S1722R

Features

- 65 Channel GPS L1 C/A Code
- Perform 8 million time-frequency hypothesis testing per second
- Open sky hot start 1 sec
- Open sky cold start 29 sec
- Signal detection better than -161dBm
- Multipath detection and suppression
- Accuracy 2.5m CEP
- Maximum update rate 10Hz
- Tracking current ~23mA
- Supports active and passive antenna

Applications

- PND
- MID / Netbook
- Smart-Phone
- Geo-Tagging
- Automatic Vehicle Location
- Personal Tracking

S1722R ROM-based

Low-Power High-Performance Low-Cost 65 Channel SMD GPS Module

The S1722R is a small form factor GPS module solution intended for a broad range of Original Equipment Manufacturer (OEM) products, where fast and easy system integration and minimal development risk is required.

The S1722R GPS receiver's -161dBm tracking sensitivity allows continuous position coverage in nearly all application environments. Its high performance search engine is capable of testing 8,000,000 time-frequency hypotheses per second, offering industry-leading signal acquisition and TTFF speed.

The receiver is optimized for applications requiring high performance, low power, and low cost; suitable for a wide range of OEM configurations including mobile phone, PND, asset tracking, and vehicle navigation products.

The very small 17mm x 22.4mm form factor and the SMT pads allow standard surface mount device pick-and-place process in fully automated assembly process; enabling high-volume, very cost-efficient production.

TECHNICAL SPECIFICATIONS

Receiver Type L1 C/A code, 65-channel Venus 6 engine

Accuracy Position 2.5m CEP

Velocity 0.1m/sec Time 300ns

Startup Time 1 second hot start under open sky

29 second cold start under open sky (average)

Reacquisition 1s

Sensitivity -161dBm tracking

Multi-path Mitigation Advanced multi-path detection and suppression

A-GPS Support PromptFix® AGPS

Update Rate Supports 1 / 2 / 4 / 5 / 8 / 10 Hz update rate (1Hz default)

Dynamics 4G (39.2m/sec²)

Operational Limits Altitude < 18,000m and velocity < 515m/s

Serial Interface 3.3V LVTTL level

Protocol NMEA-0183 V3.01

GPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG*1

9600 baud, 8, N, 1

Datum Default WGS-84

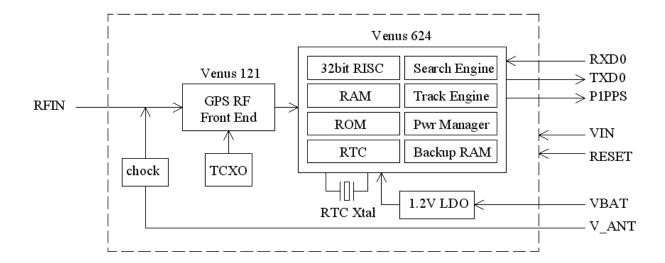
User definable

Input Voltage 3.3V DC +/-10%

Input Current ~23mA tracking

Dimension 17mm L x 22.4mm W

Weight: 2g

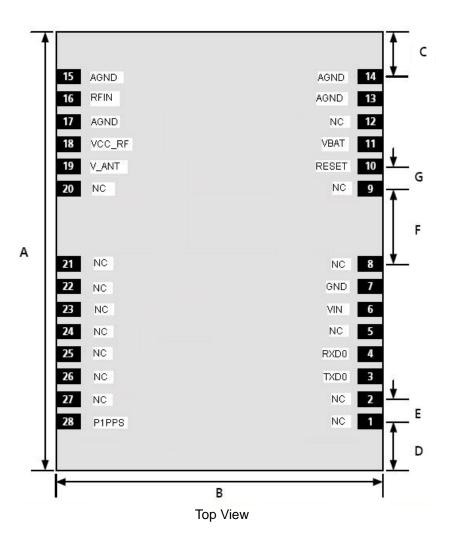

Operating Temperature -40°C ~ +85°C

Storage Temperature -55 ~ +100°C

Humidity 5% ~ 95%

^{*1:} GPGGA, GPGSA, GPGSV, GPRMC, GPVTG are default output message

BLOCK DIAGRAM


Module block schematic

ANTENNA

The S1722R module is designed to work both active and passive antenna. Active antenna with gain in range of $10 \sim 30$ dB and noise figure less than 2dB can be used.

