly allocated memory block, the
contents of the previously allocated block being copied to the newly allocated one.
If the newly allocated memory block is larger in size than the old one, the size difference is not filled
with zeroes.
If there wasn't enough contiguous free memory in the heap to allocate, the function returns a null
pointer.

void free(void *ptr)

frees a memory block allocated in the heap by the malloc, calloc or realloc functions and pointed
by the ptr pointer.
After being freed, the memory block is available for new allocation.
If ptris null then it is ignored.

© 1998-2008 HP InfoTech S.R.L. Page 124

CodeVisionAVR

4.4 Mathematical Functions

The prototypes for these functions are placed in the file math.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

signed char cmax(signed char a, signed char b)

returns the maximum value of bytes a and b.
int max(int a, int b)

returns the maximum value of integers a and b.
long int Imax(long int a, long int b)

returns the maximum value of long integers a and b.
float fmax(float a, float b)

returns the maximum value of floating point numbers a and b.
signed char cmin(signed char a, signed char b)

returns the minimum value of bytes a and b.
int min(int a, int b)

returns the minimum value of integers a and b.
long int Imin(long int a, long int b)

returns the minimum value of long integers a and b.
float fmin(float a, float b)

returns the minimum value of floating point numbers a and b.
signed char csign(signed char x)

returns -1, 0 or 1 if the byte x is negative, zero or positive.
signed char sign(int x)

returns -1, 0 or 1 if the integer x is negative, zero or positive
signed char Isign(long int x)

returns -1, 0 or 1 if the long integer x is negative, zero or positive.
signed char fsign(float x)

returns -1, 0 or 1 if the floating point number x is negative, zero or positive.
unsigned char isqrt(unsigned int x)

returns the square root of the unsigned integer x.

© 1998-2008 HP InfoTech S.R.L. Page 125

CodeVisionAVR

unsigned int Isqrt(unsigned long x)

returns the square root of the unsigned long integer x.
float sqrt(float x)

returns the square root of the positive floating point number x.
float floor(float x)

returns the smallest integer value of the floating point number x.
float ceil(float x)

returns the largest integer value of the floating point number x.
float fmod(float x, float y)

returns the remainder of x divided by y.
float modf(float x, float *ipart)

splits the floating point number x into integer and fractional components.
The fractional part of x is returned as a signed floating point number.
The integer part is stored as floating point number at ipart.
float Idexp(float x, int expn)

returns x * 2",
float frexp(float x, int *expn)

returns the mantissa and exponent of the floating point number x.
float exp(float x)

returns e* .
float log(float x)

returns the natural logarithm of the floating point number x.
float log10(float x)

returns the base 10 logarithm of the floating point number x.
float pow(float x, float y)

returns x” .
float sin(float x)

returns the sine of the floating point number x, where the angle is expressed in radians.
float cos(float x)

returns the cosine of the floating point number x, where the angle is expressed in radians.

© 1998-2008 HP InfoTech S.R.L. Page 126

CodeVisionAVR

float tan(float x)

returns the tangent of the floating point number x, where the angle is expressed in radians.
float sinh(float x)

returns the hyperbolic sine of the floating point number x, where the angle is expressed in radians.
float cosh(float x)

returns the hyperbolic cosine of the floating point number x, where the angle is expressed in
radians.

float tanh(float x)

returns the hyperbolic tangent of the floating point number x, where the angle is expressed in
radians.

float asin(float x)

returns the arc sine of the floating point number x (in the range -P1/2 to P1/2).
x must be in the range -1 to 1.

float acos(float x)

returns the arc cosine of the floating point number x (in the range 0 to PI).
x must be in the range -1 to 1.

float atan(float x)
returns the arc tangent of the floating point number x (in the range -P1/2 to P1/2).
float atan2(float y, float x)

returns the arc tangent of the floating point numbers y/x (in the range -PI to PI).

© 1998-2008 HP InfoTech S.R.L. Page 127

CodeVisionAVR

4.5 String Functions

The prototypes for these functions are placed in the file string.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The string manipulation functions were extended to handle strings located both in RAM and FLASH
memories.

char *strcat(char *str1, char *str2)

concatenate the string str2 to the end of the string str1.
char *strcatf(char *str1, char flash *str2)

concatenate the string str2, located in FLASH, to the end of the string str1.
char *strncat(char *str1, char *str2, unsigned char n)

concatenate maximum n characters of the string str2 to the end of the string str1.
Returns a pointer to the string str1.

char *strncatf(char *str1, char flash *str2, unsigned char n)

concatenate maximum n characters of the string str2, located in FLASH, to the end of the string
SRt(r;tL.Jrns a pointer to the string str1.
char *strchr(char *str, char c)

returns a pointer to the first occurrence of the character c in the string str, else a NULL pointer.
char *strrchr(char *str, char c)

returns a pointer to the last occurrence of the character ¢ in the string str, else a NULL pointer.
signed char strpos(char *str, char c)

returns the index to first occurrence of the character c in the string str, else -1.
signed char strrpos(char *str, char c)

returns the index to the last occurrence of the character c in the string str, else -1.

signed char strcmp(char *str1, char *str2)

compares the string str1 with the string str2.
Returns <0, 0, >0 according to stri<str2, str1=str2, str1>str2.

signed char strempf(char *str1, char flash *str2)

compares the string str1, located in RAM, with the string str2, located in FLASH.
Returns <0, 0, >0 according to stri1<str2, str1=str2, str1>str2.

signed char strncmp(char *str1, char *str2, unsigned char n)

compares at most n characters of the string str1 with the string str2.
Returns <0, 0, >0 according to stri<str2, str1=str2, str1>str2.

© 1998-2008 HP InfoTech S.R.L. Page 128

CodeVisionAVR

signed char strncmpf(char *str1, char flash *str2, unsigned char n)

compares at most n characters of the string str1, located in RAM, with the string str2, located in
;Ic_eﬁJsrrl;is <0, 0, >0 according to str1<str2, str1=str2, str1>str2.
char *strcpy(char *dest, char *src)

copies the string src to the string dest.

char *strcpyf(char *dest, char flash *src)

copies the string src, located in FLASH, to the string dest, located in RAM.
Returns a pointer to the string dest.

char *strncpy(char *dest, char *src, unsigned char n)

copies at most n characters from the string src to the string dest (null padding).
Returns a pointer to the string dest.

char *strncpyf(char *dest, char flash *src, unsigned char n)
copies at most n characters from the string src, located in FLASH, to the string dest, located in
RAM (null padding).
Returns a pointer to the string dest.
unsigned char strspn(char *str, char *set)
returns the index of the first character, from the string str, that doesn't match a character from the
string set.
If all characters from set are in str returns the length of str.
unsigned char strspnf(char *str, char flash *set)
returns the index of the first character, from the string str, located in RAM, that doesn't match a
character from the string set, located in FLASH.
If all characters from set are in str returns the length of str.
unsigned char strcspn(char *str, char *set)
searches the string str for the first occurrence of a character from the string set.
If there is a match returns, the index of the character in str.
If there are no matching characters, returns the length of str.
unsigned char strcspnf(char *str, char flash *set)
searches the string str for the first occurrence of a character from the string set, located in FLASH.
If there is a match, returns the index of the character in str.
If there are no matching characters, returns the length of str.
char *strpbrk(char *str, char *set)
searches the string str for the first occurrence of a char from the string set.

If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.

© 1998-2008 HP InfoTech S.R.L. Page 129

CodeVisionAVR

char *strpbrkf(char *str, char flash *set)

searches the string str, located in RAM, for the first occurrence of a char from the string set,
located in FLASH.
If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.

char *strrpbrk(char *str, char *set)

searches the string str for the last occurrence of a character from the string set.
If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.

char *strrpbrkf(char *str, char flash *set)

searches the string str, located in RAM, for the last occurrence of a character from the string set,
located in FLASH.
If there is a match, returns a pointer to the character in str.
If there are no matching characters, returns a NULL pointer.

char *strstr(char *str1, char *str2)

searches the string str1 for the first occurrence of the string str2.
If there is a match, returns a pointer to the character in str1 where str2 begins.
If there is no match, returns a NULL pointer.

char *strstrf(char *str1, char flash *str2)

searches the string str1, located in RAM, for the first occurrence of the string str2, located in
FLASH.
If there is a match, returns a pointer to the character in str1 where str2 begins.
If there is no match, returns a NULL pointer.

char *strtok(char *str1, char flash *str2)

scans the string str1, located in RAM, for the first token not contained in the string str2, located in
FLASH.
The function considers the string str1 as consisting of a sequence of text tokens, separated by spans
of one or more characters from the string str2.
The first call to strtok, with the pointer to str1 being different from NULL, returns a pointer to the first
character of the first token in str1. Also a NULL character will be written in str1, immediately after the
returned token.
Subsequent calls to strtok, with NULL as the first parameter, will work through the string str1 until no
more tokens remain. When there are no more tokens, strtok will return a NULL pointer.

unsigned char strlen(char *str)

for the TINY memory model.
returns the length of the string str (in the range 0..255), excluding the null terminator.

unsigned int strlen(char *str)

for the SMALL memory model.
returns the length of the string str (in the range 0..65535), excluding the null terminator.

unsigned int strlenf(char flash *str)

returns the length of the string str located in FLASH, excluding the null terminator.

© 1998-2008 HP InfoTech S.R.L. Page 130

CodeVisionAVR

void *memcpy(void *dest,void *src, unsigned char n)
for the TINY memory model.

void *memcpy(void *dest,void *src, unsigned int n)
for the SMALL memory model.

Copies n bytes from src to dest. dest must not overlap src, else use memmove.
Returns a pointer to dest.

void *memcpyf(void *dest,void flash *src, unsigned char n)
for the TINY memory model.
void *memcpyf(void *dest,void flash *src, unsigned int n)
for the SMALL memory model.
Copies n bytes from src, located in FLASH, to dest. Returns a pointer to dest.
void *memccpy(void *dest,void *src, char ¢, unsigned char n)
for the TINY memory model.
void *memccpy(void *dest,void *src, char c, unsigned int n)
for the SMALL memory model.
Copies at most n bytes from src to dest, until the character c is copied.
dest must not overlap src.
Returns a NULL pointer if the last copied character was ¢ or a pointer to dest+n+1.
void *memmove(void *dest,void *src, unsigned char n)
for the TINY memory model.
void *memmove(void *dest,void *src, unsigned int n)
for the SMALL memory model.

Copies n bytes from src to dest. dest may overlap src.
Returns a pointer to dest.

void *memchr(void *buf, unsigned char ¢, unsigned char n)
for the TINY memory model.

void *memchr(void *buf, unsigned char c, unsigned int n)
for the SMALL memory model.

Scans n bytes from buf for byte c.
Returns a pointer to c if found or a NULL pointer if not found.

signed char memcmp(void *buf1,void *buf2, unsigned char n)

for the TINY memory model.

© 1998-2008 HP InfoTech S.R.L. Page 131

CodeVisionAVR

signed char memcmp(void *buf1,void *buf2, unsigned int n)
for the SMALL memory model.

Compares at most n bytes of buf1 with buf2.
Returns <0, 0, >0 according to buf1<buf2, buf1=buf2, buf1>buf2.

signed char memcmpf(void *buf1,void flash *buf2, unsigned char n)
for the TINY memory model.
signed char memcmpf(void *buf1,void flash *buf2, unsigned int n)

for the SMALL memory model.

Compares at most n bytes of buf1, located in RAM, with buf2, located in FLASH.

Returns <0, 0, >0 according to buf1<buf2, buf1=buf2, buf1>buf2.

void *memset(void *buf, unsigned char ¢, unsigned char n)
for the TINY memory model.

void *memset(void *buf, unsigned char ¢, unsigned int n)
for the SMALL memory model.

Sets n bytes from buf with byte c. Returns a pointer to buf.

© 1998-2008 HP InfoTech S.R.L.

Page 132

CodeVisionAVR

4.6 Variable Length Argument Lists Macros

These macros are defined in the file stdarg.h, located in the .\INC subdirectory. This file must be
#include -ed before using the macros.

void va_start(argptr, previous_par)

This macro, when used in a function with a variable length argument list, initializes the argptr pointer
of va_list type, for subsequent use by the va_arg and va_end macros.

The previous_par argument must be the name of the function argument immediately preceding the
optional arguments.

The va_start macro must be called prior to any access using the va_arg macro.

type va_arg(argptr, type)

This macro is used to extract successive arguments from the variable length argument list referenced
by argptr.

type specifies the data type of the argument to extract.

The va_arg macro can be called only once for each argument. The order of the parameters in the
argument list must be observed.

On the first call va_arg returns the first argument after the previous_par argument specified in the
va_start macro. Subsequent calls to va_arg return the remaining arguments in succession.

void va_end(argptr)

This macro is used to terminate use of the variable length argument list pointer argptr, initialized using
the va_start macro.

Example:
#include <stdarg.h>

/* declare a function with a variable number of arguments */
int sum all(int nsum, ...)

{

va_ list argptr;

int i, result=0;

/* initialize argptr */
va_start (argptr,nsum) ;

/* add all the function arguments after nsum */
for (i=1; 1 <= nsum; 1i++)

/* add each argument */

result+=va arg(argptr,int);

/* terminate the use of argptr */
va_end (argptr) ;

return result;

}

void main (void)

{

int s;

/* calculate the sum of 5 arguments */
s=sum_all(5,10,20,30,40,50);

}

© 1998-2008 HP InfoTech S.R.L. Page 133

CodeVisionAVR

4.7 Non-local Jump Functions

These functions can execute a non-local goto.

They are usually used to pass control to an error recovery routine.

The prototypes for the non-local jump functions are placed in the file setjmp.h, located in the AINC
subdirectory. This file must be #include -ed before using the functions.

int setimp(char *env)

This function saves the current CPU state (Y, SP, SREG registers and the current instruction address)
in the env variable.

The CPU state can then be restored by subsequently calling the longjmp function.

Execution is then resumed immediately after the setjmp function call.

The setjmp function will return 0 when the current CPU state is saved in the env variable.

If the function returns a value different from 0, it signals that a longjmp function was executed.

In this situation the returned value is the one that was passed as the retval argument to the longjmp
function.

In order to preserve the local variables in the function where setjmp is used, these must be declared
with the volatile attribute.

void longjmp(char *env, int retval)

This function restores the CPU state that was previously saved in the env variable by a call to setjmp.
The retval argument holds the integer non-zero value that will be returned by setjmp after the call to
longjmp. If a 0 value is passed as the retval argument then it will be substituted with 1.

In order to facilitate the usage of these functions, the setjmp.h header file also contains the definition
of the jmp_buf data type, which is used when declaring the env variables.

Example:

#include <mega8515.h>
#include <stdio.h>
#include <setjmp.h>

/* declare the variable used to hold the CPU state */
jmp buf cpu state;

void foo (void)

{

printf ("Now we will make a long jump to main()\n\zr");
longjmp (cpu_state, 1) ;

}

/* ATmega8515 clock frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#define baud 9600

void main (void)

{

/* this local variable will be preserved after a longjmp */
volatile int 1i;

/* this local variable will not be preserved after a longjmp */
int J;

© 1998-2008 HP InfoTech S.R.L. Page 134

CodeVisionAVR

/* initialize the USART control register
TX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL= (xtal/16/baud-1) & OxFF;

if (setjmp(cpu state)==0)
{
printf ("First call to setjmp\n\r");
foo ()
}
else
printf ("We jumped here from foo () \n\r");

© 1998-2008 HP InfoTech S.R.L. Page 135

CodeVisionAVR

4.8 BCD Conversion Functions

The prototypes for these functions are placed in the file bed.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

unsigned char bcd2bin(unsigned char n)
Converts the number n from BCD representation to it's binary equivalent.
unsigned char bin2bcd(unsigned char n)

Converts the number n from binary representation to it's BCD equivalent.
The number n values must be from 0 to 99.

4.9 Gray Code Conversion Functions

The prototypes for these functions are placed in the file gray.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

unsigned char gray2binc(unsigned char n)

unsigned char gray2bin(unsigned int n)

unsigned char gray2binl(unsigned long n)

Convert the number n from Gray code representation to it's binary equivalent.
unsigned char bin2grayc(unsigned char n)

unsigned char bin2gray(unsigned int n)

unsigned char bin2grayl(unsigned long n)

Convert the number n from binary representation to it's Gray code equivalent.

© 1998-2008 HP InfoTech S.R.L. Page 136

CodeVisionAVR

4.10 Memory Access Macros

The memory access macros are defined in the mem.h header file, located in the \INC subdirectory.
This file must be #include -ed before using these macros.

pokeb(addr, data)
this macro writes the unsigned char data to RAM at address addr.
pokew(addr, data)

this macro writes the unsigned int data to RAM at address addr.
The LSB is written at address addr and the MSB is written at address addr+1.

peekb(unsigned int addr)
this macro reads an unsigned char located in RAM at address addr.
peekw (unsigned int addr)

this macro reads an unsigned int located in RAM at address addr.
The LSB is read from address addr and the MSB is read from address addr+1.

© 1998-2008 HP InfoTech S.R.L. Page 137

CodeVisionAVR

4.11 LCD Functions

4.11.1 LCD Functions for displays with up to 2x40 characters

The LCD Functions are intended for easy interfacing between C programs and alphanumeric LCD
modules built with the Hitachi HD44780 chip or equivalent.

The prototypes for these functions are placed in the file led.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

Prior to #include -ing the lcd.h file, you must declare which microcontroller port is used for
communication with the LCD module.

The following LCD formats are supported in led.h: 1x8, 2x12, 3x12, 1x16, 2x16, 2x20, 4x20, 2x24 and
2x40 characters.

Example:

/* the LCD module is connected to PORTC */
#asm

.equ _ lcd port=0x15
#endasm

/* now you can include the LCD Functions */
#include <lcd.h>

The LCD module must be connected to the port bits as follows:

[LCD] [AVR Port]
RS (pind) - bit 0
RD (pin 5) ---—-- bit 1
EN (pin 6) - bit 2
DB4 (pin 11) - bit 4
DB5 (pin 12) - bit 5
DB6 (pin 13) - bit 6
DB7 (pin 14) - bit 7

You must also connect the LCD power supply and contrast control voltage, according to the data
sheet.

The low level LCD Functions are:
void _lcd_ready(void)

waits until the LCD module is ready to receive data.
This function must be called prior to writing data to the LCD with the _lcd_write_data function.

void _lcd_write_data(unsigned char data)

writes the byte data to the LCD instruction register.
This function may be used for modifying the LCD configuration.
Example:

/* enables the displaying of the cursor */
_lcd ready ()
_lcd write data(0Oxe);

© 1998-2008 HP InfoTech S.R.L. Page 138

CodeVisionAVR

void Icd_write_byte(unsigned char addr, unsigned char data);

writes a byte to the LCD character generator or display RAM.

Example:

/* LCD user defined characters
Chip: ATmega8515
Memory Model: SMALL
Data Stack Size: 128 bytes

Use an 2x16 alphanumeric LCD connected
to the STK200+ PORTC header as follows:
[LCD] [STK200+ PORTC HEADER]
1 GND- 9 GND

2 +5V- 10 VCC

3 VLC- LCD HEADER Vo

4 RS - 1 PCO

5

RD - 2 PC1

6 EN - 3 PC2

11 D4 - 5 PC4

12 D5 - 6 PC5

13 D6 - 7 PC6
14 D7 - 8 PC7 */

/* the LCD is connected to PORTC outputs */
#asm
.equ lcd port=0x15 ;PORTC

#endasm

/* include the LCD driver routines */
#include <lcd.h>

typedef unsigned char byte;

/* table for the user defined character
arrow that points to the top right corner */

flash byte char0[8]={

0b10000000,

0b10001111,

0b10000011,

0b10000101,

0b10001001,

0b10010000,

010100000,

011000000} ;

/* function used to define user characters */
void define char (byte flash *pc,byte char code)
{

byte i, a;

a=(char code<<3) | 0x40;

for (i=0; i<8; i++) lcd write byte(a++, *pc++);
}

© 1998-2008 HP InfoTech S.R.L.

