

General Description

The MAX14752/MAX14753 are 8-to-1 and dual 4-to-1 high-voltage analog multiplexers. Both devices feature 60Ω (typ) on-resistance with 0.03Ω (typ) on-resistance flatness. These low on-resistance multiplexers conduct equally well in either direction. Flexible logic levels for the channel-select interface are defined by the EN input.

The MAX14752 is a 8-to-1 multiplexer and MAX14753 is a dual 4-to-1 multiplexer. Both devices operate with dual supplies of ±10V to ±36V, or a single supply of +20V to +72V.

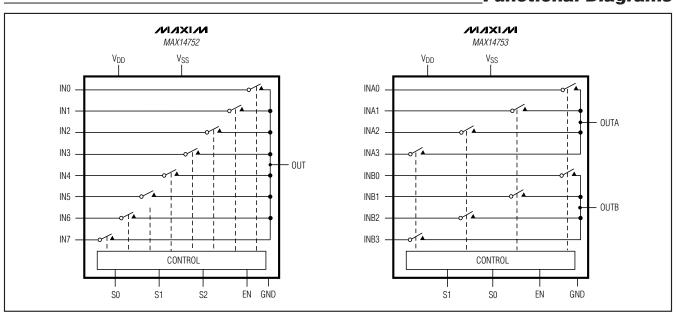
The MAX14752/MAX14753 are available in a 16-pin TSSOP package and are pin compatible with the industry-standard DG408/DG409. Both the MAX14752/ MAX14753 are specified over the extended -40°C to +85°C operating temperature range.

Applications

Programmable-Logic Controllers **Environment Control Systems ATE Systems** Medical Monitoring Systems Automotive

Features

- ♦ Wide Dual Power-Supply Range ±36V (max)
- ♦ Wide Single Power-Supply Range +72V (max)
- ♦ Low On-Resistance 60Ω (typ)
- ♦ Ron Flatness Over Common-Mode Voltage 0.03Ω (typ)
- ♦ Low-Input (20nA) On-Leakage Current (max)
- ♦ EN Voltage Defines Logic Level of S0, S1, and S2
- ♦ Low IDD Supply Current in Disable Mode 25µA (max)
- ♦ Overvoltage/Undervoltage Clamp Through **Protection Diodes**
- **♦** Break-Before-Make Operation
- Pin Compatible with Industry-Standard DG408/DG409


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14752EUE+	-40°C to +85°C	16 TSSOP
MAX14753EUE+	-40°C to +85°C	16 TSSOP

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Pin Configurations appear at end of data sheet.

Functional Diagrams

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V_{DD} to V_{SS} 0.3V to +72V GND to V_{SS} 0.3V to V_{DD}
EN, S0, S1, S2 to GND
0.3V to the lesser of (+12V and V_{DD} + 0.3V)
IN_, INA_, INB_, OUT, OUTA, OUTB to V _{SS}
-2V to (V _{DD} - V _{SS} + 2V) or 100mA (whichever occurs first)
Continuous Current into IN_, INA_,
INB_, OUT, OUTA, OUTB100mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
16-Pin TSSOP (derate 11.1mW/°C above +70°C)890mW

Junction-to-Ambient Thermal Resistance (θJA) (Note 1) 16-Pin TSSOP	.90°C/W
Junction-to-Case Thermal Resistance (θ _{JC}) (Note 1)	
16-Pin TSSOP	.27°C/W
Maximum Operating Temperature Range40°C to	+125°C
Junction Temperature	+150°C
Storage Temperature Range65°C to	
Lead Temperature (soldering, 10s)	
Soldering Temperature (reflow)	.+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS-DUAL SUPPLIES

 $(V_{DD} = +35V, V_{SS} = -35V, V_{GND} = 0V, V_{EN} = +3.3V, T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY	•					
V _{DD} Supply Voltage Range	V _{DD}		+10		+36	V
Vss Supply Voltage Range	V _{SS}		-10		-36	V
	I _{DD(OFF)}	V _{EN} = V _S _ = 0V, V _{IN} _ = V _{INA} _ = V _{INB} _ = +20V		12	25	
V _{DD} Supply Current	IDD(ON)	V _{EN} = +5V, V _S _ = 0V or V _{EN} , V _{IN} _ = V _{INA} _ = V _{INB} _ = +20V		270	600	μΑ
	ISS(OFF)	V _{EN} = V _S _ = 0V, V _{IN} _ = V _{INA} _ = V _{INB} _ = +20V		11	25	
V _{SS} Supply Current	ISS(ON)	$V_{EN} = +5V$, $V_{S_{-}} = 0V$ or V_{EN} , $V_{IN_{-}} = V_{INA_{-}} = V_{INB_{-}} = +20V$		260	600	μΑ
ANALOG MUX						_
Analog Signal Range	V _{IN} _, V _{INA_,} V _{INB_} , V _{OUT} , V _{OUTA} , V _{OUTB}		V _{SS}		V_{DD}	V
Current Through Multiplexer IN_, INA_, VIN_, VINA_, VINB_ = ±20V		-5		+5	mA	
On-Resistance	Ron	I _{IN} _, I _{IN} A_, I _{IN} B_ = 5mA; V _{IN} _, V _{IN} A_, V _{IN} B_, V _{OUT} , V _{OUT} A, V _{OUT} B = ±20V, Figure 1		60	130	Ω
On-Resistance Matching Between Channels	ΔR _{ON}	I _{IN} _, I _{IN} A_, I _{IN} B_ = 5mA, V _{IN} _, V _{IN} A_, V _{IN} B_ = ±20V, 0V		0.5		Ω
On-Resistance Flatness	R _{FLAT_} (ON)	I _{IN} _, I _{IN} A_, I _{IN} B_ = 5mA, V _{IN} _, V _{IN} A_, V _{IN} B_, V _{OUT} , V _{OUT} A, V _{OUT} B = ±20V		0.03		Ω
Output On Lookogo Current	lauria.	MAX14752: V _{OUT} , V _{OUT} , V _{OUT} = ±20V, V _{IN} , V _{IN} , V _{IN} = unconnected, Figure 2	-20		+20	
Output On-Leakage Current	lout(on)	MAX14753: V _{OUT} , V _{OUT} , V _{OUT} = ±20V, V _{IN} , V _{IN} , V _{IN} = unconnected, Figure 2	-10		+10	nA