MECHANICAL CHARACTERISTICS

Unit: mm

Α	22.4mm
В	17.0mm
С	2.85mm
D	2.55mm
Е	1.1mm
F	3.8mm
G	1.1mm

PINOUT DESCRIPTION

Pin No.	Name	Description		
1	NC	No connection		
2	NC	No conneciton		
3	TXD0	UART output, 3.3V LVTTL		
4	RXD0	UART input, 3.3V LVTTL		
5	NC	No connection		
6	VIN	Main 3.3V supply input		
7	GND	System ground		
8	NC	No connection		
9	NC	No connection		
10	RESET	External active-low reset input. Only needed when power supply rise time is very slow.		
11	VBAT	Backup supply voltage for RTC and backup memory, minimum 1.5V		
12	NC	No connection		
13	AGND	RF ground		
14	AGND	RF ground		
15	AGND	RF ground		
16	RFIN	GPS RF input, connect to antenna		
17	AGND	RF ground		
18	VCC RF	RF section output voltage		
19	V ANT	Antenna bias voltage input		
20	NC	No connection		
21	NC	No connection		
22	NC	No connection		
23	NC	No connection		
24	NC	No connection		
25	NC	No connection		
26	NC	No connection		
27	NC	No connection		
28	P1PS	1 pulse per second time mark		

NMEA MESSAGES

The full descriptions of supported NMEA messages are provided at the following paragraphs.

GGA - Global Positioning System Fix Data

Time, position and fix related data for a GPS receiver.

Structure:

Example:

\$GPGGA,111636.932,2447.0949,N,12100.5223,E,1,11,0.8,118.2,M,,,,0000*02<CR><LF>

Field	Name	Example	Description
1	UTC Time	111636.932	UTC of position in hhmmss.sss format, (000000.000 ~ 235959.999)
2	Latitude	2447.0949	Latitude in ddmm.mmmm format
			Leading zeros transmitted
3	N/S Indicator	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
4	Longitude	12100.5223	Longitude in dddmm.mmmm format
			Leading zeros transmitted
5	E/W Indicator	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
6	GPS quality	1	GPS quality indicator
	indicator		0: position fix unavailable
			1: valid position fix, SPS mode
			2: valid position fix, differential GPS mode
			3: GPS PPS Mode, fix valid
			4: Real Time Kinematic. System used in RTK mode with fixed integers
			5: Float RTK. Satellite system used in RTK mode. Floating integers
			6: Estimated (dead reckoning) Mode
			7: Manual Input Mode
			8: Simulator Mode
7	Satellites Used	11	Number of satellites in use, (00 ~ 12)
8	HDOP	0.8	Horizontal dilution of precision, (00.0 ~ 99.9)
9	Altitude	108.2	mean sea level (geoid), (-9999.9 ~ 17999.9)
10	DGPS Station ID	0000	Differential reference station ID, 0000 ~ 1023
			NULL when DGPS not used
11	Checksum	02	

GLL – Latitude/Longitude

Latitude and longitude of current position, time, and status.

Structure:

Example: \$GPGLL,2447.0944,N,12100.5213,E,112609.932,A,A*57<CR><LF>

Field	Name	Example	Description
1	Latitude	2447.0944	Latitude in ddmm.mmmm format
			Leading zeros transmitted
2	N/S Indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
3	Longitude	12100.5213	Longitude in dddmm.mmmm format
			Leading zeros transmitted
4	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
5	UTC Time	112609.932	UTC time in hhmmss.sss format (000000.000 ~
			235959.999)
6	Status	Α	Status, 'A' = Data valid, 'V' = Data not valid
7	Mode Indicator	Α	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
8	Checksum	57	

GSA – GNSS DOP and Active Satellites

GPS receiver operating mode, satellites used in the navigation solution reported by the GGA or GNS sentence and DOP values.

Structure:

Example:

\$GPGSA,A,3,05,12,21,22,30,09,18,06,14,01,31,,1.2,0.8,0.9*36<CR><LF>

Field	Name	Example	Description
1	Mode	Α	Mode
			'M' = Manual, forced to operate in 2D or 3D mode
			'A' = Automatic, allowed to automatically switch 2D/3D
2	Mode	3	Fix type
			1 = Fix not available
			2 = 2D
			3 = 3D
3	Satellite used 1~12	05,12,21,22,30	Satellite ID number, 01 to 32, of satellite used in solution,
		,09,18,06,14,0	up to 12 transmitted
		1,31,,	
4	PDOP	1.2	Position dilution of precision (00.0 to 99.9)
5	HDOP	0.8	Horizontal dilution of precision (00.0 to 99.9)
6	VDOP	0.9	Vertical dilution of precision (00.0 to 99.9)
7	Checksum	36	

GSV - GNSS Satellites in View

Number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value. Four satellites maximum per transmission.