Page 139

CodeVisionAVR

void main (void)

{

/* initialize the LCD for 2 lines & 16 columns */
lcd init(16);

/* define user character 0 */
define char (char0,0);

/* switch to writing in Display RAM */
lcd gotoxy(0,0);
lcd putsf ("User char 0:");

/* display used defined char 0 */
lcd putchar (0);

while (1); /* loop forever */

}

unsigned char Icd_read_byte(unsigned char addr);

reads a byte from the LCD character generator or display RAM.
The high level LCD Functions are:
unsigned char lcd_init(unsigned char lcd_columns)

initializes the LCD module, clears the display and sets the printing character position at row 0 and
column 0. The numbers of columns of the LCD must be specified (e.g. 16). No cursor is displayed.
The function returns 1 if the LCD module is detected and O if it is not.
This is the first function that must be called before using the other high level LCD Functions.
void lcd_clear(void)

clears the LCD and sets the printing character position at row 0 and column 0.

void lcd_gotoxy(unsigned char x, unsigned char y)

sets the current display position at column x and row y. The row and column numbering starts
from 0.

void Icd_putchar(char c)

displays the character c at the current display position.
void lcd_puts(char *str)

displays at the current display position the string str, located in RAM.
void lcd_putsf(char flash *str)

displays at the current display position the string str, located in FLASH.

© 1998-2008 HP InfoTech S.R.L. Page 140

CodeVisionAVR

4.11.2 LCD Functions for displays with 4x40 characters

The LCD Functions are intended for easy interfacing between C programs and alphanumeric LCD
modules with 4x40 characters, built with the Hitachi HD44780 chip or equivalent.

The prototypes for these functions are placed in the file Icd4x40.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

Prior to #include -ing the lcd4x40.h file, you must declare which microcontroller port is used for
communication with the LCD module.
Example:

/* the LCD module is connected to PORTC */
#asm

.equ _ lcd port=0x15
#endasm

/* now you can include the LCD Functions */
#include <1lcd4x40.h>

The LCD module must be connected to the port bits as follows:

[LCD] [AVR Port]
RS (pin 11) --- bit0
RD (pin 10) --- bit 1
EN1 (pin 9) ---- bit 2
EN2 (pin 15) -- bit 3
DB4 (pin 4) ---- bit 4
DB5 (pin 3) --—- bit5
DB6 (pin 2) ---- bit 6
DB7 (pin 1) - bit 7

You must also connect the LCD power supply and contrast control voltage, according to the data
sheet.

The low level LCD Functions are:
void _lcd_ready(void)

waits until the LCD module is ready to receive data.
This function must be called prior to writing data to the LCD with the _lcd_write_data function.

void _lcd_write_data(unsigned char data)

writes the byte data to the LCD instruction register.
This function may be used for modifying the LCD configuration.

Prior calling the low level functions _lcd_ready and _lcd_write_data, the global variable _en1_msk
must be set to LCD_EN1, respectively LCD_ENZ2, to select the upper, respectively lower half, LCD
controller.

Example:

/* enables the displaying of the cursor on the upper half
of the LCD */

_enl msk=LCD ENI1;

_lcd ready ()

_lcd write data(0Oxe);

© 1998-2008 HP InfoTech S.R.L. Page 141

CodeVisionAVR

void Icd_write_byte(unsigned char addr, unsigned char data);

writes a byte to the LCD character generator or display RAM.

unsigned char lcd_read_byte(unsigned char addr);

reads a byte from the LCD character generator or display RAM.
The high level LCD Functions are:
unsigned char lcd_init(void)
initializes the LCD module, clears the display and sets the printing character position at row 0 and
column 0. No cursor is displayed.
The function returns 1 if the LCD module is detected and O if it is not.
This is the first function that must be called before using the other high level LCD Functions.
void lcd_clear(void)
clears the LCD and sets the printing character position at row 0 and column 0.

void lcd_gotoxy(unsigned char x, unsigned char y)

sets the current display position at column x and row y. The row and column numbering starts
from O.

void Icd_putchar(char c)

displays the character c at the current display position.
void lcd_puts(char *str)

displays at the current display position the string str, located in RAM.
void led_putsf(char flash *str)

displays at the current display position the string str, located in FLASH.

© 1998-2008 HP InfoTech S.R.L. Page 142

CodeVisionAVR

4.11.3 LCD Functions for displays connected in 8 bit memory
mapped mode

These LCD Functions are intended for easy interfacing between C programs and alphanumeric LCD
modules built with the Hitachi HD44780 chip or equivalent.

The LCD is connected to the AVR external data and address buses as an 8 bit peripheral.

This type of connection is used in the Kanda Systems STK200+ and STK300 development boards.
For the LCD connection, please consult the documentation that came with your development board.

These functions can be used only with AVR chips that allow using external memory devices.
The prototypes for these functions are placed in the file lcdstk.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.
The following LCD formats are supported in lcdstk.h: 1x8, 2x12, 3x12, 1x16, 2x16, 2x20, 4x20, 2x24
and 2x40 characters.
The LCD Functions are:
void _lcd_ready(void)

waits until the LCD module is ready to receive data.
This function must be called prior to writing data to the LCD with the _LCD_RS0 and _LCD_RS1
macros.
Example:
/* enables the displaying of the cursor */
_lcd ready();
_LCD_RS0=0xe;

The _LCD_RSO, respectively _LCD_RS1, macros are used for accessing the LCD Instruction Register
with RS=0, respectively RS=1.

void lcd_write_byte(unsigned char addr, unsigned char data);

writes a byte to the LCD character generator or display RAM.
Example:
/* LCD user defined characters

Chip: ATmegaS8515

Memory Model: SMALL

Data Stack Size: 128 bytes

Use an 2x16 alphanumeric LCD connected
to the STK200+ LCD connector */

/* include the LCD driver routines */
#include <lcdstk.h>

typedef unsigned char byte;

© 1998-2008 HP InfoTech S.R.L. Page 143

CodeVisionAVR

/* table for the user defined character
arrow that points to the top right corner */

flash byte char0[8]={

0b10000000,

0b10001111,

0b10000011,

0b10000101,

0b10001001,

0b10010000,

010100000,

0b11000000};

/* function used to define user characters */
void define char (byte flash *pc,byte char code)

{

byte i,a;

a=(char code<<3) | 0x40;

for (i=0; i<8; i++) lcd write byte(a++, *pct++);
}

void main (void)

{

/* initialize the LCD for 2 lines & 16 columns */
lcd init(16);

/* define user character 0 */
define char (char0,0);

/* switch to writing in Display RAM */
lcd gotoxy(0,0);
lcd putsf ("User char 0:");

/* display used defined char 0 */
lcd putchar (0);

while (1); /* loop forever */
}

unsigned char Icd_read_byte(unsigned char addr);

reads a byte from the LCD character generator or display RAM.
unsigned char Icd_init(unsigned char lcd_columns)

initializes the LCD module, clears the display and sets the printing character position at row 0 and
column 0. The numbers of columns of the LCD must be specified (e.g. 16). No cursor is displayed.
The function returns 1 if the LCD module is detected and O if it is not.
This is the first function that must be called before using the other high level LCD Functions.
void lcd_clear(void)

clears the LCD and sets the printing character position at row 0 and column 0.

void Icd_gotoxy(unsigned char x, unsigned char y)

sets the current display position at column x and row y. The row and column numbering starts
from O.

© 1998-2008 HP InfoTech S.R.L. Page 144

CodeVisionAVR

void led_putchar(char c)

displays the character c at the current display position.
void Icd_puts(char *str)

displays at the current display position the string str, located in RAM.
void lcd_putsf(char flash *str)

displays at the current display position the string str, located in FLASH.

4.12 I’C Bus Functions

The I°C Functions are intended for easy interfacing between C programs and various peripherals

using the Philips I°C bus.
These functions treat the microcontroller as a bus master and the peripherals as slaves.

The prototypes for these functions are placed in the file i2¢.h, located in the \INC subdirectory. This

file must be #include -ed before using the functions.

Prior to #include -ing the i2¢.h file, you must declare which microcontroller port and port bits are used

for communication through the 1°C bus.
Example:
/* the I°C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ _ i2c port=0x18
.equ _ sda bit=3
.equ _ scl bit=4
fendasm

/* now you can include the I?C Functions */
#include <i2c.h>

The I°C Functions are:
void i2¢_init(void)

this function initializes the 1°C bus.
This is the first function that must be called prior to using the other I°C Functions.

unsigned char i2c_start(void)

issues a START condition.
Returns 1 if bus is free or 0 if the I°C bus is busy.

void i2c_stop(void)
issues a STOP condition.
unsigned char i2c_read(unsigned char ack)

reads a byte from the bus.

The ack parameter specifies if an acknowledgement is to be issued after the byte was read.

Set ack to 0 for no acknowledgement or 1 for acknowledgement.

© 1998-2008 HP InfoTech S.R.L.

Page 145

CodeVisionAVR

unsigned char i2c_write(unsigned char data)

writes the byte data to the bus.
Returns 1 if the slave acknowledges or 0 if not.

Example how to access an Atmel 24C02 256 byte I°C EEPROM:

/* the I°C bus is connected to PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
fasm
.equ _ i2c port=0x18
.equ _ sda bit=3
.equ __ scl bit=4
#endasm

/* now you can include the I?C Functions */
#include <i2c.h>

/* function declaration for delay ms */
#include <delay.h>

#define EEPROM BUS ADDRESS 0xa0

/* read a byte from the EEPROM */
unsigned char eeprom read(unsigned char address) {
unsigned char data;

i2c_start();
i2c_write (EEPROM BUS ADDRESS) ;
i2c_write (address);

i2c_start();

i2c write (EEPROM BUS ADDRESS | 1);
data=i2c_read(0);

i2c_stop();

return data;

}

/* write a byte to the EEPROM */

void eeprom write (unsigned char address, unsigned char data) {
i2c_start();

i2c write (EEPROM BUS ADDRESS) ;

i2c_write (address);

i2c write(data);

i2c_stop();

/* 10ms delay to complete the write operation */

delay ms (10);

}

void main (void) {

unsigned char 1i;

/* initialize the I?C bus */

i2c¢c init ();

/* write the byte 55h at address AAh */
eeprom write (Oxaa, 0x55);

/* read the byte from address AAh */
i=eeprom read(0Oxaa);

while (1); /* loop forever */

}

© 1998-2008 HP InfoTech S.R.L. Page 146

CodeVisionAVR

4.12.1 National Semiconductor LM75 Temperature Sensor
Functions

These functions are intended for easy interfacing between C programs and the LM75 I°C bus
temperature sensor.

The prototypes for these functions are placed in the file Im75.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the Im75.h.

Prior to #include -ing the Im75.h file, you must declare which microcontroller port and port bits are
used for communication with the LM75 through the I°C bus.
Example:

/* the I°C bus is connected to ATmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ _ i2c port=0x18
.equ __ sda bit=3
.equ _ scl bit=4
#endasm

/* now you can include the LM75 Functions */
#include <1lm75.h>

The LM75 Functions are:
void Im75_init(unsigned char chip,signed char thyst,signed char tos, unsigned char pol)

this function initializes the LM75 sensor chip.
Before calling this function the I°C bus must be initialized by calling the i2¢_init function.
This is the first function that must be called prior to using the other LM75 Functions.
If more then one chip is connected to the I°C bus, then the function must be called for each one,
specifying accordingly the function parameter chip.
Maximum 8 LM75 chips can be connected to the I°C bus, their chip address can be from 0 to 7.
The LM75 is configured in comparator mode, where it functions like a thermostat.
The O.S. output becomes active when the temperature exceeds the tos limit, and leaves the active
state when the temperature drops below the thyst limit.
Both thyst and tos are expressed in °C.
pol represents the polarity of the LM75 O.S. output in active state.
If pol is 0, the output is active low and if pol is 1, the output is active high.
Refer to the LM75 data sheet for more information.

int Im75_temperature_10(unsigned char chip)
this function returns the temperature of the LM75 sensor with the address chip.

The temperature is in °C and is multiplied by 10.
A 300ms delay must be present between two successive calls to the Im75_temperature_10 function.

© 1998-2008 HP InfoTech S.R.L. Page 147

CodeVisionAVR

Example how to display the temperature of two LM75 sensors with addresses 0 and 1:

/* the LM75 I°C bus is connected to ATmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ __ i2c port=0x18
.equ __ sda bit=3
.equ __ scl bit=4
#endasm

/* include the LM75 Functions */
#include <1m75.h>

/* the LCD module is connected to ATmega8515 PORTC */
#asm

.equ _ lcd port=0x15
fendasm

/* include the LCD Functions */
#include <lcd.h>

/* include the prototype for sprintf */
#include <stdio.h>

/* include the prototype for abs */
#include <math.h>

/* include the prototypes for the delay functions */
#include <delay.h>

char display buffer([33];

void main (void) {
int tO0,tl;

/* initialize the LCD, 2 rows by 16 columns */
lcd init(16);

/* initialize the I?C bus */
i2c _init();

/* initialize the LM75 sensor with address 0 */
/* thyst=20°C tos=25°C */
Im75 init(0,20,25,0);

/* initialize the LM75 sensor with address 1 */
/* thyst=30°C tos=35°C */
Im75 init(1,30,35,0);

© 1998-2008 HP InfoTech S.R.L. Page 148

CodeVisionAVR

/* temperature display loop */
while (1)
{
/* read the temperature of sensor #0 *10°C */
t0=1m75 temperature 10(0);
/* 300ms delay */
delay ms(300);

/* read the temperature of sensor #1 *10°C */
tl=1m75 temperature 10(1);

/* 300ms delay */

delay ms(300);

/* prepare the displayed temperatures */

/* in the display buffer */

sprintf (display buffer,
"t0=%-1i.%-u%cC\ntl=%-1.%-u%cC",

t0/10,abs (t0%10),0xdf, t1/10,abs (t1%10),0xdf) ;

/* display the temperatures */
lcd clear();

lcd puts(display buffer);

bi

© 1998-2008 HP InfoTech S.R.L. Page 149

CodeVisionAVR

4.12.2 Maxim/Dallas Semiconductor DS1621 Thermometer/
Thermostat Functions

These functions are intended for easy interfacing between C programs and the DS1621 I°C bus
thermometer/thermostat.

The prototypes for these functions are placed in the file ds1621.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the ds1621.h.

Prior to #include -ing the ds1621.h file, you must declare which microcontroller port and port bits are
used for communication with the DS1621 through the I°C bus.
Example:

/* the I°C bus is connected to ATmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */

#asm
.equ _ i2c port=0x18
.equ __ sda bit=3
.equ _ scl bit=4
#endasm

/* now you can include the DS1621 Functions */
#include <dsl1621.h>

The DS1621 Functions are:
void ds1621_init(unsigned char chip,signed char tlow,signed char thigh, unsigned char pol)

this function initializes the DS1621 chip.
Before calling this function the I°C bus must be initialized by calling the i2¢_init function.
This is the first function that must be called prior to using the other DS1621 Functions.
If more then one chip is connected to the I°C bus, then the function must be called for each one,
specifying accordingly the function parameter chip.
Maximum 8 DS1621 chips can be connected to the I°C bus, their chip address can be from 0 to 7.
Besides measuring temperature, the DS1621 functions also like a thermostat.
The Tout output becomes active when the temperature exceeds the thigh limit, and leaves the active
state when the temperature drops below the tlow limit.
Both tlow and thigh are expressed in °C.
pol represents the polarity of the DS1621 Tout output in active state.
If pol is 0, the output is active low and if pol is 1, the output is active high.
Refer to the DS1621 data sheet for more information.

unsigned char ds1621_get_status(unsigned char chip)
this function reads the contents of the configuration/status register of the DS1621 with address

chip.
Refer to the DS1621 data sheet for more information about this register.

© 1998-2008 HP InfoTech S.R.L. Page 150

CodeVisionAVR

void ds1621_set_status(unsigned char chip, unsigned char data)

this function sets the contents of the configuration/status register of the DS1621 with address
chip.
Refer to the DS1621 data sheet for more information about this register.

void ds1621_start(unsigned char chip)

this functions exits the DS1621, with address chip, from the power-down mode and starts the
temperature measurements and the thermostat.

void ds1621_stop(unsigned char chip)

this functions enters the DS1621, with address chip, in power-down mode and stops the
temperature measurements and the thermostat.

int ds1621_temperature_10(unsigned char chip)

this function returns the temperature of the DS1621 sensor with the address chip.
The temperature is in °C and is multiplied by 10.

Example how to display the temperature of two DS1621 sensors with addresses 0 and 1:

/* the DS1621 I?C bus is connected to ATmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ _ i2c port=0x18
.equ __ sda bit=3
.equ _ scl bit=4
#endasm

/* include the DS1621 Functions */
#include <dsl621.h>

/* the LCD module is connected to ATmega8515 PORTC */
#asm

.equ _ lcd port=0x15
#endasm

/* include the LCD Functions */
#include <lcd.h>

/* include the prototype for sprintf */
#include <stdio.h>

/* include the prototype for abs */
#include <math.h>

char display buffer([33];

void main (void) {
int tO0,tl;

/* initialize the LCD, 2 rows by 16 columns */
lcd init(16);

© 1998-2008 HP InfoTech S.R.L. Page 151

CodeVisionAVR

/* initialize the I°C bus */
i2c _init();

/* initialize the DS1621 sensor with address 0 */
/* tlow=20°C thigh=25°C */
dsl621 init(0,20,25,0);

/* initialize the DS1621 sensor with address 1 */
/* tlow=30°C thigh=35°C */
dsl1621 init(1,30,35,0);

/* temperature display loop */

while (1)
{
/* read the temperature of DS1621 #0 *10°C */
t0=dsl621 temperature 10(0);

/* read the temperature of DS1621 #1 *10°C */
tl=dsl621 temperature 10(1);

/* prepare the displayed temperatures */

/* in the display buffer */

sprintf (display buffer,
"t0=%-1.%-u%cC\ntl=%-1.%-u%cC",

t0/10,abs (t0%10),0xdf, t1/10,abs (£t1%10), 0xdf) ;

/* display the temperatures */
lcd clear();

lcd puts(display buffer);

i

© 1998-2008 HP InfoTech S.R.L.

Page 152

CodeVisionAVR

4.12.3 Philips PCF8563 Real Time Clock Functions

These functions are intended for easy interfacing between C programs and the PCF8563 I°C bus real
time clock (RTC).

The prototypes for these functions are placed in the file pcf8563.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the pcf8563.h.

Prior to #include -ing the pcf8563.h file, you must declare which microcontroller port and port bits are
used for communication with the PCF8563 through the I°C bus.
Example:

/* the I°C bus is connected to ATmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
fasm
.equ _ i2c port=0x18
.equ __ sda bit=3
.equ _ scl bit=4
#endasm
/* now you can include the PCF8563 Functions */
#include <pcf8563.h>

The PCF8563 Functions are:
void rtc_init(unsigned char ctrl2, unsigned char clkout, unsigned char timer_ctrl)

this function initializes the PCF8563 chip.
Before calling this function the 1°C bus must be initialized by calling the i2¢_init function.
This is the first function that must be called prior to using the other PCF8563 Functions.
Only one PCF8583 chip can be connected to the I°C bus.

The ctrl2 parameter specifies the initialization value for the PCF8563 Control/Status 2 register.
The pcf8563.h header file defines the following macros which allow the easy setting of the ctrl2
parameter:

e RTC_TIE_ON sets the Control/Status 2 register bit TIE to 1

e RTC_AIE_ON sets the Control/Status 2 register bit AlIE to 1

e RTC_TP_ON sets the Control/Status 2 register bit TI/TP to 1

These macros can be combined using the | operator in order to set more bits to 1.

The clkout parameter specifies the initialization value for the PCF8563 CLKOUT Frequency register.
The pcf8563.h header file defines the following macros which allow the easy setting of the clkout
parameter:

e RTC_CLKOUT_OFF disables the generation of pulses on the PCF8563 CLKOUT output
RTC_CLKOUT_1 generates 1Hz pulses on the PCF8563 CLKOUT output

RTC_CLKOUT_32 generates 32Hz pulses on the PCF8563 CLKOUT output
RTC_CLKOUT_1024 generates 1024Hz pulses on the PCF8563 CLKOUT output
RTC_CLKOUT_32768 generates 32768Hz pulses on the PCF8563 CLKOUT output.

The timer_ctrl parameter specifies the initialization value for the PCF8563 Timer Control register.
The pcf8563.h header file defines the following macros which allow the easy setting of the timer_ctrl
parameter:

RTC_TIMER_OFF disables the PCF8563 Timer countdown

RTC_TIMER_CLK_1_60 sets the PCF8563 Timer countdown clock frequency to 1/60Hz
RTC_TIMER_CLK_1 sets the PCF8563 Timer countdown clock frequency to 1Hz
RTC_TIMER_CLK_64 sets the PCF8563 Timer countdown clock frequency to 64Hz
RTC_TIMER_CLK_4096 sets the PCF8563 Timer countdown clock frequency to 4096Hz.

Refer to the PCF8563 data sheet for more information.

© 1998-2008 HP InfoTech S.R.L. Page 153

CodeVisionAVR

unsigned char rtc_read(unsigned char address)
this function reads the byte stored in a PCF8563 register at address.
void rtc_write(unsigned char address, unsigned char data)
this function stores the byte data in the PCF8583 register at address.
unsigned char rtc_get_time(unsigned char *hour, unsigned char *min, unsigned char *sec)

this function returns the current time measured by the RTC .
The *hour, *min and *sec pointers must point to the variables that must receive the values of hour,
minutes and seconds.
The function return the value 1 if the read values are correct.
If the function returns 0 then the chip supply voltage has dropped below the Viow value and the time
values are incorrect.
Example:

/* the I°C bus is connected to ATmega8515 PORTB */
#asm

.equ _ i2c port=0x18

.equ __ sda bit=3

.equ _ scl bit=4
#endasm

#include <pcf8563.h>

void main (void) {
unsigned char ok,h,m,s;

/* initialize the I®C bus */
i2c_init();

/* initialize the RTC,
Timer interrupt enabled,
Alarm interrupt enabled,
CLKOUT frequency=1Hz
Timer clock frequency=1Hz */
rtc_init (RTC _TIE ON | RTC AIE ON,RTC CLKOUT 1,RTC TIMER CLK 1);

/* read time from the RTC */
ok=rtc _get time (&h, &m, &s);

void rtc_set_time(unsigned char hour, unsigned char min, unsigned char sec)

this function sets the current time of the RTC .
The hour, min and sec parameters represent the values of hour, minutes and seconds.

void rtc_get_date(unsigned char *date, unsigned char *month, unsigned *year)

this function returns the current date measured by the RTC .
The *date, *month and *year pointers must point to the variables that must receive the values of day,
month and year.

void rtc_set_date(unsigned char date, unsigned char month, unsigned year)

this function sets the current date of the RTC .

© 1998-2008 HP InfoTech S.R.L. Page 154

CodeVisionAVR

void rtc_alarm_off(void)
this function disables the RTC alarm function.
void rtc_alarm_on(void)
this function enables the RTC alarm function.
void rtc_get_alarm(unsigned char *date, unsigned char *hour, unsigned char *min)
this function returns the alarm time and date of the RTC.
The *date, *hour and *min pointers must point to the variables that must receive the values of date,
hour and minutes.
void rtc_set_alarm(unsigned char date, unsigned char hour, unsigned char min)
this function sets the alarm time and date of the RTC.
The date, hour and min parameters represent the values of date, hours and minutes.
If date is set to 0, then this parameter will be ignored.
After calling this function the alarm will be turned off. It must be enabled using the rtc_alarm_on
function.

void rtc_set_timer(unsigned char val)

this function sets the countdown value of the PCF8563 Timer.

© 1998-2008 HP InfoTech S.R.L. Page 155

CodeVisionAVR

4.12.4 Philips PCF8583 Real Time Clock Functions

These functions are intended for easy interfacing between C programs and the PCF8583 I°C bus real
time clock (RTC).

The prototypes for these functions are placed in the file pcf8583.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the pcf8583.h.

Prior to #include -ing the pcf8583.h file, you must declare which microcontroller port and port bits are
used for communication with the PCF8583 through the I°C bus.
Example:

/* the I°C bus is connected to ATmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ _ i2c port=0x18
.equ _ sda bit=3
.equ __ scl bit=4
#endasm

/* now you can include the PCF8583 Functions */
#include <pcf8583.h>

The PCF8583 Functions are:
void rtc_init(unsigned char chip, unsigned char dated_alarm)

this function initializes the PCF8583 chip.
Before calling this function the 1°C bus must be initialized by calling the i2¢c_init function.
This is the first function that must be called prior to using the other PCF8583 Functions.
If more then one chip is connected to the I°C bus, then the function must be called for each one,
specifying accordingly the function parameter chip.
Maximum 2 PCF8583 chips can be connected to the I°C bus, their chip address can be 0 or 1.
The dated_alarm parameter specifies if the RTC alarm takes in account both the time and date
(dated_alarm=1), or only the time (dated_alarm=0).
Refer to the PCF8583 data sheet for more information.
After calling this function the RTC alarm is disabled.

unsigned char rtc_read(unsigned char chip, unsigned char address)
this function reads the byte stored in the PCF8583 SRAM.
void rtc_write(unsigned char chip, unsigned char address, unsigned char data)
this function stores the byte data in the PCF8583 SRAM.
When writing to the SRAM the user must take in account that locations at addresses 10h and 11h are
used for storing the current year value.
unsigned char rtc_get_status(unsigned char chip)
this function returns the value of the PCF8583 control/status register.
By calling this function the global variables __rtc_status and __rtc_alarm are automatically updated.

The __rtc_status variable holds the value of the PCF8583 control/status register.
The __rtc_alarm variable takes the value 1 if an RTC alarm occurred.

© 1998-2008 HP InfoTech S.R.L. Page 156

CodeVisionAVR

void rtc_get_time(unsigned char chip, unsigned char *hour, unsigned char *min,
unsigned char *sec, unsigned char *hsec)

this function returns the current time measured by the RTC.
The *hour, *min, *sec and *hsec pointers must point to the variables that must receive the values of
hour, minutes, seconds and hundreds of a second.
Example:

/* the I’C bus is connected to ATmega8515 PORTB */
#asm

.equ _ i2c port=0x18

.equ __ sda bit=3

.equ _ scl bit=4
#endasm

#include <pcf8583.h>

void main (void) {
unsigned char h,m,s,hs;

/* initialize the I®C bus */
i2c_init();
/* initialize the RTC O,

no dated alarm */

rtc _init (0,0);

/* read time from RTC 0*/
rtc _get time (0, &h, &m, &s, &hs);

void rtc_set_time(unsigned char chip, unsigned char hour, unsigned char min, unsigned char
sec, unsigned char hsec)

this function sets the current time of the RTC.
The hour, min, sec and hsec parameters represent the values of hour, minutes, seconds and
hundreds of a second.

void rtc_get_date(unsigned char chip, unsigned char *date, unsigned char *month, unsigned
*year)

this function returns the current date measured by the RTC.
The *date, *month and *year pointers must point to the variables that must receive the values of day,
month and year.

void rtc_set_date(unsigned char chip, unsigned char date, unsigned char month,
unsigned year)

this function sets the current date of the RTC.
void rtc_alarm_off(unsigned char chip)

this function disables the RTC alarm function.
void rtc_alarm_on(unsigned char chip)

this function enables the RTC alarm function.

© 1998-2008 HP InfoTech S.R.L. Page 157

CodeVisionAVR

void rtc_get_alarm_time(unsigned char chip, unsigned char *hour, unsigned char *min,
unsigned char *sec, unsigned char *hsec)

this function returns the alarm time of the RTC.
The *hour, *min, *sec and *hsec pointers must point to the variables that must receive the values of
hours, minutes, seconds and hundreds of a second.

void rtc_set_alarm_time(unsigned char chip, unsigned char hour, unsigned char min, unsigned
char sec, unsigned char hsec)

this function sets the alarm time of the RTC.
The hour, min, sec and hsec parameters represent the values of hours, minutes, seconds and
hundreds of a second.
void rtc_get_alarm_date(unsigned char chip, unsigned char *date, unsigned char *month)
this function returns the alarm date of the RTC.
The *day and *month pointers must point to the variables that must receive the values of date and
month.

void rtc_set_alarm_date(unsigned char chip, unsigned char date, unsigned char month)

this function sets the alarm date of the RTC.

© 1998-2008 HP InfoTech S.R.L. Page 158

CodeVisionAVR

4.12.5 Maxim/Dallas Semiconductor DS1307 Real Time Clock
Functions

These functions are intended for easy interfacing between C programs and the DS1307 I°C bus real
time clock (RTC).

The prototypes for these functions are placed in the file ds1307.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The I°C bus functions prototypes are automatically #include -ed with the ds1307.h.

Prior to #include -ing the ds1307.h file, you must declare which microcontroller port and port bits are
used for communication with the DS1307 through the I°C bus.
Example:

/* the I°C bus is connected to Atmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ _ i2c port=0x18
.equ __ sda bit=3
.equ _ scl bit=4
#endasm

/* now you can include the DS1307 Functions */
#include <ds1307.h>

The DS1307 Functions are:
void rtc_init(unsigned char rs, unsigned char sqwe, unsigned char out)

this function initializes the DS1307 chip.
Before calling this function the 1°C bus must be initialized by calling the i2¢_init function.
This is the first function that must be called prior to using the other DS1307 Functions.
The rs parameter specifies the value of the square wave output frequency on the SQW/OUT pin:
e Ofor1Hz
e 1 for 4096Hz
e 2for8192Hz
e 3for 32768Hz.
If the sqwe parameter is set to 1 then the square wave output on the SQW/OUT pin is enabled.
The out parameter specifies the logic level on the SQW/OUT pin when the square wave output is
disabled (sqwe=0).
Refer to the DS1307 data sheet for more information.

void rtc_get_time(unsigned char *hour, unsigned char *min, unsigned char *sec)

this function returns the current time measured by the RTC.
The *hour, *min and *sec pointers must point to the variables that must receive the values of hours,
minutes and seconds.
Example:

/* the I°C bus is connected to Atmega8515 PORTB */
/* the SDA signal is bit 3 */
/* the SCL signal is bit 4 */
#asm
.equ _ i2c port=0x18
.equ _ sda bit=3
.equ __ scl bit=4
fendasm

© 1998-2008 HP InfoTech S.R.L. Page 159

CodeVisionAVR

#include <ds1307.h>

void main (void) {
unsigned char h,m,s;

/* initialize the I°C bus */
i2c _init();

/* initialize the DS1307 RTC */
rtc init (0,0,0);

/* read time from the DS1307 RTC */
rtc_get time (&h, &m, &s);

void rtc_set_time(unsigned char hour, unsigned char min, unsigned char sec)

this function sets the current time of the RTC.
The hour, min and sec parameters represent the values of hour, minutes and seconds.

void rtc_get_date(unsigned char *date, unsigned char *month, unsigned char *year)

this function returns the current date measured by the RTC.
The *date, *month and *year pointers must point to the variables that must receive the values of date,
month and year.

void rtc_set_date(unsigned char date, unsigned char month, unsigned char year)

this function sets the current date of the RTC.

© 1998-2008 HP InfoTech S.R.L. Page 160

CodeVisionAVR

4.13 Maxim/Dallas Semiconductor DS1302 Real Time Clock
Functions

These functions are intended for easy interfacing between C programs and the DS1302 real time
clock (RTC).

The prototypes for these functions are placed in the file ds1302.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

Prior to #include -ing the ds1302.h file, you must declare which microcontroller port and port bits are
used for communication with the DS1302.
Example:

/* the DS1302 is connected to ATmega8515 PORTB
the I0 signal is bit 3
the SCLK signal is bit 4
the RST signal is bit 5 */
#asm
.equ _ dsl302 port=0x18
.equ _ dsl1302 io=3
.equ _ dsl1302 sclk=4
.equ _ dsl302 rst=5
#endasm

/* now you can include the DS1302 Functions */
#include <dsl1302.h>

The DS1302 Functions are:
void rtc_init(unsigned char tc_on, unsigned char diodes, unsigned char res)

this function initializes the DS1302 chip.
This is the first function that must be called prior to using the other DS1302 Functions.
If the tc_on parameter is set to 1 then the DS1302's trickle charge function is enabled.
The diodes parameter specifies the number of diodes used when the trickle charge function is
enabled. This parameter can take the value 1 or 2.
The res parameter specifies the value of the trickle charge resistor:
e O for no resistor
o 1 fora 2kQ resistor
o 2 for a4kQ resistor
o 3 for a 8kQ resistor.
Refer to the DS1302 data sheet for more information.

unsigned char ds1302_read(unsigned char addr)

this function reads a byte stored at address addr in the DS1302 registers or SRAM.
void ds1302_write(unsigned char addr, unsigned char data)

this function stores the byte data at address addr in the DS1302 registers or SRAM.
void rtc_get_time(unsigned char *hour, unsigned char *min, unsigned char *sec)

this function returns the current time measured by the RTC.

The *hour, *min and *sec pointers must point to the variables that must receive the values of hours,
minutes and seconds.

© 1998-2008 HP InfoTech S.R.L. Page 161

CodeVisionAVR

Example:

/* the DS1302 is connected to ATmega8515 PORTB
the IO signal is bit 3
the SCLK signal is bit 4
the RST signal is bit 5 */

#asm
.equ _ dsl302 port=0x18
.equ _ dsl1302 io=3
.equ dsl1302 sclk=4
.equ _ dsl302 rst=5
#endasm

#include <dsl1302.h>

void main (void) {
unsigned char h,m,s;

/* initialize the DS1302 RTC:

use trickle charge,

with 1 diode and 8K resistor */
rtc init(1,1,3);

/* read time from the DS1302 RTC */
rtc _get time (&h, &m, &s);

void rtc_set_time(unsigned char hour, unsigned char min, unsigned char sec)

this function sets the current time of the RTC.
The hour, min and sec parameters represent the values of hour, minutes and seconds.

void rtc_get_date(unsigned char *date, unsigned char *month, unsigned char *year)

this function returns the current date measured by the RTC.
The *date, *month and *year pointers must point to the variables that must receive the values of date,
month and year.

void rtc_set_date(unsigned char date, unsigned char month, unsigned char year)

this function sets the current date of the RTC.

© 1998-2008 HP InfoTech S.R.L. Page 162

CodeVisionAVR

4.14 1 Wire Protocol Functions

The 1 Wire Functions are intended for easy interfacing between C programs and various peripherals
using the Maxim/Dallas Semiconductor 1 Wire protocol.

These functions treat the microcontroller as a bus master and the peripherals as slaves.

The prototypes for these functions are placed in the file 1wire.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

Prior to #include -ing the 1wire.h file, you must declare which microcontroller port and port bit is used
for communication through the 1 Wire protocol.
Example:

/* the 1 Wire bus is connected to ATmega8515 PORTB
the data signal is bit 2 */
fasm
.equ _ wl port=0x18
.equ _ wl bit=2
#endasm

/* now you can include the 1 Wire Functions */
#include <lwire.h>

Because the 1 Wire Functions require precision time delays for correct operation, the interrupts must
be disabled during their execution.

Also it is very important to specify the correct AVR chip Clock frequency in the Project|Configure|C
Compiler|Code Generation menu.

The 1 Wire Functions are:
unsigned char w1_init(void)

this function initializes the 1 Wire devices on the bus.
It returns 1 if there were devices present or 0 if not.

unsigned char w1_read(void)
this function reads a byte from the 1 Wire bus.
unsigned char w1_write(unsigned char data)

this function writes the byte data to the 1 Wire bus.
It returns 1 if the write process completed normally or O if not.

unsigned char w1_search(unsigned char cmd,void *p)

this function returns the number of devices connected to the 1 Wire bus.
If no devices were detected then it returns 0.
The byte emd represents the Search ROM (FOh), Alarm Search (ECh) for the DS1820/DS18S20, or
other similar commands, sent to the 1 Wire device.

The pointer p points to an area of RAM where are stored the 8 bytes ROM codes returned by the
device. After the eighth byte, the function places a ninth status byte which contains a status bit
returned by some 1 Wire devices (e.g. DS2405).

Thus the user must allocate 9 bytes of RAM for each device present on the 1 Wire bus.

If there is more then one device connected to the 1 Wire bus, than the user must first call the
w1_search function to identify the ROM codes of the devices and to be able to address them at a
later stage in the program.

© 1998-2008 HP InfoTech S.R.L. Page 163

CodeVisionAVR

Example:

#include <mega8515.h>

/* specify the Atmega8515 port and bit used for the 1 Wire bus */

#asm
.equ _ wl port=0x18 ;PORTB
.equ _ wl bit=2

#endasm

/* include the 1 Wire bus functions prototypes */
#include <lwire.h>

/* include the printf function prototype */
#include <stdio.h>

/* specify the maximum number of devices connected
to the 1 Wire bus */
#define MAX DEVICES 8

/* allocate RAM space for the ROM codes & status bit */
unsigned char rom codes[MAX DEVICES] [9];

/* quartz crystal frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#define baud 9600

void main (void) {
unsigned char i,j,devices;

/* initialize the USART control register
TX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL= (xtal/l16/baud-1) & OxFF;

/* detect how many DS1820/DS18S20 devices

are connected to the bus and

store their ROM codes in the rom codes array */
devices=wl search (0xf0, rom codes);

/* display the ROM codes for each detected device */
printf ("$-u DEVICE (S) DETECTED\n\r",devices);
if (devices) {
for (i=0;i<devices;i++) {
printf ("DEVICE #%-u ROM CODE IS:", i+1);

for (Jj=0;J<8;j++) printf("%-X ",rom codes[i][j]);

printf ("\n\r");
bi
bi
while (1); /* loop forever */

}

© 1998-2008 HP InfoTech S.R.L.

Page 164

CodeVisionAVR

unsigned char w1_crc8(void *p, unsigned char n)

this function returns the 8 bit DOW CRC for a block of bytes with the length n, pointed by p.

4.14.1 Maxim/Dallas Semiconductor DS1820/DS18S20 Temperature
Sensors Functions

These functions are intended for easy interfacing between C programs and the DS1820/DS18S20
1 Wire bus temperature sensors.

The prototypes for these functions are placed in the file ds1820.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The 1 Wire bus functions prototypes are automatically #include -ed with the ds1820.h.