Structure:

Example:

\$GPGSV,3,1,12,05,54,069,45,12,44,061,44,21,07,184,46,22,78,289,47*72<CR><LF>\$GPGSV,3,2,12,30,65,118,45,09,12,047,37,18,62,157,47,06,08,144,45*7C<CR><LF>\$GPGSV,3,3,12,14,39,330,42,01,06,299,38,31,30,256,44,32,36,320,47*7B<CR><LF>

Field	Name	Example	Description
1	Number of message	3	Total number of GSV messages to be transmitted (1-3)
2	Sequence number	1	Sequence number of current GSV message
3	Satellites in view	12	Total number of satellites in view (00 ~ 12)
4	Satellite ID	05	Satellite ID number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 = PRN120)
5	Elevation	54	Satellite elevation in degrees, (00 ~ 90)
6	Azimuth	069	Satellite azimuth angle in degrees, (000 ~ 359)
7	SNR	45	C/No in dB (00 ~ 99) Null when not tracking
8	Checksum	72	

RMC - Recommended Minimum Specific GNSS Data

Time, date, position, course and speed data provided by a GNSS navigation receiver.

Structure:

GPRMC,hhmmss.sss,A,dddmm.mmmm,a,x.x,x.x,ddmmyy,,,a*hh<CR><LF> 1 2 3 4 5 6 7 8 9 10 11

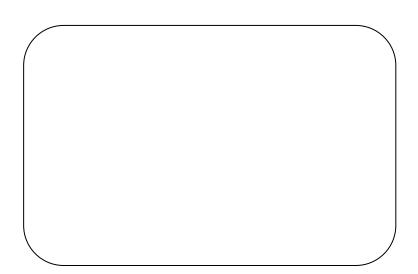
Example:

\$GPRMC,111636.932,A,2447.0949,N,12100.5223,E,000.0,000.0,030407,,,A*61<CR><LF>

Field	Name	Example	Description
1	UTC time	0111636.932	UTC time in hhmmss.sss format (000000.00 ~
			235959.999)
2	Status	Α	Status
			'V' = Navigation receiver warning
			'A' = Data Valid
3	Latitude	2447.0949	Latitude in dddmm.mmmm format
			Leading zeros transmitted
4	N/S indicator	N	Latitude hemisphere indicator
			'N' = North
			'S' = South
5	Longitude	12100.5223	Longitude in dddmm.mmmm format
			Leading zeros transmitted
6	E/W Indicator	E	Longitude hemisphere indicator
			'E' = East
			'W' = West
7	Speed over ground	0.000	Speed over ground in knots (000.0 ~ 999.9)
8	Course over ground	0.000	Course over ground in degrees (000.0 ~ 359.9)
9	UTC Date	030407	UTC date of position fix, ddmmyy format
10	Mode indicator	Α	Mode indicator
			'N' = Data not valid
			'A' = Autonomous mode
			'D' = Differential mode
			'E' = Estimated (dead reckoning) mode
			'M' = Manual input mode
			'S' = Simulator mode
11	checksum	61	

VTG - Course Over Ground and Ground Speed

The Actual course and speed relative to the ground.


Structure:

$$\label{eq:continuous} \begin{split} & \mathsf{Example:} \\ & \mathsf{\$GPVTG,\,000.0,T,,M,000.0,N,0000.0,K,A*3D < CR > < LF > \end{split}$$

Field	Name	Example	Description
1	Course	0.000	True course over ground in degrees (000.0 ~ 359.9)
2	Speed	0.000	Speed over ground in knots (000.0 ~ 999.9)
3	Speed	0000.0	Speed over ground in kilometers per hour (0000.0 ~ 1800.0)
4	Mode	A	Mode indicator 'N' = not valid 'A' = Autonomous mode 'D' = Differential mode 'E' = Estimated (dead reckoning) mode 'M' = Manual input mode 'S' = Simulator mode
5	Checksum	3D	

ORDERING INFORMATION

Model Name	Description
S1722R	ROM Version GPS receiver Module