Prior to #include -ing the ds1820.h file, you must declare which microcontroller port and port bit are
used for communication with the DS1820/DS18S20 through the 1 Wire bus.
Example:

/* specify the Atmega8515 port and bit used for the 1 Wire bus */
#asm

.equ _ wl port=0x18 ;PORTB

.equ _ wl bit=2
#endasm

/* include the DS1820/DS18S20 functions prototypes */
#include <ds1820.h>

The DS1820/DS18S20 functions are:
unsigned char ds1820_read_spd(unsigned char *addr)

this function reads the contents of the SPD for the DS1820/DS18S20 sensor with the ROM code
stored in an array of 8 bytes located at address addr.
The functions returns the value 1 on succes and 0 in case of error.
If only one DS1820/DS18S20 sensor is used, no ROM code array is necessary and the pointer addr
must be NULL (0).
The contents of the SPD will be stored in the structure:

struct _ dsl820 scratch pad struct

{

unsigned char temp lsb, temp msb,
temp high, temp low,
resl,res2,
cnt rem,cnt c,
crc;

} dsl820 scratch pad;

defined in the ds1820.h header file.
int ds1820_temperature_10(unsigned char *addr)

this function returns the temperature of the DS1820/DS18S20 sensor with the ROM code stored in
an array of 8 bytes located at address addr.
The temperature is measured in °C and is multiplied by 10. In case of error the function returns the
value -9999.
If only one DS1820/DS18S20 sensor is used, no ROM code array is necessary and the pointer addr
must be NULL (0).

© 1998-2008 HP InfoTech S.R.L. Page 165

CodeVisionAVR

If several sensors are used, then the program must first identify the ROM codes for all the sensors.
Only after that the ds1820_temperature_10 function may be used, with the addr pointer pointing to
the array which holds the ROM code for the needed device.

Example:

#include <mega8515.h>

/* specify the Atmega8515 port and bit used for the 1 Wire bus */
#asm

.equ _ wl port=0x18 ;PORTB

.equ _ wl bit=2
#endasm

/* include the DS1820/DS18S20 functions prototypes */
#include <ds1820.h>

/* include the printf function prototype */
#include <stdio.h>

/* include the abs function prototype */
#include <math.h>

/* quartz crystal frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#define baud 9600

/* maximum number of DS1820/DS18S20 connected to the bus */
#define MAX_DEVICES 8

/* DS1820/DS18S20 devices ROM code storage area,
9 bytes are used for each device
(see the wl search function description),
but only the first 8 bytes contain the ROM code
and CRC */
unsigned char rom codes[MAX DEVICES][9];

main ()

{

unsigned char i,devices;
int temp;

/* initialize the USART control register
TX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL=(xtal/16/baud-1) & OxFF;

/* detect how many DS1820/DS18S20 devices

are connected to the bus and

store their ROM codes in the rom codes array */
devices=wl search (0xf0, rom codes) ;

© 1998-2008 HP InfoTech S.R.L. Page 166

CodeVisionAVR

/* display the number */
printf ("$-u DEVICE (S) DETECTED\n\r",devices);

/* 1f no devices were detected then halt */
if (devices==0) while (1); /* loop forever */

/* measure and display the temperature(s) */
while (1)
{
for (1i=0;i<devices;)
{
temp=ds1820 temperature 10 (&rom codes[i] [0]);
printf ("t%-u=%-1.%-u\xf8C\n\r",++1i, temp/10,
abs (temp%10)) ;
}:
}:
}

unsigned char ds1820_set_alarm(unsigned char *addr,signed char temp_low,
signed char temp_high)

this function sets the low (temp_low) and high (temp_high) temperature alarms of the
DS1820/DS18S20.
In case of success the function returns the value 1, else it returns 0.
The alarm temperatures are stored in both the DS1820/DS18S20's scratchpad RAM and its EEPROM.
The ROM code needed to address the device is stored in an array of 8 bytes located at address addr.
If only one DS1820/DS18S20 sensor is used, no ROM code array is necessary and the pointer addr
must be NULL (0).

The alarm status for all the DS1820/DS18S20 devices on the 1 Wire bus can be determined by calling
the w1_search function with the Alarm Search (ECh) command.

Example:

#include <mega8515.h>

/* specify the port and bit used for the 1 Wire bus */

#asm
.equ __ wl port=0x18 ;PORTB
.equ _ wl bit=2

#endasm

/* include the DS1820/DS18S20 functions prototypes */
#include <ds1820.h>

/* include the printf function prototype */
#include <stdio.h>

/* include the abs function prototype */
#include <math.h>

/* maximum number of DS1820/DS18S20 connected to the bus */
#define MAX DEVICES 8

/* DS1820/DS18S20 devices ROM code storage area,

9 bytes are used for each device

(see the wl search function description),

but only the first 8 bytes contain the ROM code and CRC */
unsigned char rom codes[MAX DEVICES] [9];

© 1998-2008 HP InfoTech S.R.L. Page 167

CodeVisionAVR

/* allocate space for ROM codes of the devices
which generate an alarm */
unsigned char alarm rom codes[MAX DEVICES][9];

#define xtal 4000000L /* quartz crystal frequency [Hz] */
#define baud 9600 /* Baud rate */

main ()

{

unsigned char i,devices;
int temp;

/* initialize the USART control register
TX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL=(xtal/16/baud-1) & OxFF;

/* detect how many DS1820/DS18S20 devices

are connected to the bus and

store their ROM codes in the rom codes array */
devices=wl search (0xf0, rom codes);

/* display the number */
printf ("$-u DEVICE (S) DETECTED\n\r",devices);

/* if no devices were detected then halt */
if (devices==0) while (1); /* loop forever */

/* set the temperature alarms for all the devices
temp low=25°C temp high=35°C */
for (i=0;i<devices;i++)
{
printf ("INITIALIZING DEVICE #%-u ", i+1);
if (dsl1820 set alarm(&rom codes[i] [0],25,35))
putsf ("OK"); else putsf ("ERROR");
bi

while (1)

{

/* measure and display the temperature(s) */

for (i=0;i<devices;)
{
temp=ds1820 temperature 10 (&rom codes[i] [0]);
printf ("t%$-u=%-i.%-u\xf8C\n\r", ++i, temp/10,
abs (temp%10)) ;
bi

/* display the number of devices which
generated an alarm */
printf ("ALARM GENERATED BY %-u DEVICE (S)\n\r",
wl search(Oxec,alarm rom codes));
bi
}

Refer to the DS1820/DS18S20 data sheet for more information.

© 1998-2008 HP InfoTech S.R.L. Page 168

CodeVisionAVR

4.14.2 Maxim/Dallas Semiconductor DS18B20 Temperature Sensor
Functions

These functions are intended for easy interfacing between C programs and the DS18B20 1 Wire bus
temperature sensor.

The prototypes for these functions are placed in the file ds18b20.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The 1 Wire bus functions prototypes are automatically #include -ed with the ds18b20.h.

Prior to #include -ing the ds18b20.h file, you must declare which microcontroller port and port bit are
used for communication with the DS18B20 through the 1 Wire bus.
Example:

/* specify the Atmega8515 port and bit used for the 1 Wire bus */
#asm

.equ _ wl port=0x18 ;PORTB

.equ _ wl bit=2
#endasm

/* include the DS18B20 functions prototypes */
#include <dsl18b20.h>

The DS18B20 functions are:
unsigned char ds18b20_read_spd(unsigned char *addr)

this function reads the contents of the SPD for the DS18B20 sensor with the ROM code stored in
an array of 8 bytes located at address addr.
The functions returns the value 1 on succes and 0 in case of error.
If only one DS18B20 sensor is used, no ROM code array is necessary and the pointer addr must be
NULL (0).
The contents of the SPD will be stored in the structure:

struct dsl8b20 scratch pad struct

{

unsigned char temp lsb, temp msb,
temp high, temp low,
conf register,
resl,
res2,
res3,
crc;

} _ dsl8b20 scratch pad;

defined in the ds18b20.h header file.

unsigned char ds18b20_init(unsigned char *addr,signed char temp_low,signed char
temp_high,usigned char resolution)

this function sets the low (temp_low) and high (temp_high) temperature alarms and specifies the
temperature measurement resolution of the DS18B20.
The resolution argument may take the value of one of the following macros defined in the ds18b20.h
header file:

DS18B20_9BIT_RES for 9 bit tempearture measurement resolution (0.5°C)
DS18B20_10BIT_RES for 10 bit tempearture measurement resolution (0.25°C)
DS18B20_11BIT_RES for 11 bit tempearture measurement resolution (0.125°C)
DS18B20_12BIT_RES for 12 bit tempearture measurement resolution (0.0625°C)

© 1998-2008 HP InfoTech S.R.L. Page 169

CodeVisionAVR

In case of success the function returns the value 1, else it returns 0.

The alarm temperatures and resolution are stored in both the DS18B20's scratchpad SRAM and its
EEPROM.

The ROM code needed to address the device is stored in an array of 8 bytes located at address addr.
If only one DS18B20 sensor is used, no ROM code array is necessary and the pointer addr must be
NULL (0).

The alarm status for all the DS18B20 devices on the 1 Wire bus can be determined by calling the
w1_search function with the Alarm Search (ECh) command.

float ds18b20_temperature(unsigned char *addr)

this function returns the temperature of the DS18B20 sensor with the ROM code stored in an array
of 8 bytes located at address addr.
The temperature is measured in °C. In case of error the function returns the value -9999.
If only one DS18B20 sensor is used, no ROM code array is necessary and the pointer addr must be
NULL (0).
Prior on calling the the ds18b20_temperature function for the first time, the ds18b20_init function
must be used to specify the desired temperature measurement resolution.
If more several sensors are used, then the program must first identify the ROM codes for all the
sensors.
Only after that the ds18b20_temperature function may be used, with the addr pointer pointing to the
array which holds the ROM code for the needed device.

Example:
#include <mega8515.h>

/* specify the Atmega8515 port and bit used for the 1 Wire bus */
#asm

.equ _ wl port=0x18 ;PORTB

.equ _ wl bit=2
#endasm

/* include the DS18B20 functions prototypes */
#include <dsl18b20.h>

/* include the printf function prototype */
#include <stdio.h>

/* quartz crystal frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#define baud 9600

/* maximum number of DS18B20 connected to the bus */
#define MAX_DEVICES 8

/* DS18B20 devices ROM code storage area,
9 bytes are used for each device
(see the wl search function description),
but only the first 8 bytes contain the ROM code
and CRC */
unsigned char rom codes[MAX DEVICES][9];

/* allocate space for ROM codes of the devices
which generate an alarm */
unsigned char alarm rom codes[MAX DEVICES][9];

© 1998-2008 HP InfoTech S.R.L. Page 170

CodeVisionAVR

main ()

{

unsigned char i,devices;

/* initialize the USART control register
TX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL=(xtal/16/baud-1) & OxFF;

/* detect how many DS18B20 devices

are connected to the bus and

store their ROM codes in the rom codes array */
devices=wl search (0xf0, rom codes);

/* display the number */
printf ("$-u DEVICE (S) DETECTED\n\r",devices);

/* if no devices were detected then halt */
if (devices==0) while (1); /* loop forever */

/* set the temperature alarms & temperature
measurement resolutions for all the devices
temp low=25°C temp high=35°C resolution 12bits */
for (i=0;i<devices;i++)
{
printf ("INITIALIZING DEVICE #%-u ",i+1);
if (dsl8b20 init(&rom codes[i][0],25,35,DS18B20 12BIT RES))
putsf ("OK"); else putsf ("ERROR") ;
bi

while (1)
{
/* measure and display the temperature(s) */
for (i=0;i<devices;)
printf ("t%u=%+.3f\xf8C\n\r",i+1,
ds18b20 temperature (&rom codes[i++] [0]));

/* display the number of devices which
generated an alarm */
printf ("ALARM GENERATED BY %-u DEVICE (S)\n\r",
wl search(Oxec,alarm rom codes));
bi
}

Refer to the DS18B20 data sheet for more information.

© 1998-2008 HP InfoTech S.R.L. Page 171

CodeVisionAVR

4.14.3 Maxim/Dallas Semiconductor DS2430 EEPROM Functions

These functions are intended for easy interfacing between C programs and the DS2430 1 Wire bus
EEPROM.

The prototypes for these functions are placed in the file ds2430.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The 1 Wire bus functions prototypes are automatically #include -ed with the ds2430.h.

Prior to #include -ing the ds2430.h file, you must declare which microcontroller port and port bits are
used for communication with the DS2430 through the 1 Wire bus.
Example:

/* specify the Atmega8515 port and bit used for the 1 Wire bus */
#asm

.equ _ wl port=0x18 ;PORTB

.equ _ wl bit=2
#endasm

/* include the DS2430 functions prototypes */
#include <ds2430.h>

The DS2430 functions are:

unsigned char ds2430_read_block(unsigned char *romcode,unsigned char *dest,
unsigned char addr,unsigned char size);

this function reads a block of size bytes starting from the DS2430 EEPROM memory address
addr and stores it in the string dest located in RAM.
It returns 1 if successful, 0 if not.
The DS2430 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

unsigned char ds2430_read(unsigned char *romcode,unsigned char addr,
unsigned char *data);

this function reads a byte from the DS2430 EEPROM memory address addr and stores it in the
RAM memory location pointed by data.
It returns 1 if successful, 0 if not.
The DS2430 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

unsigned char ds2430_write_block(unsigned char *romcode,
unsigned char *source,unsigned char addr,unsigned char size);

this function writes a block of size bytes, from the string source, located in RAM, in the DS2430
EEPROM starting from memory address addr.
It returns 1 if successful, 0 if not.
The DS2430 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

unsigned char ds2430_write(unsigned char *romcode,
unsigned char addr,unsigned char data);

this function writes the byte data at DS2430 EEPROM memory address addr.
It returns 1 if successful, 0 if not.
The DS2430 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

© 1998-2008 HP InfoTech S.R.L. Page 172

CodeVisionAVR

unsigned char ds2430_read_appreg_block(unsigned char *romcode,
unsigned char *dest,unsigned char addr,unsigned char size);

this function reads a block of size bytes starting from the DS2430 application register address
addr and stores it in the string dest located in RAM.
It returns 1 if successful, 0 if not.
The DS2430 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

unsigned char ds2430_write_appreg_block(unsigned char *romcode,
unsigned char *source,unsigned char addr,unsigned char size);

this function reads a block of size bytes starting from the DS2430 application register address
addr and stores it in the string dest located in RAM.
It returns 1 if successful, 0 if not.
The DS2430 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

If only one DS2430 EEPROM is used, no ROM code array is necessary and the pointer romcode
must be NULL (0).

If several 1 Wire device are used, then the program must first identify the ROM codes for all the
devices. Only after that the DS2430 functions may be used, with the romcode pointer pointing to the
array which holds the ROM code for the needed device.

Example:

/* specify the port and bit used for the 1 Wire bus

The DS2430 devices are connected to
bit 6 of PORTA of the ATmegaS8515 as follows:

[DS2430] [STK200 PORTA HEADER]
1 GND - 9 GND
2 DATA - 7 PAG6

All the devices must be connected in parallel

AN 4.7k PULLUP RESISTOR MUST BE CONNECTED
BETWEEN DATA (PA6) AND +5V !

*/
fasm
.equ _ wl port=0x1lb
.equ _ wl bit=6
#endasm

/* include the DS2430 functions */
#include <ds2430.h>

#include <mega8515.h>

#include <stdio.h>

/* DS2430 devices ROM code storage area,
9 bytes are used for each device
(see the wl search function description),
but only the first 8 bytes contain the ROM code
and CRC */
#define MAX DEVICES 8

unsigned char rom code[MAX DEVICES][9];

© 1998-2008 HP InfoTech S.R.L. Page 173

CodeVisionAVR

char text[]="Hello world!";
char buffer[32];
#define START ADDR 2

/* ATmega8515 clock frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#define baud 9600

main () {
unsigned char i,devices;

/* initialize the USART control register
TX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL=(xtal/16/baud-1) & OxFF;

/* detect how many 1 Wire devices are present on the bus */
devices=wl search (0xF0, &rom code[0][0]);
printf ("$-u 1 Wire devices found\n\r",devices);
for (i=0;i<devices;i++)
/* make sure to select only the DS2430 types
0x14 is the DS2430 family code */
if (rom code([i] [0]==DS2430 FAMILY CODE)
{
printf ("\n\zr");
/* write text in each DS2430 at START ADDR */
if (ds2430 write block(&rom code[i] [0],
text, START ADDR, sizeof (text)))
{
printf ("Data written OK in DS2430 #%-u!\n\r",i+1);
/* display the text written in each DS2430 */
if (ds2430 read block(&rom code[i] [0],buffer, START ADDR,
sizeof (text)))
printf ("Data read OK!\n\rDS2430 #%-u text: %$s\n\r",
i+1,buffer);
else printf ("Error reading data from DS2430 #%-u!\n\r",
i+1);
}
else printf ("Error writing data to DS2430 #%-u!\n\r",i+1);
bi
/* stop */
while (1);
}

Refer to the DS2430 data sheet for more information.

© 1998-2008 HP InfoTech S.R.L.

Page 174

CodeVisionAVR

4.14.4 Maxim/Dallas Semiconductor DS2433 EEPROM Functions

These functions are intended for easy interfacing between C programs and the DS2433 1 Wire bus
EEPROM.

The prototypes for these functions are placed in the file ds2433.h, located in the \INC subdirectory.
This file must be #include -ed before using the functions.

The 1 Wire bus functions prototypes are automatically #include -ed with the ds2433.h.

Prior to #include -ing the ds2433.h file, you must declare which microcontroller port and port bits are
used for communication with the DS2433 through the 1 Wire bus.
Example:

/* specify the Atmega8515 port and bit used for the 1 Wire bus */
#asm

.equ _ wl port=0x18 ;PORTB

.equ _ wl bit=2
#endasm

/* include the DS2433 functions prototypes */
#include <ds2433.h>

The DS2433 functions are:

unsigned char ds2433_read_block(unsigned char *romcode,unsigned char *dest,
unsigned int addr,unsigned int size);

this function reads a block of size bytes starting from the DS2433 EEPROM memory address
addr and stores it in the string dest located in RAM.
It returns 1 if successful, 0 if not.
The DS2433 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

unsigned char ds2433_read(unsigned char *romcode,unsigned int addr,
unsigned char *data);

this function reads a byte from the DS2433 EEPROM memory address addr and stores it in the
RAM memory location pointed by data.
It returns 1 if successful, 0 if not.
The DS2433 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

unsigned char ds2433_write_block(unsigned char *romcode,
unsigned char *source,unsigned int addr,unsigned int size);

this function writes a block of size bytes, from the string source, located in RAM, in the DS2433
EEPROM starting from memory address addr.
It returns 1 if successful, 0 if not.
The DS2433 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

unsigned char ds2433_write(unsigned char *romcode,unsigned int addr,
unsigned char data);

this function writes the byte data at DS2433 EEPROM memory address addr.
It returns 1 if successful, 0 if not.
The DS2433 device is selected using it's ROM code stored in an array of 8 bytes located at address
romcode.

© 1998-2008 HP InfoTech S.R.L. Page 175

CodeVisionAVR

If only one DS2433 EEPROM is used, no ROM code array is necessary and the pointer romcode
must be NULL (0).

If several 1 Wire device are used, then the program must first identify the ROM codes for all the
devices. Only after that the DS2433 functions may be used, with the romcode pointer pointing to the
array which holds the ROM code for the needed device.

Example:

/* specify the port and bit used for the 1 Wire bus

The DS2433 devices are connected to
bit 6 of PORTA of the ATmega8515 as follows:

[DS2433] [STK200 PORTA HEADER]
1 GND - 9 GND
2 DATA - 7 PAG6

All the devices must be connected in parallel

AN 4.7k PULLUP RESISTOR MUST BE CONNECTED
BETWEEN DATA (PA6) AND +5V !

*/
#asm
.equ _ wl port=0xlb
.equ _ wl bit=6
fendasm

// test the DS2433 functions
#include <ds2433.h>

#include <mega8515.h>
#include <stdio.h>

/* DS2433 devices ROM code storage area,
9 bytes are used for each device
(see the wl search function description),
but only the first 8 bytes contain the ROM code
and CRC */
#define MAX DEVICES 8
unsigned char rom code[MAX DEVICES] [9];

char text[]="This is a long text to \
be able to test writing across the \
scratchpad boundary";

char buffer[1007];

#define START ADDR 2

/* ATmega8515 clock frequency [Hz] */
#define xtal 4000000L

/* Baud rate */
#define baud 9600

© 1998-2008 HP InfoTech S.R.L. Page 176

CodeVisionAVR

main () {
unsigned char i,devices;

/* initialize the USART control register
TX enabled, no interrupts, 8 data bits */
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;

/* initialize the USART's baud rate */
UBRRH= (xtal/16/baud-1) >> 8;
UBRRL=(xtal/16/baud-1) & OxFF;

/* detect how many 1 Wire devices are present on the bus */
devices=wl search (0xF0, &rom code[0][0]);
printf ("%-u 1 Wire devices found\n\r",devices);

for (i=0;i<devices;i++)
/* make sure to select only the DS2433 types
0x23 is the DS2433 family code */
if (rom code[i] [0]==DS2433 FAMILY CODE)
{
printf ("\n\zr");
/* write text in each DS2433 at START ADDR */
if (ds2433 write block(&rom code[i] [0],
text,START_ADDR,Sizeof(text)))
{
printf ("Data written OK in DS2433 #%-u!\n\r",i+1);
/* display the text written in each DS2433 */
if (ds2433 read block(&rom code[i] [0],buffer, START ADDR,
sizeof (text)))
printf ("Data read OK!\n\rDS2433 #%-u text: %s\n\r",
i+1l,buffer);
else printf ("Error reading data from DS2433 #%-u!\n\r",i+1);
}
else printf ("Error writing data to DS2433 #%-u!\n\r",i+l);
b
/* stop */
while (1);
}

Refer to the DS2433 data sheet for more information.

© 1998-2008 HP InfoTech S.R.L. Page 177

CodeVisionAVR

4.15 SPI Functions

The SPI Functions are intended for easy interfacing between C programs and various peripherals
using the SPI bus.

The prototypes for these functions are placed in the file spi.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

The SPI functions are:

unsigned char spi(unsigned char data)
this function sends the byte data, simultaneously receiving a byte.

Prior to using the spi function, you must configure the SPI Control Register SPCR according to the
Atmel Data Sheets.

Because the spi function uses polling for SPI communication, there is no need to set the SPI Interrupt
Enable Bit SPIE.

Example of using the spi function for interfacing to an AD7896 ADC:

/*
Digital voltmeter using an
Analog Devices AD7896 ADC
connected to an AT90mega8515
using the SPI bus

Chip: AT90mega8515

Memory Model: SMALL

Data Stack Size: 128 bytes

Clock frequency: 4MHz

AD7896 connections to the ATmega8515

[AD7896] [ATmega8515 DIP40]

1 Vin

2 Vref=5V

3 AGND - 20 GND
4 SCLK - 8 SCK
5 SDATA - 7 MISO
6 DGND - 20 GND
7 CONVST- 2 PB1
8 BUSY -1 PBO

Use an 2x16 alphanumeric LCD connected
to PORTC as follows:
[LCD] [ATmega8515 DIP40]
1 GND- 20 GND
2 +5V- 40 VCC
3 VLC
4 RS - 21 PCO
5 RD - 22 PC1
6 EN - 23 PC2
11 D4 - 25 PC4
12 D5 - 26 PC5
13 D6 - 27 PC6
14 D7 - 28 PC7 */

© 1998-2008 HP InfoTech S.R.L. Page 178

CodeVisionAVR

#asm
.equ _ lcd port=0x15
#endasm

#include <lcd.h> // LCD driver routines
#include <spi.h> // SPI driver routine
#include <mega8515.h>

#include <stdio.h>

#include <delay.h>

/* AD7896 reference voltage [mV] */
#define VREF 5000L

/* AD7896 control signals PORTB bit allocation */
#define ADC_BUSY PINB.O
#define NCONVST PORTB.1

/* LCD display buffer */
char lcd buffer[33];

unsigned read adc(void)

{

unsigned result;

/* start conversion in mode 1, (high sampling performance) */
NCONVST=0;

NCONVST=1;

/* wait for the conversion to complete */

while (ADC _BUSY);

/* read the MSB using SPI */

result=(unsigned) spi (0)<<8;

/* read the LSB using SPI and combine with MSB */
result|=spi (0);

/* calculate the voltage in [mV] */

result=(unsigned) (((unsigned long) result*VREF)/4096L);
/* return the measured voltage */

return result;

}

void main (void)
{
/* initialize PORTB
PB.0 input from AD7896 BUSY

PB.1 output to AD7896 /CONVST
PB.2 & PB.3 inputs

PB.4 output (SPI /SS pin)
PB.5 input

PB.6 input (SPI MISO)

PB.7 output to AD7896 SCLK */
DDRB=0x92;

/* initialize the SPI in master mode
no interrupts, MSB first, clock phase negative
SCK low when idle, clock phase=0
SCK=fxtal/4 */

SPCR=0x54;

SPSR=0x00;

/* the AD7896 will work in mode 1 (high sampling performance)
/CONVST=1, SCLK=0 */
PORTB=2;

© 1998-2008 HP InfoTech S.R.L. Page 179

CodeVisionAVR

/* initialize the LCD */
lcd init(16);

lcd putsf ("AD7896 SPI bus\nVoltmeter");
delay ms (2000) ;
lcd clear();

/* read and display the ADC input voltage */
while (1)
{
sprintf (lcd buffer, "Uadc=%4umV", read adc());
lcd clear();
lcd puts(lcd buffer);
delay ms(100);

© 1998-2008 HP InfoTech S.R.L. Page 180

CodeVisionAVR

4.16 Power Management Functions

The Power Management Functions are intended for putting the AVR chip in one of its low power
consumption modes.

The prototypes for these functions are placed in the file sleep.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

The Power Management Functions are:

void sleep_enable(void)
this function enables entering the low power consumption modes.
void sleep_disable(void)

this function disables entering the low power consumption modes.
It is used to disable accidental entering the low power consumption modes.

void idle(void)

this function puts the AVR chip in the idle mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering the low
power consumption modes.
In this mode the CPU is stopped, but the Timers/Counters, Watchdog and interrupt system continue
operating.
The CPU can wake up from external triggered interrupts as well as internal ones.

void powerdown(void)

this function puts the AVR chip in the powerdown mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering the low
power consumption modes.
In this mode the external oscillator is stopped.
The AVR can wake up only from an external reset, Watchdog time-out or external level triggered
interrupt.

void powersave(void)

this function puts the AVR chip in the powersave mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering the low
power consumption modes.
This mode is similar to the powerdown mode with some differences, please consult the Atmel Data
Sheet for the particular chip that you use.

void standby(void)

this function puts the AVR chip in the standby mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering the low
power consumption modes.
This mode is similar to the powerdown mode with the exception that the external clock oscillator keeps
on running.
Consult the Atmel Data Sheet for the particular chip that you use, in order to see if the standby mode
is available for it.

© 1998-2008 HP InfoTech S.R.L. Page 181

CodeVisionAVR

void extended_standby(void)

this function puts the AVR chip in the extended standby mode.
Prior to using this function, the sleep_enable function must be invoked to allow entering the low
power consumption modes.
This mode is similar to the powersave mode with the exception that the external clock oscillator keeps
on running.
Consult the Atmel Data Sheet for the particular chip that you use, in order to see if the standby mode
is available for it.

4.17 Delay Functions

These functions are intended for generating delays in C programs.

The prototypes for these functions are placed in the file delay.h, located in the \INC subdirectory. This
file must be #include -ed before using the functions.

Before calling the functions the interrupts must be disabled, otherwise the delays will be much longer
then expected.

Also it is very important to specify the correct AVR chip clock frequency in the Project|Configure|C
Compiler|Code Generation menu.

The functions are:
void delay_us(unsigned int n)

generates a delay of n useconds. n must be a constant expression.
void delay_ms(unsigned int n)

generates a delay of n milliseconds.
This function automatically resets the wtachdog timer every 1ms by generating the wdr instruction.

Example:
void main (void) {

/* disable interrupts */
#asm("cli")

/* 100us delay */
delay us(100);

/* 10ms delay */
delay ms(10);

/* enable interrupts */
#asm("sei")

© 1998-2008 HP InfoTech S.R.L. Page 182

CodeVisionAVR

5. CodeWizardAVR Automatic Program Generator

The CodeWizardAVR Automatic Program Generator allows you to easily write all the code needed for
implementing the following functions:

e External memory access setup

e Chip reset source identification

e Input/Output Port initialization

e External Interrupts initialization

e Timers/Counters initialization

e Watchdog Timer initialization

e UART initialization and interrupt driven buffered serial communication

e Analog Comparator initialization

e ADC initialization

e SPI Interface initialization

e I°C Bus, LM75 Temperature Sensor, DS1621 Thermometer/Thermostat, PCF8563, PCF8583,
DS1302 and DS1307 Real Time Clocks initialization

e 1 Wire Bus and DS1820/DS18S20 Temperature Sensors initialization

e LCD module initialization.

The Automatic Program Generator is invoked using the Tools|CodeWizardAVR menu command or
by pressing the @ command bar button.

The File]New menu command allows creating a new CodeWizardAVR project.
This project will be named by default untitled.cwp .

The File]Open menu command allows loading an existing CodeWizardAVR project:

1 4 Dpen Project @
Loolk in: bin - @ T @
‘ Mame . Date modified Type y
kel || test 17-Apr-0815:01 CodeWizardAVR project file

Recent Places

Computer
AL
s

Metwark

Fl T k

File name: test -

Files of type: CodeWizardAVR project files (".cwp) T | | Cancel

© 1998-2008 HP InfoTech S.R.L. Page 183

CodeVisionAVR

The File|Save menu command allows saving the currently opened CodeWizardAVR project.
The File|Save As menu command allows saving the currently opened CodeWizardAVR proje
a new name:

ct under

[l

% save Chovavribintuntitled.cwp As
Savein: work ~- @ Er
‘ Name Date maodif.. Type Size
kel This folder is empty.
Recent Places
Desktop
T
Pavel
Computer
AL
==
Metwark
File name: test -
Save as type: CodeWizardAWR project files ".cwp) i | | Cancel

By selecting the File|Program Preview menu option, the code generated by CodeWizardAVR can be

viewed in an editor window. This may be useful when applying changes to an existing project

, as

portions of code generated by the CodeWizardAVR can be copied to the clipboard and then pasted in

the project's source files.

If the File|Generate, Save and Exit menu option is selected, CodeWizardAVR will generate the main

.C source and project .PRJ files, save the CodeWizardAVR project .CWP file and return to th

CodeVisionAVR IDE.
Eventual pin function conflicts will be prompted to the user, allowing him to correct the errors.

e

© 1998-2008 HP InfoTech S.R.L.

Page 184

CodeVisionAVR

In the course of program generation the user will be prompted for the name of the main C file:

$% Save C Compiler Source File
Savein: wark

Mam E’

ey

Recent Places

Computer
A
=
Metwork
File name:

Save as bpe:

Date modif.. Type

=
- ﬁ' ? " m"’

Size

Me itermns match your search.

test

C Compiler files {*.c)

- | | Cancel

and for the name of the project file:

§% Save C Compiler Project File
Savein: wark

-
Mame
vl 5

Recent Places

Computer
AL
=
Metwork
File name:

Save as bype:

Date modif.. Type

- 0

Size

Mo itermns match your search.

test

Project files {*.pr)

- | | Cancel

© 1998-2008 HP InfoTech S.R.L.

Page 185

CodeVisionAVR

Selecting the File|Exit menu option allows you to exit the CodeWizardAVR without generating any
program files.

By selecting the Help menu option you can see the help topic that corresponds to the current
CodeWizardAVR configuration menu.

5.1 Setting the AVR Chip Options

By selecting the Chip tab of the CodeWizardAVR, you can set the AVR chip options.

'ﬁ]‘ CodeWizardAVR - test.owp |5
File Help
External IRG Tirners LaRT
Analog Comparator | ADC 5P [2C
1 'Wire LCD
Bit-Banged Froject Information
Estermal SRaM Forts
Chip: | ATmegal 03 |

Clock: 4.000000 *4] MHz

Cryztal Ozcillator Divider Enabled

Check Beset Source

The chip type can be specified using the Chip list box.
The chip clock frequency in MHz can be specified using the Clock spinedit box.

For the AVR chips that contain a crystal oscillator divider, a supplementary Crystal Oscillator Divider
Enabled check box is visible.

This check box allows you to enable or disable the crystal oscillator divider.

If the crystal oscillator is enabled, you can specify the division ratio using the Crystal Oscillator
Divider spinedit box.

For the AVR chips that allow the identification of the reset source, a supplementary Check Reset
Source check box is visible. If it's checked then the CodeWizardAVR will generate code that allows
identification of the conditions that caused the chip reset.

© 1998-2008 HP InfoTech S.R.L. Page 186

CodeVisionAVR

For the AVR chips that allow self-programming, a supplementary Program Type list box is visible.
It allows to select the type of the generated code:

Application
Boot Loader

ﬁ} CodeWizardAVR - test.owp |25

File Help
External IRG | Timers | USARTO | USART
Analog Comparator | ADC 5P [2C
1 'wfire 2wfire [I2C] LCD
Bit-Banged Praject Infarmatian
i Extemal SRaM Portz

Chip: | AT megal 26 \

Clock: 4.000000 %] MHz

Cryztal Ozcillator Divider Enabled

Check Beset Source

Program Tupe:

Application -

© 1998-2008 HP InfoTech S.R.L.

Page 187

CodeVisionAVR

5.2 Setting the External SRAM

For the AVR chips that allow connection of external SRAM, you can specify the size of this memory
and wait state insertion by selecting the External SRAM tab.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
Euternal IRQ Tirners ART
Analog Comparator | ADC SPI |2C
1 e LCD
Bit-Banged Project |nfarmation

Chip i External SHAM

Euternal SRARK zize: | I - |
Esternal SRAR YW ait State

Partz

The size of external SRAM can be specified using the External SRAM Size list box.

Additional wait states in accessing the external SRAM can be inserted by checking the External

SRAM Wait State check box.

The MCUCR register in the startup initialization code is configured automatically according to these

settings.

© 1998-2008 HP InfoTech S.R.L.

Page 188

CodeVisionAVR

For devices, like the ATmega128, that allow splitting the external SRAM in two pages, the External
SRAM configuration window will look like this:

ﬁ} CodeWizardAVR - test.owp |25
File Help
External IRQ | Timerz | USARTO | USARTI
Analog Comparator | ADC 5P [2C

1 'Wwire 2Wwire [12C) LCD
Bit-Banged Praject Infarmatian
Chip i Ewternal SHAM i Ports

External SRAM size: | 1N - |

External SRAM page configuration:
| 1100k - 1FFFh / 2000h - FFFFh v |

Lowser wait states: Upper wait states:
|1[.-"W v| |2ra’w v|

The External SRAM page configuration list box allows selection of the splitting address for the two
external SRAM pages .

The wait states that are inserted during external SRAM access, can be specified for the lower,
respectively upper, memory pages using the Lower wait states, respectively Upper wait states list
boxes.

The MCUCR, EMCUCR, XMCRA registers in the startup initialization code are configured
automatically according to these settings.

© 1998-2008 HP InfoTech S.R.L. Page 189

CodeVisionAVR
5.3 Setting the Input/Output Ports

By selecting the Ports tab of the CodeWizardAVR, you can specify the input/output Ports
configuration.

ﬁ]‘ CodeWizardAVR - test.owp @
Eile Help
External IRQ | Timerz | USARTO | USARTI
Analog Comparatar | ADC SPI [2C

1 'wire 2%wire [12C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM

FortA | Port B | Port C | PartD | Poft ¢
Data Direction Pullup/Output Y alue
Bitd _In T| Eit0O

Bit1 In T| Bit1
Bit2 In T Btz
Bit3 In T| Bit3
Bitd In T Bit 4
Bt In T Bit5
Bit6 _In T| BitE
Bit7 In T Bit?

You can chose which port you want to configure by selecting the appropriate PORT x tab.
By clicking on the corresponding Data Direction bit you can set the chip pin to be output (Out) or input
(In).

The DDRXx register will be initialized according to these settings.

By clicking on the corresponding Pullup/Output Value bit you can set the following options:

e if the pinis an input, it can be tri-stated (T) or have an internal pull-up (P) resistor connected to the
positive power supply.

e if the pinis an output, it's value can be initially setto 0 or 1.

The PORTX register will be initialized according to these settings.

© 1998-2008 HP InfoTech S.R.L. Page 190

CodeVisionAVR

5.4 Setting the External Interrupts

By selecting the External IRQ tab of the CodeWizardAVR, you can specify the external interrupt

configuration.
'ﬁ} CodeWizardAVR - test.cwp @
File Help
Analog Comparatar | ADC SPI [2C
1 'wire 2%wire [12C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz
{ External IRU 5| Timers | USARTO | USARTT
J|INTOEnabled Mode: [Lowlevel |
#[IMT1 Enabled Mode: | L lewvel v|
S| INTZ2Enabled Mode: | L level "|
J|INT3Erabled Mode: [Lowlevel = |
J|INT4Enabled Mode: [Lowlevel |
#|IMTEEnabled Mode: | L lewvel v|
#|INTEEnabled Mode: | L level "|
J|INTZ Enabled Mode: [Lowlevel |

Checking the appropriate INTx Enabled check box enables the corresponding external interrupt.
If the AVR chip supports this feature, you can select if the interrupt will be edge or level triggered using

the corresponding Mode list box.

For each enabled external interrupt the CodeWizardAVR will define an ext_intx_isr interrupt service
routine, where x is the number of the external interrupt.

© 1998-2008 HP InfoTech S.R.L.

Page 191

CodeVisionAVR

For some devices, like the ATmega3290, the External IRQ tab may present the following options:

ﬁ} CodeWizardAVR - test.owp
File Help

I15] USART | Analog Comparator | AD

SFI [2C 1 e LCD
LCD Contraller

Bit-Banged Praject Infarmatian

Chip Forts

o IMTO Enabled MDdEZ|LDW lewvel

o | Ay change on /0 ping PCINTO-7

| Ay chanags on /0 ping PCIMTE-15
o | Arw change on /0 pine PCINT1E-23
| Ay change on /0 ping PCIMT 24-30

PCIMTO-F | PCINTS-15 | PO [*

o1 2 3 4 56 7

)

C

External IRG Tirners

-

The Any change on I/O pins check boxes, if checked, will specify which of the PCINT 1/O pins will

trigger an external interrupt.

The interrupt service routines for these interrupts will be pin_change_isr0 for PCINTO-7,

pin_change_isr1 for PCINT8-15, pin_change_isr2 for PCINT16-23 and pin_change_isr3 for

PCINT24-30.

© 1998-2008 HP InfoTech S.R.L.

Page 192

CodeVisionAVR

5.5 Setting the Timers/Counters

By selecting the Timers tab of the CodeWizardAVR, you can specify the timers/counters
configuration.
A number of Timer tabs will be displayed according to the AVR chip type.

By selecting the Timer 0 tab you can have the following options:

ﬁ]‘ CodeWizardAVR - test.owp @
Eile Help
ISARTZ USART3 | Analog Comparator
ADC SPI [2C 1 'wfire
2wire [12C] LCD
Bit-Banged Project Infarmation
Chip E sternal SHAMM Puortz
Esternal IRQ | Timers | USARTO | USARTI

3

ETimer1 Tiner 2 | Timerd | | ?

Clock Source: | Systemn Clock - |

Clock ¥alue: | Timer 0 Stopped |

Mode: | Marmal tap=FFh -
Outp. -f5"-2| Dizconnected - |
Cutp. B:| Dizconnected - |

Owerflow [Rtermupt

Compare Match A Interrupt

Compare Match B Interupt
Timer Yalue: 0 h

Compare s, 0O h CompareB: 0 h

Clock Source specifies the timer/counter 0 clock pulse source

Clock Value specifies the timer/counter 0 clock frequency

Mode specifies if the timer/counter 0 functioning mode

Outp. A specifies the function of the timer/counter 0 compare A output and depends of the
functioning mode

e Outp. B specifies the function of the timer/counter 0 compare B output and depends of the
functioning mode

e Overflow Interrupt specifies if an interrupt is to be generated on timer/counter 0 overflow

© 1998-2008 HP InfoTech S.R.L. Page 193

CodeVisionAVR

e Compare Match A Interrupt specifies if an interrupt is to be generated on timer/counter 0
compare A match

e Compare Match B Interrupt specifies if an interrupt is to be generated on timer/counter 0
compare B match

e Timer Value specifies the initial value of timer/counter 0 at startup

e Compare A specifies the initial value of timer/counter 0 output compare A register

e Compare B specifies the initial value of timer/counter O output compare B register.

If timer/counter 0 interrupts are used the following interrupt service routines may be defined by the
CodeWizardAVR:

e timer0_ovf_isr for timer/counter overflow

e timer0_compa_isr for timer/counter output compare A match

e timer0_compb_isr for timer/counter output compare B match

You must note that depending of the used AVR chip some of these options may not be present. For
more information you must consult the corresponding Atmel data sheet.

© 1998-2008 HP InfoTech S.R.L. Page 194

CodeVisionAVR

By selecting the Timer 1 tab you can have the following options:

ﬁ} CodeWizardAVR - test.owp |25
File Help
ISARTZ | USART3 | Analog Comparator
ADC SPI [2C 1 'wire
2wfire [[2C) LCD
Bit-Banged Praject Infarmatian
Chip External SRAM Forts
External IRG | Timers | US&RTO | US&RTI

i Timer 2 | Timerd | (4 *

Clock Source: | Spztem Clock - |

Clock % alue: | Timer 1 Stopped - |

Mode: | Narmal tap=FFFFh -

Elut..-’-'-.:|DiSn:|:|n. v|Dut.B:|Discu:un. v|

Out. E:| Digcon. = |
Input Capt. |7 Moige Cancel

Inkermupt on:| [T Timer 1 Owerflow

Yalue: 0 h Inp. Capture: 0 h
Comp. & 0 h B: 0 h C:0 h

e Clock Source specifies the timer/counter 1 clock pulse source

¢ Clock Value specifies the timer/counter 1 clock frequency

¢ Mode specifies if the timer/counter 1 functioning mode

e Out. A specifies the function of the timer/counter 1 output A and depends of the functioning mode
e Out. B specifies the function of the timer/counter 1 output B and depends of the functioning mode
e Out. C specifies the function of the timer/counter 3 output C and depends of the functioning mode
¢ Inp Capt. specifies the timer/counter 1 capture trigger edge and if the noise canceler is to be used
¢ Interrupt on specifies if an interrupt is to be generated on timer/counter 1 overflow, input capture

and compare match

e Timer Value specifies the initial value of timer/counter 1 at startup

e Comp. A, B and C specifies the initial value of timer/counter 1 output compare registers A, B and

C.

If timer/counter 1 interrupts are used the following interrupt service routines may be defined by the
CodeWizardAVR:

e timer1_ovf_isr for timer/counter overflow

e timer1_comp_isr or timer1_compa_isr, timer1_compb_isr and timer1_copmc_isr for
timer/counter output compare match

e timer1_capt_isr for timer/counter input capture

You must note that depending of the used AVR chip some of these options may not be present. For
more information you must consult the corresponding Atmel data sheet.

© 1998-2008 HP InfoTech S.R.L. Page 195

CodeVisionAVR

By selecting the Timer 2 tab you can have the following options:

ﬁ} CodeWizardAVR - test.owp @
File Help
ISARTZ | USART3 | Analog Comparator
ADC SPI [2C 1 'wire
2wfire [[2C) LCD
Bit-Banged Praject Infarmatian
Chip External SRAM Forts
External IRG | Timers | US&RTO | US&RTI

Clock Source: | Spztem Clock - |

Clock % alue: | Timer 2 Stopped - |

Mode: | Mormal top=FFh - |
Cutp. .-’-'-.:| Dizconnected - |
Cutp. B:| Dizconnected - |

Overflow [Rtermipt

Compare b atch A Interript

Compare Match B Interrupt
Timervalue: 0 h

Compared: 0 h CompareB: 0 h

e Clock Source specifies the timer/counter 2 clock pulse source

¢ Clock Value specifies the timer/counter 2 clock frequency

¢ Mode specifies if the timer/counter 2 functioning mode

e Out. A specifies the function of the timer/counter 2 output A and depends of the functioning mode
e Out. B specifies the function of the timer/counter 2 output B and depends of the functioning mode
e Overflow Interrupt specifies if an interrupt is to be generated on timer/counter 2 overflow

e Compare Match A Interrupt specifies if an interrupt is to be generated on timer/counter 2
compare register A match

e Compare Match B Interrupt specifies if an interrupt is to be generated on timer/counter 2
compare register B match

e Timer Value specifies the initial value of timer/counter 2 at startup

e Compare A specifies the initial value of timer/counter 2 output compare A register

e Compare B specifies the initial value of timer/counter 2 output compare B register

If timer/counter 2 interrupts are used the following interrupt service routines may be defined by the
CodeWizardAVR:

o timer2_ovf_isr for timer/counter overflow

e timer2_comp_isra and timer2_compb_isr for timer/counter output compare match.

You must note that depending of the used AVR chip some of these options may not be present. For
more information you must consult the corresponding Atmel data sheet.

© 1998-2008 HP InfoTech S.R.L. Page 196

CodeVisionAVR

By selecting the Timer 3 tab you can have the following options:

Eile

Timer O | Timer 1

ﬁ} CodeWizardAVR - test.owp |25

Help

ISARTZ | USART3 | Analog Comparator
ADC SPI [2C 1 'wire

2 Wire [|2C) LCD
Bit-Banged Praject Infarmatian
Chip External SRAM Forts

External IRQ | Timers | USARTO | USART1

Clock Source: | Spztem Clock - |

Clock % alue: | Timer 3 Stopped - |

Mode: | Narmal tap=FFFFh -

Elut..-’-'-.:|DiSn:|:|n. v| EIut.B:|Disu:u:un. v|

Ok, E:| Digoon, - |
Input Capt. |7 Moige Cancel

Interupt on| [T Timer 3 Dverflow

Yalue: 0 h Inp. Capture: 0 h
Comp. & 0 h B: 0 h C:0 h

e Clock Source specifies the timer/counter 3 clock pulse source
¢ Clock Value specifies the timer/counter 3 clock frequency

Mode specifies if the timer/counter 3 functioning mode
Out. A specifies the function of the timer/counter 3 output A and depends of the functioning mode
Out. B specifies the function of the timer/counter 3 output B and depends of the functioning mode
Out. C specifies the function of the timer/counter 3 output C and depends of the functioning mode

¢ Inp Capt. specifies the timer/counter 3 capture trigger edge and if the noise canceler is to be used
¢ Interrupt on specifies if an interrupt is to be generated on timer/counter 3 overflow, input capture

and compare match

e Timer Value specifies the initial value of timer/counter 3 at startup
e Comp. A, B and C specifies the initial value of timer/counter 3 output compare registers A, B and

© 1998-2008 HP InfoTech S.R.L.

Page 197

CodeVisionAVR

If timer/counter 3 interrupts are used the following interrupt service routines may be defined by the
CodeWizardAVR:

o timer3_ovf_isr for timer/counter overflow

e timer3_comp_isr or timer3_compa_isr, timer3_compb_isr and timer3_compc_isr for
timer/counter output compare match

e timer3_capt_isr for timer/counter input capture

You must note that depending of the used AVR chip some of these options may not be present. For
more information you must consult the corresponding Atmel data sheet.

By selecting the Watchdog tab you can configure the watchdog timer.

ﬁ]‘ CodeWizardAVR - test.owp @
Eile Help
ISARTZ USART3 | Analog Comparator
ADC SPI [2C 1 'wfire
2wire [12C] LCD
Bit-Banged Project Infarmation
Chip E sternal SHAMM Puortz
Esternal IRQ | Timers | USARTO | USARTI

..............................

Timerd | Timer5 |; Watchdog | e

+f | atchdog Timer Enabled

Ozcillator Prescaler

@ O5CA2k OSC/E4k
O5CAk OSCAZ8k
05CAk OSCA25Ek
O5CAEk OSCA12k
OSCA32k OSCA024k

W' atchdog Timeout [nterrupt

Checking the Watchdog Timer Enabled check box activates the watchdog timer.

You will have then the possibility to set the watchdog timer's Oscillator Prescaller.

If the Watchdog Timeout Interrupt check box is checked, an interrupt, serviced by the
wdt_timeout_isr function, will be generated instead of reset if a timeout occurs.

In case the watchdog timer is enabled, you must include yourself the appropriate code sequences to
reset it periodically. Example:

#asm ("wdr")

For more information about the watchdog timer you must consult the Atmel data sheet for the chip that
you use.

© 1998-2008 HP InfoTech S.R.L. Page 198

CodeVisionAVR

5.6 Setting the UART or USART

By selecting the UART tab of the CodeWizardAVR, you can specify the UART configuration.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
Analog Comparatar | ADC SPI [2C
1 'wire LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Portz
External IRO Tirners UART
o | Receiver | B [nterrupt
Receiver Buffer: 8 "‘_A]
| Transmitter | Tu Interrupt
Tranzmitter Buffer: 8 f_,/*]
Baud A ate: 9600 -

Baud Rate Ermor: 0.2%

Communication Parameters:

8 Data, 1 Stop, Mo Parity -

Checking the Receiver check box activates the UART receiver.

The receiver can function in the following modes:

e polled, the Rx Interrupt check box isn't checked

e interrupt driven circular buffer, the Rx Interrupt check box is checked.

In the interrupt driven mode you can specify the size of the circular buffer using the Receiver Buffer
spinedit box.

Checking the Transmitter check box activates the UART transmitter.

The transmitter can function in the following modes:

e polled, the Tx Interrupt check box isn't checked

e interrupt driven circular buffer, the Tx Interrupt check box is checked.

In the interrupt driven mode you can specify the size of the circular buffer using the Transmitter
Buffer spinedit box.

The communication Baud rate can be specified using the UART Baud Rate list box.
CodeWizardAVR will automatically set the UBRR according to the Baud rate and AVR chip clock
frequency. The Baud rate error for these parameters will be calculated and displayed.

The Communications Parameters list box allows you to specify the number of data bits, stop bits
and parity used for serial communication.

© 1998-2008 HP InfoTech S.R.L. Page 199

CodeVisionAVR

For devices featuring an USART there will be an additional Mode list box.

ﬁ} CodeWizardAVR - test.owp |25
File Help
Analog Comparator | SPI |2C 1 "Wire
LCD Bit-Banged Project Infarmatian

Chip Esternal SHAMM Portz

External IRD Timners USART
o | Receiver | B [nterrupt
Receiver Buffer: 8 "‘_A]
| Transmitter | Tu Interrupt
Tranzmitter Buffer. 8 f_,/*]
Baud Fate: 9600 - e

Baud Rate Ermor: 0.2%

Communication Parameters:

| 8 Data, 1 Stop, Mo Parity - |

b ode:; | Azpnchronouz - |

It allows you to specify the following communication modes:

e Asynchronous

Synchronous Master, with the UCSRC register's UCPOL bit set to 0
Synchronous Master, with the UCSRC register's UCPOL bit set to 1
Synchronous Slave, with the UCSRC register's UCPOL bit set to 0
Synchronous Slave, with the UCSRC register's UCPOL bit set to 1.

The serial communication is realized using the Standard Input/Output Functions getchar, gets, scanf,
putchar, puts and printf.

For interrupt driven serial communication, CodeWizardAVR automatically redefines the basic getchar
and putchar functions.

The receiver buffer is implemented using the global array rx_buffer.

The global variable rx_wr_index is the rx_buffer array index used for writing received characters in
the buffer.

The global variable rx_rd_index is the rx_buffer array index used for reading received characters
from the buffer by the getchar function.

The global variable rx_counter contains the number of characters received in rx_buffer and not yet
read by the getchar function.

If the receiver buffers overflows the rx_buffer_overflow global bit variable will be set.

© 1998-2008 HP InfoTech S.R.L. Page 200

CodeVisionAVR

The transmitter buffer is implemented using the global array tx_buffer.

The global variable tx_wr_index is the tx_buffer array index used for writing in the buffer the
characters to be transmitted.

The global variable tx_rd_index is the tx_buffer array index used for reading from the buffer the
characters to be transmitted by the putchar function.

The global variable tx_counter contains the number of characters from tx_buffer not yet transmitted
by the interrupt system.

For devices with 2 UARTS, respectively 2 USARTS, there will be two tabs present: UARTO0 and
UART1, respectively USARTO0 and USART1.
The functions of configuration check and list boxes will be the same as described above.

The UARTO (USARTO) will use the normal putchar and getchar functions.

In case of interrupt driven buffered communication, UARTO (USARTO) will use the following variables:
rx_buffer0, rx_wr_index0, rx_rd_index0, rx_counter0, rx_buffer_overflow0,

tx_buffer0, tx_wr_index0, tx_rd_index0, tx_counter0.

The UART1 (USART1) will use the putchar1 and getchar1 functions.

In case of interrupt driven buffered communication, UART1 (USART1) will use the following variables:
rx_buffer1, rx_wr_index1, rx_rd_index1, rx_counter1, rx_buffer_overflow1,

tx_buffer1, tx_wr_index1, tx_rd_index1, tx_counter1.

All serial 1/0 using functions declared in stdio.h, will be done using UARTO (USARTO).

© 1998-2008 HP InfoTech S.R.L. Page 201

CodeVisionAVR

5.7 Setting the Analog Comparator

By selecting the Analog Comparator tab of the CodeWizardAVR, you can specify the analog
comparator configuration.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
1 'fire LCD
Bit-Banged Froject Information

Chip Fuortz Esternal IRG Timers
sl Analog Comparator | ADC |20

| Analog Comparator Enabled

Inputs: | ANO+] AINTE) |
Bandgap Yaoltage Reference

Megative Input Multiplexer
[nputs Hystereziz: | O |
o | Analog Carmparatar [nterrupt
Analog Comparator [Aterrupt bMode
@ |ntermupt on Output T ogale

[nterrupt on Ealling Output Edge
Interrupt on Bizsing Output Edge

Dizable Digital Input Buffer on AIMD
Digable Digital Input Buffer on A1

Checking the Analog Comparator Enabled check box enables the on-chip analog comparator.
Checking the Bandgap Voltage Reference check box will connect an internal voltage reference to
the analog comparator's positive input.

Checking the Negative Input Multiplexer check box will connect the analog comparator's negative
input to the ADC's analog multiplexer.

If the Negative Input Multiplexer option is not enabled, the Inputs list box allows to select which of
the ADC's analog multiplexer inputs will be connected to the analog comparator's positive and
negative inputs.

The Inputs Hysterezis list box allows to select the amount of hysterezis of the analog comparator
inputs.

If you want to generate interrupts if the analog comparator's output changes state, then you must
check the Analog Comparator Interrupt check box.

The type of output change that triggers the interrupt can be specified in the Analog Comparator
Interrupt Mode settings.

© 1998-2008 HP InfoTech S.R.L. Page 202

CodeVisionAVR

For some AVR chips the analog comparator's output may be to be used for capturing the state of
timer/counter 1.
In this case the Analog Comparator Input Capture check box must be checked if present.

The Disable Digital Input Buffer on AINO, respectively Disable Digital Input Buffer on AIN1 check
boxes, if checked, will deactivate the digital input buffers on the AINO, respectively AIN1 pins, thus
reducing the power consumption of the chip.

The corresponding bits in the PIN registers will always read 0 in this case.

Some of this check boxes may not be present on all the AVR chips.
If the analog comparator interrupt is enabled, the CodeWizardAVR will define the ana_comp_isr
interrupt service routine.

© 1998-2008 HP InfoTech S.R.L. Page 203

CodeVisionAVR

5.8 Setting the Analog-Digital Converter

Some AVR chips contain an analog-digital converter (ADC).
By selecting the ADC tab of the CodeWizardAVR, you can specify the ADC configuration.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
1 'fire LCD
Bit-Banged Froject Information
Chip Puortz Esternal IRG Timers
15| fnalog Comparator | ADC | 120

S| ADC Enabled || Use 3 bits
o | Interrpt
| Bipolar [nput

Huoize Canceler

Yalt. Ref: | 24CC pin

il |

Clock: | 125.000 kHz

il |

Auto Trigger S ource:

| Free Running

i |

Automatically Scan npuks
| Enabled

First: Z] Last 7 ‘I‘_A]
Digable Digital Input Buffers

o1 2 Aef3 4 5 B
Digable Digital Input Buffers

8 9 10

Checking the ADC Enabled check box enables the on-chip ADC.

On some AVR devices only the 8 most significant bits of the AD conversion result can be used. This
feature is enabled by checking the Use 8 bits check box.

The ADC may be operated in bipolar mode if the Bipolar Input check box is checked.

Some AVR devices allow the ADC to use a high speed conversion mode, but with lower precision.
This feature is enabled by checking the High Speed check box, if present.

If the ADC has an internal reference voltage source, than it can be selected using the Volt. Ref. list
box or activated by checking the ADC Bandgap check box.

The ADC clock frequency can be selected using the Clock list box.

If you want to generate interrupts when the ADC finishes the conversion, then you must check the
Interrupt check box.

© 1998-2008 HP InfoTech S.R.L. Page 204

CodeVisionAVR

If ADC interrupts are used you have the possibility to enable the following functions:

e by checking the Noise Canceler check box, the chip is placed in idle mode during the conversion
process, thus reducing the noise induced on the ADC by the chip's digital circuitry

e by checking the Automatically Scan Inputs Enabled check box, the CodeWizardAVR wiill
generate code to scan an ADC input domain and put the results in an array. The start, respectively the
end, of the domain are specified using the First Input, respectively the Last Input, spinedit boxes.

Some AVR devices allow the AD conversion to be triggered by an event which can be selected using
the Auto Trigger Source list box.

If the automatic inputs scanning is disabled, then a single analog-digital conversion can be executed
using the function:

unsigned int read_adc(unsigned char adc_input)

This function will return the analog-digital conversion result for the input adc_input. The input
numbering starts from 0.

If interrupts are enabled the above function will use an additional interrupt service routine adc_isr.
This routine will store the conversion result in the adc_data global variable.

If the automatic inputs scanning is enabled, the adc_isr service routine will store the conversion
results in the adc_data global array. The user program must read the conversion results from this
array.

For some chips there is also the possibility to disable the digital input buffers on the inputs used by the
ADC, thus reducing the power consumption of the chip.

This is accomplished by checking the corresponding Disable Digital Input Buffers check boxes.

If the Automatically Scan Inputs option is enabled, then the corresponding digital input buffers are
automatically disabled for the ADC inputs in the scan range.

© 1998-2008 HP InfoTech S.R.L. Page 205

CodeVisionAVR

5.9 Setting the ATmega406 Voltage Reference

Some AVR chips, like the Atmega406, contain a low power precision bang-gap voltage reference,

which can be configured by selecting the Voltage Reference tab of the CodeWizardAVR.

'ﬁ} CodeWizardAVR - test.cwp
File Help

[2C
LCD
Chip

ADC

1 %Wire

)

2 Wire [12C)

Bit-Banged Froject Information
Fuortz Esternal IRG Timers
Yoltage Reference | Coulomb Counter

| Wolage Reference Enabled
Yaltage Calibration: |E| - | it

Temperature Gradient Adjustment;
o 15C 30°C 45°C BO°C

I

Checking the Voltage Reference Enabled check box enables the precision voltage reference.
The Voltage Calibration list box allows for precision adjustment of the nominal value of the reference

voltage in 2mV steps.

The Temperature Gradient Adjustment slider allows shifting the top of the Vggr versus temperature
curve to the center of the temperature range of interest, thus minimizing the voltage drift in this range.

The Atmega406 datasheet may be consulted for more details.

© 1998-2008 HP InfoTech S.R.L.

Page 206

CodeVisionAVR

5.10 Setting the ATmega406 Coulomb Counter

The Atmega406 chip, contains a dedicated Sigma-Delta ADC optimized for Coulomb Counting to
sample the charge or discharge current flowing through an external sense resistor Rs.
This ADC can be configured by selecting the Coulomb Counter tab of the CodeWizardAVR.

ﬁ]‘ CodeWizardAVR - test.owp @
Eile Help
I2C 1 'Wire 2 Wwire [12C)
LCD Bit-Banged Praject Infarmatian

Chip Forts External IR0 Timers
ADC | Yoltage Feference | Coulomb Counter

| Coulomb Counter Enabled
Accumulate Current Corvversion Time:

126 v ms

| Reqular Current Detection kMode
Sampling Interval: |2I3I3—v ms
o | Bccurmulate Current Interupt

| Regular Current Interrupt

o | Inztantaneous Current Interrupt
Regular Charge Current [Fz=5 mohm]:
1535 = | ma

Regular Dizcharge Current [R2=5 mohm]:
1535 = | ma

Checking the Coulomb Counter Enabled check box enables the Coulomb Counter Sigma-Delta
ADC.

The Accumulate Current Conversion Time list box specifies the conversion time for the Accumulate
Current output.

The Regular Current Detection Mode check box specifies that the Coulomb Counter will repeatedly
do one instantaneous current conversion, before it is turned of for a timing interval specified by the
Sampling Interval list box.

The interval selected using the above-mentioned list box includes a sampling time, having a typical
value of 16ms.

The Accumulate Current Interrupt check box enable the generation of an interrupt after the
accumulate current conversion has completed. This interrupt is serviced by the ccadc_acc_isr ISR.

The Regular Current Interrupt check box enable the generation of an interrupt when the absolute
value of the result of the last AD conversion is greater, or equal to, the values of the CADRCC and
CADRDC registers. This interrupt is serviced by the ccadc_reg_cur_isr ISR.

© 1998-2008 HP InfoTech S.R.L. Page 207

CodeVisionAVR

The Instantaneous Current Interrupt check box enables the generation of an interrupt when an
instantaneous current conversion has completed. This interrupt is serviced by the ccadc_conv_isr
ISR.

The Regular Charge Current, respectively Regular Discharge Current, list boxes determine the
threshold levels for the regular charge, respectively regular discharge currents, setting the values for
the CADRCC, respectively CADRDC, registers used for generating the Regular Current Interrupt.

The Atmega406 datasheet may be consulted for more details about the Coulomb Counter.

© 1998-2008 HP InfoTech S.R.L. Page 208

CodeVisionAVR

5.11 Setting the SPI Interface

By selecting the SPI tab of the CodeWizardAVR, you can specify the SPI interface configuration.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
External IRG | Timerz | USARTO | USARTI
ISARTZ | USART3 | Analog Comparator
2 %fire [I2C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHARM Partz
ADC SRl [2C 1 'wire

| 5Fl Enabled SPI [nterrupt
Clock Rate w2
SPI bode: Mode 0 -

Clock Phaze SPI Clock Rate
@ Cycle Half @ 1000.000 kH=

Cycle Start
Wele atar 250.000 kHz

Clock, Palarity B2 R00 kHz
@ Low

High .250 kHz
SPI Type Drata Order
@ Slave @ MSE First

b aster LSE First

Checking the SPI Enabled check box enables the on-chip SPI interface.

If you want to generate interrupts upon completion of a SPI transfer, then you must check the SPI
Interrupt check box.

You have the possibility to specify the following parameters:

e SPI Clock Rate used for the serial transfer

Clock Phase: the position of the SCK strobe signal edge relative to the data bit
Clock Polarity: low or high in idle state

SPI Type: the AVR chip is master or slave

Data Order in the serial transfer.

Checking the Clock Rate x2 check box, available for some AVR chips, will double the SPI Clock
Rate.

For communicating through the SPI interface, with disabled SPI interrupt, you must use the SPI
Functions.

If the SPI interrupt is enabled, you must use the spi_isr interrupt service routine, declared by the
CodeWizardAVR.

© 1998-2008 HP InfoTech S.R.L. Page 209

CodeVisionAVR

5.12 Setting the Universal Serial Interface - USI

By selecting the USI tab of the CodeWizardAVR, you can specify the USI configuration.

The USI operatinging mode can be selected using the Mode list box.

One of the USI operating modes is the Three Wire (SPI) mode:

'ﬁ} CodeWizardAVR - test.cwp @
File Help
1 Wire LCD
Bit-Banged Froject Information

Chip Puortz Esternal IRG Timers
sl fnalog Comparator | ADC | 120

Mode: | Thiee Wwire [SPI) -

Clock: | Register & Counter=USICLE, -

1151 Counter Overflow Intermipt

© 1998-2008 HP InfoTech S.R.L.

Page 210

CodeVisionAVR

The USI can also operate in the Two Wire (12C) mode:

ﬁ} CodeWizardAVR - test.owp |25
File Help
1 'wfire LCD
Bit-Banged Project Infarmation

Chip Puortz External IRG Timers
sl Analog Comparatar | ADC | 120

Mode: | Twa wire 120 -

Clock: | Register & Counter=UISICLE |

IJSI Counter Qwerflow Interrupt

151 Start Condition [ntermipt

The Shift Reg. Clock list box sets the clock source for the USI Shift Register and Counter.

As both the USI Shift Register and Counter are clocked from the same clock source, the US| Counter
may be used to count the number of received or transmitted bits and generate an overflow interrupt
when the data transfer is complete.

Checking the USI Counter Overflow Interrupt check box will generate code for an interrupt service
routine that will be executed upon the overflow of the USI Counter.

If the USI Start Condition Interrupt check box is checked then the CodeWizardAVR will generate
code for an interrupt service routine that will be executed when a Start Condition is detected on the
12C bus in USI Two Wire operating mode.

© 1998-2008 HP InfoTech S.R.L. Page 211

CodeVisionAVR

5.13 Setting the I°C Bus

By selecting the I?C tab of the CodeWizardAVR, you can specify the I°C bus configuration.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
External IRG | Timerz | USARTO | USARTI
1 'wfire 2w [|2C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz

Analog Comparatar | ADC | SR [[2C

|2C Port: | PORTA |
1

SDABIL (0 | SCLBt|

LM75 | 051621 | PCFESE3 | Fl 4 ¢
Enabled

Using the I?C Port list box you can specify which port is used for the implementation of the I°C bus.
The SDA Bit and SCL Bit list boxes allow you to specify which port bits the I°C bus uses.

© 1998-2008 HP InfoTech S.R.L. Page 212

CodeVisionAVR

5.13.1 Setting the LM75 devices

If you use the LM75 temperature sensor, you must select the LM75 tab and check the LM75 Enabled

check box.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
External IRG | Timerz | USARTO | USARTI
1 'wfire 2w [|2C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz
Analog Comparatar | A0C | SPI [2C

|2C Port: | PORTA |

SDABIL (0 | SCLB[1 |

' DS1621 | PCFESE3 | F* 1 *

| Enabled Address: [0
Cutput Active High

Temperature "C

Hyst 75 *_A] 0.5.: a0 *_A]

The LM75 Address list box allows you to specify the 3 lower bits of the I°C addresses of the LM75
devices connected to the bus. Maximum 8 LM75 devices can be used.

The Output Active High check box specifies the active state of the LM75 O.S. output.

The Hyst., respectively O.S., spinedit boxes specify the hysterezis, respectively O.S. temperatures.

The LM75 devices are accessed through the National Semiconductor LM75 Temperature Sensor

Functions.

© 1998-2008 HP InfoTech S.R.L.

Page 213

CodeVisionAVR

5.13.2 Setting the DS1621 devices

If you use the DS1621 thermometer/thermostat, you must select the DS1621 tab and check the

DS1621 Enabled check box.

File

'ﬁ} CodeWizardAVR - test.cwp @

Help

External IRG | Timerz | USARTO | USARTI
1 'wfire 2w [|2C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz
Analog Comparatar | A0C | SPI [2C

|2C Port: | PORTA |

SDABIL (0 | SCLB[1 |

Lh75 [DST162T 2 PCFESES | FL 4|

| Enabled Address: [0
Cutput Active High

Temperature tigger *C

Lowe BO "‘_A]High:EE *_A]

The Output Active High check box specifies the active state of the DS1621 Tout output.

The Low, respectively High, spinedit boxes specify the low, respectively high temperatures trigger

temperatures for the Tout output.

The DS1621 devices are accessed through the Maxim/Dallas Semiconductor DS1621

Thermometer/Thermostat functions.

© 1998-2008 HP InfoTech S.R.L.

Page 214

CodeVisionAVR

5.13.3 Setting the PCF8563 devices

If you use the PCF8563 RTC, you must select the PCF8563 tab and check the PCF8563 Enabled

check box.
'ﬁ} CodeWizardAVR - test.cwp @
File Help
External IRQ | Timers | USARTO | USARTI
1 "wire 2%wire [12C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz

Analog Comparatar | A0C | SPI [2C

|2C Port: | PORTA |

SDABIL (0 | SCLB[1 |

7| Enabled I:LKIIILIT:||:|FF v|

Alarm Interrupt
Timer
Clock: |OFF = | [¥] Int. Enabled

Walue: 1 *_A] | IMNT Pulses

The CLKOUT list box specifies the frequency of the pulses on the CLKOUT output.

The Alarm Interrupt check box enables the generation of interrupts, on the INT pin, when the alarm

conditions are met.

The Timer|Clock list box specifies the countdown frequency of the PCF8563 Timer.

If the Int. Enabled check box is checked, an interrupt will be generated when the Timer countdown

value will be 0.

If the INT Pulses check box is checked, the INT pin will issue short pulses when the Timer countdown

value reaches 0.

The Timer|Value spinedit box specifies the Timer reload value when the countdown reaches 0.

The PCF8563 devices are accessed through the Philips PCF8563 Real Time Clock Functions.

© 1998-2008 HP InfoTech S.R.L.

Page 215

CodeVisionAVR

5.13.4 Setting the PCF8583 devices

If you use the PCF8583 RTC, you must select the PCF8583 tab and check the PCF8583 Enabled

check box.

'ﬁ} CodeWizardAVR - test.cwp
File Help

)

External IRQ | Timers | USARTO | USARTI

1 'wire 2%wire [12C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz

Analog Comparatar | ADC SPI

|2C Part | PORTA |
SDABIL (0 | SCLBt|

V| Enabled Address: (W 0

1_

[2C

b |

The PCF8583 Address list box allows you to specify the low bit of the I°C addresses of the PCF8583

devices connected to the bus. Maximum 2 PCF8583 devices can be used.

The PCF8583 devices are accessed through the Philips PCF8583 Real Time Clock Functions.

© 1998-2008 HP InfoTech S.R.L.

Page 216

CodeVisionAVR

5.13.5 Setting the DS1307 devices

If you use the DS1307 RTC, you must select the DS1307 tab and check the DS1307 Enabled check

box.

'ﬁ} CodeWizardAVR - test.cwp @
Eile
External IRG | Timerz | USARTO | USARTI
1 'wfire 2w [|2C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz
Analog Comparatar | A0C | SPI [2C

Help

|2C Port: | PORTA |

SDABIL |0 v| SCLBt[1 |

PCrasas|| D51407 10
Square Wave Output

| Enabled Ehabled

EIUT:| 1] v|

The DS1307 device is accessed through the Maxim/Dallas Semiconductor DS1307 Real Time

Clock Functions.

In case the square wave signal output is disabled, the state of the SQW/OUT pin can be specified

using the OUT list box.

© 1998-2008 HP InfoTech S.R.L.

Page 217

CodeVisionAVR

By checking the Square Wave Output Enabled check box a square wave signal will be available on
the DS1307's SQW/OUT pin. The frequency of the square wave can be selected using the Freq. list

box:

File

'ﬁ} CodeWizardAVR - test.cwp @

Help

External IRG | Timerz | USARTO | USARTI
1 'wfire 2w [|2C] LCD
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz
Analog Comparatar | A0C | SPI [2C

|2C Port: | PORTA |

— —

SDABIL (0 | SCLBt|

PCFasa3 i L JE

Square Wave Output
+|Enabled |¥| Enabled

Freq.:|‘| v|H2

© 1998-2008 HP InfoTech S.R.L.

Page 218

CodeVisionAVR

5.14 Setting the 1 Wire Bus

By selecting the 1 Wire tab of the CodeWizardAVR, you can specify the 1 Wire bus configuration.

'ﬁ} CodeWizardAVR - test.cwp
File Help

)

External IRQ | Timers | USARTO | USARTI

Bit-Banged Froject Information
Chip Esternal SHAM Puortz
Analog Comparator | ADC 5P [2C

2 Wwire [12C)

1 wire Part: |W|

Drata Bit: | - |
D51820/0518520
Enabled

LCD

Using the 1 Wire Port list box you can specify which port is used for the implementation of the 1 Wire

bus.

The Data Bit list box allows you to specify which port bit the 1 Wire bus uses.

© 1998-2008 HP InfoTech S.R.L.

Page 219

CodeVisionAVR

If you use the DS1820/DS18S20 temperature sensors, you must check the DS1820/DS18S20

Enabled check box.

ﬁ} CodeWizardAVR - test.owp |25
File Help
External IRA | Timers | USARTO | USARTI
Bit-Banged Project Infarmation
Chip Esternal SHAMM Puortz
Analog Comparatar | ADC SPI [2C
e i 2 'wfire (120 LCD

1'wire Port: |[PORTE |
Data Bit: ||:| v|

0S1820/0518520
| Enabled
| Multiple Devices

If you use several DS1820/DS18S20 devices connected to the 1 Wire bus, you must check the
Multiple Devices check box. Maximum 8 DS1820/DS18S20 devices can be connected to the bus.

The ROM codes for these devices will be stored in the ds1820_rom_codes array.

The DS1820/DS18S20 devices can be accessed using the Maxim/Dallas Semiconductor

DS1820/DS18S20 Temperature Sensors Functions.

© 1998-2008 HP InfoTech S.R.L.

Page 220

CodeVisionAVR

5.15 Setting the 2 Wire Bus

By selecting the 2 Wire (I°C) tab of the CodeWizardAVR, you can specify the 2 Wire bus interface
configuration.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
External IRG | Timerz | USARTO | USARTI
Bit-Banged Froject Information
Chip Esternal SHAM Puortz

Analog Comparator | ADC 5P [2C
1'wie | §LCD

o | 2 %ire Enabled

Generate Acknowledge Pulse
Slave Addrezz: 0 h

General Call Becognition
Bit Rate: |250.000kHz -

2Wfire [nterupt

The AVR chip's 2 Wire interface can be enabled by checking the 2 Wire Enabled check box.

If the Generate Acknowledge Pulse check box is checked the ACK pulse on the 2 Wire bus is
generated if one of the following conditions is met:

o the device's own slave address has been received;

e a General Call has been received and the General Call Recognition check box is checked;
e adata byte has been received in master receiver or slave receiver mode.

If the Generate Acknowledge Pulse check box is not checked, the chip's 2 Wire interface is virtually
disconnected from the 2 Wire bus. This check box will set the state of the TWEA bit of the TWCR
register.

The Slave Address edit box sets the slave address of the 2 Wire serial bus unit. This address must
be specified in hexadecimal and will be used to initialize the bits 1..7 of the TWAR register.

Checking the General Call Recognition check box, enables the recognition of the General Call given
over the 2 Wire bus. This check box will set the state of the TWGCE bit of the TWAR register.

The Bit Rate list box allows you to specify maximum frequency of the pulses on the SCL 2 Wire bus
line. It will affect the value of the TWBR register.

© 1998-2008 HP InfoTech S.R.L. Page 221

CodeVisionAVR

As both the receiver and transmitter may stretch the duration of the low period of the SCL line, when
waiting for response, the frequency of the pulses may be lower than specified.

If the 2 Wire Interrupt check box is checked, the 2 Wire interface will generate interrupts.
These interrupts will be serviced by the twi_isr function.

5.16 Setting the CAN Controller

By selecting the CAN tab of the CodeWizardAVR, you can specify the CAN interface configuration.

'ﬁ]‘ CodeWizardAVR - test.owp |5
File Help
Esternal IRQ | Timers | USARTO | USARTI
Analog Comparator | ADC 5P [2C

LCD Bit-Banged Praject Infarmatian
Chip External SRAM Forts
1 'Wire 2wl (120 1 CAN

| CAM Enabled Baud Rate: 1000.000 kHz

Inkermupts: | [T CAM Timer Overmun

Enable MOb Registers: [wM0Ob0

Enable MOb Interupts: [T MOb0

Highest Interrupt Priority tOb: |h-'||:||:||:|—v|
CAN System Clock: |8000.0kHz ~ |
Propagation Time Segment: |W|
Re-Sync Jump width: |0125us |
Phaze Segment 1: | 0125 ug - |
Phasze Segment 2 | 0125 ug - |
Sarple Paint[z): | 1 - |

CAN Timer Clock Period: [1.000us = |

The AVR chip's CAN interface can be enabled by checking the CAN Enabled check box.

The Interrupts list box allows enabling/disabling the following interrupts generated by the CAN
controller:

e CAN Timer Overrun interrupt, serviced by the can_timer_isr function

e General Errors (bit error, stuff error, CRC error, form error, acknowledge error) interrupt, serviced
by the can_isr function

Frame Buffer Full interrupt, serviced by the can_isr function

MOb Errors interrupt, serviced by the can_isr function

Transmit completed OK interrupt, serviced by the can_isr function

Receive completed OK interrupt, serviced by the can_isr function

Bus Off interrupt, serviced by the can_isr function

All interrupts, except Timer Overrun, serviced by the can_isr function

© 1998-2008 HP InfoTech S.R.L. Page 222

CodeVisionAVR

The Enable MOb Registers list box allows for individual enabling/disabling of the CAN Message
Object registers.

The Enable MOb Interrupts list box allows for enabling/disabling the interrupts generated by
individual Message Object registers.

The Highest Interrupt Priority MODb list box allows selecting the Message Object register that has the
highest interrupt priority.

The CAN System Clock list box allows selecting the frequency of the CAN controller system clock.

The Propagation Time Segment list box allows for compensation of physical delay times within the
network. The duration of the propagation time segment must be twice the sum of the signal
propagation time on the bus line, the input comparator delay and the output driver delay.

The Re-Sync Jump Width list box allows for compensation of phase shifts between clock oscillators
of different bus controllers, by controller re-synchronization on any relevant signal edge of the current
transmission.

The Phase Segment 1 and Phase Segment 2 list boxes allow for compensation of phase edge
errors.

The Sample Point(s) list box allows selecting the number of times (1 or 3) the bus is sampled.
The CAN Timer Clock Period list box allows selecting the period of the CAN timer clock pulses.

The CAN Baud Rate is calculated based on the durations of the CAN System Clock, Propagation
Time Segment, Phase Segment 1 and Phase Segment 2 parameters.

If the CAN Baud Rate value is correct it's value is displayed in black color, otherwise it is displayed in
red and must be corrected by modifying the above mentioned parameters.

© 1998-2008 HP InfoTech S.R.L. Page 223

CodeVisionAVR

5.17 Setting the ATmega169/329/3290/649/6490 LCD Controller

By selecting the LCD Controller tab of the CodeWizardAVR, you can specify the configuration of the
LCD controller built in the ATmega169/329/3290/649/6490 chips.

'ﬁ} CodeWizardAVR - test.cwp @
File Help
115l USART | Analog Comparatar | ADC
SFI [2C 1 'wfire LCD
Bit-Banged Project Infarmation
Chip Fuortz Esternal IRG Timers
{ LCD Controller {

| LCD Enabled
LCD Loww Poweer YW aveform
LCD Frame Complete [Rterrapt

DupCycle: [Static |
Bias: [static |
Clock Sowrce: [Gystem v |
Frame Fiate: 50 3] H=

Frame Rate Ermor: 2.3%
|Jzed Seaments: | SEGO1Z - |
Cantrazt Contral: | 2 60 - |

The ATmega169V/L on chip LCD controller can be enabled by checking the LCD Enabled check box.
By checking the LCD Low Power Waveform check box, the low power waveform will be outputted on
the LCD pins. This allows reducing the power consumption of the LCD.

If the LCD Frame Complete Interrupt check box is checked, the LCD controller will generate an
interrupt at the beginning of a new frame. In low power waveform mode this interrupt will be generated
every second frame. The frame complete interrupt will be serviced by the led_sof_isr function.

The LCD Duty Cycle list box selects one of the following duty cycles: Static, 1/2, 1/3 or 1/4.

The LCD Bias list box selects the 1/3 or 1/2 bias. Please refer to the documentation of the LCD
manufacturer for bias selection.

The Clock Source list box selects the system clock or an external asynchronous clock as the LCD
controller clock source.

The Frame Rate spin edit allows specifying the LCD frame rate.
The LCD Frame Rate Register (LCDFRR) is initialized based on the frequency of the clock source and
the obtainable frame rate, that is as close as possible to the one that was specified.

© 1998-2008 HP InfoTech S.R.L. Page 224

CodeVisionAVR

The Frame Rate Error is calculated based on the specified Frame Rate and the real one obtained

from LCDFRR.

The Used Segments list box setting determine the number of port pins used as LCD segment drivers.
The Contrast Control list box specifies the maximum voltage on LCD segment and common pins
VLeb. The VLED range is between 2.60 and 3.35 Vcec.

5.18 Setting the LCD

By selecting the LCD tab of the CodeWizardAVR, you can specify the LCD configuration.

'ﬁ]‘ CodeWizardAVR - test.owp |5
File Help
Esternal IRQ | Timers | USARTO | USARTI
Analog Comparator | ADC 5P [2C

Bit-Banged Praject Infarmatian
Chip External SRAM Forts
1 'Wire 2wie (l20) @ LCD

LCD Por: |PORTC |

Chars. /Line: |‘IE: v|

PORT Bit 0-R5 [LCD Pin 4)
PORT Bit1-RD ([LCD Pin &)
PORT Bit 2 - EN [LCD Fin B)
PORT Bit 3 - Free

PORT Bit 4 - DB4 [LCD Pin11)
PORT Bit 5 - DBS [LCD Pin12]
PORT Bit6- DBE (LCD Pin13)
PORT Bit ¥ - DBV [LCD Pin14)

Using the LCD Port list box you can specify which port is used for connecting the alphanumeric LCD.

The Chars./Line list box allows you to specify the number of characters per display line.

This value is used by the led_init function.
The LCD can be accessed using the standard LCD Functions.

© 1998-2008 HP InfoTech S.R.L.

Page 225

CodeVisionAVR

5.19 Setting the USB Controller

By selecting the USB tab of the CodeWizardAVR, you can specify the configuration of the USB

controller for the ATO0USB646, ATO90USB647, ATO0USB1286 and AT90USB1287 chips.

The USB controller can operate in two modes: Device and Host, specified using the Operating Mode

list box.

ﬁ]‘ CodeWizardAVR - test.owp
Eile Help

E sternal IRC Timers
Analog Comparatar | ADC SPI

=3

LUSARTY
[2C

Bit-Banged Froject Information

Chip Esternal SHAM

Portz

......................................

1 wire | 2wire 120 | LoD |{USE Controller :

Operating bode: | [Device

(H]]nj OTG I15B Pad Regulator
WCOM IWCOMN Hardware Control

General lnt. . [T SRP

SRP Method: | D ata line pulsing

-

Low Speed Mode
Device Int. : |7 Suspend

Endpoint #: 0 *_,{] Endpaint Enable

Endpaint Cfg. :| Control, UT

b |

Endpoint Size: | e - | B arks:

1A

The operation of the USB controller in both modes and the various settings for them are described in
detail in the AT90USB datasheet.

© 1998-2008 HP InfoTech S.R.L.

Page 226

CodeVisionAVR

5.20 Setting Bit-Banged Peripherals

By selecting the Bit-Banged tab of the CodeWizardAVR, you can specify the configuration of the
peripherals connected using the bit-banging method.
If you use the DS1302 RTC, you must select the DS1302 tab.

File Help
External IRG

1 %ire
Chip

Bit-Banged

SCLE Bt |

'ﬁ} CodeWizardAVR - test.cwp

)

Tirners | USARTO | USART

Analog Comparator | ADC

2 wine [12C)
E sternal SHAMM

Fott |PORTD |
1400 B o

1 |

CE [/RSTIBit|2 +|
Trckle Charge
+|Enabled Diodes: |1 v|

SR |2C
LCD
Puortz

Praject Infarmatian

Charge Resistor: | I - |

Using the Port list box you can specify which port is used for connecting with the DS1302.

The 1/0 Bit, SCLK Bit and /RST Bit list boxes allow you to specify which port bits are used for this.

The DS1302's trickle charge function can be activated by checking the Trickle Charge|Enabled

check box.

The number of diodes, respectively the charge resistor value, can be specified using the Trickle
Charge|Diodes, respectively Trickle Charge|Resistors, list boxes.

The DS1302 device is accessed through the Maxim/Dallas Semiconductor DS1302 Real Time

Clock Functions.

© 1998-2008 HP InfoTech S.R.L.

Page 227

CodeVisionAVR

5.21 Specifying the Project Information

By selecting the Project Information tab, you can specify the information placed in the comment

header, located at the beginning of the C source file produced by CodeWizardAVR.

'ﬁ} CodeWizardAVR - test.cwp @

File Help

External IRQ | Timers

USARTO | USARTT

Analog Comparator | ADC SPI |2C

1 'Wire 2'Wire [12C) LCD
Chip Esternal SHARM Portz
Bit-Banged Project Infarmation

Project Mame:

Test
Yersion: 1.0
Authar:

Company:

Comments;

Date: 17-Apr-2003

You can specify the Project Name, Date, Author, Company and Comments.

© 1998-2008 HP InfoTech S.R.L.

Page 228

CodeVisionAVR

6. License Agreement

6.1 Software License

The use of CodeVisionAVR indicates your understanding and acceptance of the following terms and
conditions. This license shall supersede any verbal or prior verbal or written, statement or agreement
to the contrary. If you do not understand or accept these terms, or your local regulations prohibit "after
sale" license agreements or limited disclaimers, you must cease and desist using this product
immediately.

This product is © Copyright 1998-2008 by Pavel Haiduc and HP InfoTech S.R.L., all rights reserved.
International copyright laws, international treaties and all other applicable national or international laws
protect this product. This software product and documentation may not, in whole or in part, be copied,
photocopied, translated, or reduced to any electronic medium or machine readable form, without prior
consent in writing, from HP InfoTech S.R.L. and according to all applicable laws.

The sole owners of this product are Pavel Haiduc and HP InfoTech S.R.L.

6.2 Liability Disclaimer

This product and/or license is provided as is, without any representation or warranty of any kind, either
express or implied, including without limitation any representations or endorsements regarding the use
of, the results of, or performance of the product, its appropriateness, accuracy, reliability, or
correctness.

The user and/or licensee assume the entire risk as to the use of this product.

Pavel Haiduc and HP InfoTech S.R.L. do not assume liability for the use of this program beyond the
original purchase price of the software. In no event will Pavel Haiduc or HP InfoTech S.R.L. be liable
for additional direct or indirect damages including any lost profits, lost savings, or other incidental or
consequential damages arising from any defects, or the use or inability to use these programs, even if
Pavel Haiduc or HP InfoTech S.R.L. have been advised of the possibility of such damages.

6.3 Restrictions

You may not use, copy, modify, translate, or transfer the programs, documentation, or any copy
except as expressly defined in this agreement. You may not attempt to unlock or bypass any "copy-
protection" or authentication algorithm utilized by the program. You may not remove or modify any
copyright notice or the method by which it may be invoked.

6.4 Operating License

You have the non-exclusive right to use the program only by a single person, on a single computer at
a time. You may physically transfer the program from one computer to another, provided that the
program is used only by a single person, on a single computer at a

time. In-group projects where multiple persons will use the program, you must purchase an individual
license for each member of the group.

Use over a "local area network" (within the same locale) is permitted provided that only a single
person, on a single computer uses the program at a time. Use over a "wide area network" (outside the
same locale) is strictly prohibited under any and all circumstances.

© 1998-2008 HP InfoTech S.R.L. Page 229

CodeVisionAVR

6.5 Back-up and Transfer

You may make one copy of the program solely for "back-up" purposes, as prescribed by international
copyright laws. You must reproduce and include the copyright notice on the back-up copy. You may
transfer the product to another party only if the other party agrees to the terms and conditions of this
agreement, and completes and returns registration information (name, address, etc.) to Pavel Haiduc
and HP InfoTech S.R.L. within 30 days of the transfer. If you transfer the program you must at the
same time transfer the documentation and back-up copy, or transfer the documentation and destroy
the back-up copy. You may not retain any portion of the program, in any form, under any
circumstance.

6.6 Terms

This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any terms
or conditions of this agreement. You agree upon such termination to destroy all copies of the program
and of the documentation, or return them to Pavel Haiduc or HP InfoTech S.R.L. for disposal. Note
that by registering this product you give Pavel Haiduc and HP InfoTech S.R.L. permission to reference
your name in product advertisements.

6.7 Other Rights and Restrictions

All other rights and restrictions not specifically granted in this license are reserved by Pavel Haiduc
and HP InfoTech S.R.L.

© 1998-2008 HP InfoTech S.R.L. Page 230

CodeVisionAVR

7. Technical Support and Updates

Registered users of commercial versions of CodeVisionAVR receive one-year of free updates and
technical support starting from the date of license purchase.

The technical support is provided by e-mail in English or French languages.
The e-mail support address is: office@hpinfotech.com

© 1998-2008 HP InfoTech S.R.L. Page 231

CodeVisionAVR

8. Contact Information

HP InfoTech S.R.L. can be contacted at:

HP INFOTECH S.R.L.
BD. DECEBAL NR. 3
BL. S12B, SC. 2, AP. 29
SECTOR 3
BUCHAREST
ROMANIA

phone: +(40)-213261875
fax: +(40)-213261876
GSM: +(40)-723469754

e-mail: office@hpinfotech.com

Internet: http://www.hpinfotech.com
http://www.hpinfotech.biz
http://www.hpinfotech.eu
http://www.hpinfotech.ro

© 1998-2008 HP InfoTech S.R.L.

Page 232

http://www.hpinfotech.com/
http://www.hpinfotech.biz/
http://www.hpinfotech.eu/
http://www.hpinfotech.ro/

	Table of Contents
	1. Introduction
	1.1 Credits

	2. CodeVisionAVR Integrated Development Environment
	2.1 Working with Files
	2.1.1 Creating a New File
	2.1.2 Opening an Existing File
	2.1.3 Files History
	2.1.4 Editing a File
	2.1.4.1 Searching/Replacing Text
	2.1.4.2 Setting Bookmarks
	2.1.4.3 Jumping to a Specific Line Number in the Edited File
	2.1.4.4 Printing a Text Selection
	2.1.4.5 Indenting/Unindenting a Text Selection
	2.1.4.6 Commenting/Uncommenting a Text Selection
	2.1.4.7 Match Braces
	2.1.4.8 Inserting Special Characters in the Text
	2.1.4.9 Using the Auto Complete Functions
	2.1.4.10 Using Code Folding

	2.1.5 Saving a File
	2.1.6 Renaming a File
	2.1.7 Printing a File
	2.1.8 Closing a File
	2.1.9 Using the Code Templates
	2.1.10 Using the Clipboard History

	2.2 Working with Projects
	2.2.1 Creating a New Project
	2.2.3 Adding Notes or Comments to the Project
	2.2.4 Configuring the Project
	2.2.4.1 Adding or Removing a File from the Project
	2.2.4.2 Setting the Project Output Directories
	2.2.4.3 Setting the C Compiler Options
	2.2.4.4 Executing an User Specified Program before Build
	2.2.4.5 Transferring the Compiled Program to the AVR Chip after Build
	2.2.4.6 Executing an User Specified Program after Build

	2.2.5 Obtaining an Executable Program
	2.2.5.1 Compiling the Project
	2.2.5.2 Building the Project
	2.2.5.3 Cleaning Up the Project Output Directories
	2.2.5.4 Using the Code Navigator
	2.2.5.5 Using the Code Information
	2.2.5.6 Using the Function Call Tree

	2.2.6 Closing a Project

	2.3 Tools
	2.3.1 The AVR Studio Debugger
	2.3.2 The AVR Chip Programmer
	2.3.3 The Serial Communication Terminal
	2.3.4 Executing User Programs
	2.3.5 Configuring the Tools Menu

	2.4 IDE Settings
	2.4.1 The View Menu
	2.4.2 Configuring the Editor
	2.4.2.1 General Editor Settings
	2.4.2.2 Editor Text Settings
	2.4.2.3 Syntax Highlighting Settings
	2.4.2.4 Auto Complete Settings
	2.4.3 Setting the Debugger Path

	2.4.4 AVR Chip Programmer Setup
	2.4.5 Serial Communication Terminal Setup

	2.5 Accessing the Help
	2.6 Connecting to HP InfoTech's Web Site
	2.7 Quitting the CodeVisionAVR IDE

	3. CodeVisionAVR C Compiler Reference
	3.1 The Preprocessor
	3.2 Comments
	3.3 Reserved Keywords
	3.4 Identifiers
	3.5 Data Types
	3.6 Constants
	3.7 Variables
	3.7.1 Specifying the RAM and EEPROM Storage Address for Global Variables
	3.7.2 Bit Variables
	3.7.3 Allocation of Variables to Registers
	3.7.4 Structures
	3.7.5 Unions
	3.7.6 Enumerations

	3.8 Defining Data Types
	3.9 Type Conversions
	3.10 Operators
	3.11 Functions
	3.12 Pointers
	3.13 Accessing the I/O Registers
	3.13.1 Bit level access to the I/O Registers

	3.14 Accessing the EEPROM
	3.15 Using Interrupts
	3.16 RAM Memory Organization
	3.17 Using an External Startup Assembly File
	3.18 Including Assembly Language in Your Program
	3.18.1 Calling Assembly Functions from C

	3.19 Creating Libraries
	3.20 Using the AVR Studio Debugger
	3.21 Hints
	3.22 Limitations

	4. Library Functions Reference
	4.1 Character Type Functions
	4.2 Standard C Input/Output Functions
	4.3 Standard Library Functions
	4.4 Mathematical Functions
	4.5 String Functions
	4.6 Variable Length Argument Lists Macros
	4.7 Non-local Jump Functions
	4.8 BCD Conversion Functions
	4.9 Gray Code Conversion Functions
	4.10 Memory Access Macros
	4.11 LCD Functions
	4.11.1 LCD Functions for displays with up to 2x40 characters
	4.11.2 LCD Functions for displays with 4x40 characters
	4.11.3 LCD Functions for displays connected in 8 bit memory mapped mode

	4.12 I2C Bus Functions
	4.12.1 National Semiconductor LM75 Temperature Sensor Functions
	4.12.2 Maxim/Dallas Semiconductor DS1621 Thermometer/ Thermostat Functions
	4.12.3 Philips PCF8563 Real Time Clock Functions
	4.12.4 Philips PCF8583 Real Time Clock Functions
	4.12.5 Maxim/Dallas Semiconductor DS1307 Real Time Clock Functions

	4.13 Maxim/Dallas Semiconductor DS1302 Real Time Clock Functions
	4.14 1 Wire Protocol Functions
	4.14.1 Maxim/Dallas Semiconductor DS1820/DS18S20 Temperature Sensors Functions
	4.14.2 Maxim/Dallas Semiconductor DS18B20 Temperature Sensor Functions
	4.14.3 Maxim/Dallas Semiconductor DS2430 EEPROM Functions
	4.14.4 Maxim/Dallas Semiconductor DS2433 EEPROM Functions

	4.15 SPI Functions
	4.16 Power Management Functions
	4.17 Delay Functions

	5. CodeWizardAVR Automatic Program Generator
	5.1 Setting the AVR Chip Options
	5.2 Setting the External SRAM
	5.3 Setting the Input/Output Ports
	5.4 Setting the External Interrupts
	5.5 Setting the Timers/Counters
	5.6 Setting the UART or USART
	5.7 Setting the Analog Comparator
	5.8 Setting the Analog-Digital Converter
	5.9 Setting the ATmega406 Voltage Reference
	5.10 Setting the ATmega406 Coulomb Counter
	5.11 Setting the SPI Interface
	5.12 Setting the Universal Serial Interface - USI
	5.13 Setting the I2C Bus
	5.13.1 Setting the LM75 devices
	5.13.2 Setting the DS1621 devices
	5.13.3 Setting the PCF8563 devices
	5.13.4 Setting the PCF8583 devices
	5.13.5 Setting the DS1307 devices

	5.14 Setting the 1 Wire Bus
	5.15 Setting the 2 Wire Bus
	5.16 Setting the CAN Controller
	5.17 Setting the ATmega169/329/3290/649/6490 LCD Controller
	5.18 Setting the LCD
	5.19 Setting the USB Controller
	5.20 Setting Bit-Banged Peripherals
	5.21 Specifying the Project Information

	6. License Agreement
	6.1 Software License
	6.2 Liability Disclaimer
	6.3 Restrictions
	6.4 Operating License
	6.5 Back-up and Transfer
	6.6 Terms
	6.7 Other Rights and Restrictions

	7. Technical Support and Updates
	8. Contact Information