DC ELECTRICAL CHARACTERISTICS-DUAL SUPPLIES (continued)

 $(V_{DD} = +35V, V_{SS} = -35V, V_{GND} = 0V, V_{EN} = +3.3V, T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Off Lookaga Current	louzioss	MAX14752: V _{OUT} , V _{OUTA} , V _{OUTB} = ±20V, V _{IN} , V _{INA} , V _{INB} = -20V, Figure 3	-20		+20	nA
Output Off-Leakage Current	lout(off)	MAX14753: V _{OUT} , V _{OUT} , V _{OUT} = ±40V, V _{IN} , V _{IN} , V _{IN} = -40V, Figure 3	-10		+10	ΠA
Input Off-Leakage Current	I _{IN(OFF)}	Vout, Vouta, Voutb = ±20V, Vin_, Vina_, Vinb_ = ±20V, Figure 3	-5		+5	nA
LOGIC (EN, S0, S1, S2)						
EN Input Voltage Low	V _{EN_IL}				0.8	V
EN Input Voltage High	V _{EN_IH}		2.1			V
EN, S_ Input Voltage Range	V _{EN} , V _S _				11	V
EN Input Current	I _{EN_IH(DC)}	$V_{EN} = +11V$, $V_{S0} = V_{S1} = V_{S2} = (0.25 \times V_{EN})$ or $(0.75 \times V_{EN})$			0.4	mA
S0, S1, S2 Input Voltage Low	VIL				0.25 x V _{EN}	V
S0, S1, S2 Input Voltage High	VIH		0.75 x V _{EN}			V
DYNAMIC CHARACTERISTICS		•				
Enable Turn-On Time	ton	V_{INO} , $V_{INAO} = \pm 10V$, $R_L = 10k\Omega$, Figure 4		1	25	μs
Enable Turn-Off Time	toff	V_{INO} , $V_{INAO} = \pm 10V$, $R_L = 10k\Omega$, Figure 4		0.8	2	μs
Transition Time	ttrans	V_{INO} , $V_{INAO} = \pm 10V$, $R_L = 10k\Omega$, Figure 5		10		μs
Break-Before-Make Time Delay	tBBM	$V_{IN_}$, $V_{INA_}$, $V_{INB_}$ = ±10V, R_L = 10k Ω , Figure 6		10		μs
Frequency Response	BW	$R_S = 50\Omega$, $R_L = 1k\Omega$, Figure 7			20	MHz
Off-Isolation	V _{ISO}	V_{IN} , V_{INA} , V_{INB} = 1 V_{RMS} , f = 100kHz, R_L = 50 Ω , C_L = 15pF, Figure 8		65		dB
Crosstalk	VcT	$R_S = R_L = 50\Omega$, Figure 9		62		dB
Total Harmonic Distortion Plus Noise	THD+N	$R_S = R_L = 1k\Omega$, $f = 20Hz$ to $20kHz$		0.0014		%
Charge Injection	Q	V _{IN} _, V _{INA} _, V _{INB} _ = GND, C _L = 1nF, Figure 10		200		рС

DC ELECTRICAL CHARACTERISTICS-SINGLE SUPPLY

 $(V_{DD} = +70V, V_{SS} = V_{GND} = 0V, V_{EN} = +3.3V, T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 2)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
On-Resistance	R _{ON}	I _{IN} _ = 5mA, V _{IN} _, V _{OUT} = +2 V _{INA} _, V _{OUTA} , V _{INB} _, V _{OUTB} = (MAX14753), Figure 1		60	130		
OUT, OUTA, OUTB Off-Leakage	IOUT(OFF),	MAX14752: V _{OUT} = +40V, V _{INB} = +10V, Figure 3	VIN_ = VINA_ =	20		+20	nA
Current	IOUTA(OFF), IOUTB(OFF)	MAX14753: V _{OUT} = +40V, V _{INB} = +10V, Figure 3	VIN_ = VINA_ =	-10		+10	IIA
		MAX14752, $V_{DD} = +50V$,	V _{IN} _ = 4V		43		
		OUT unconnected	V _{IN} _ = 25V		26		
On-Input Capacitance	C _{IN_ON}	MAX14753, V _{DD} = +50V, OUTA, OUTB unconnected	V _{INA_} , V _{INB_} = 4V		26		рF
			V _{INA_} , V _{INB_} = 25V		16		
	C _{IN_OFF}	MAX14752, V _{DD} = +50V	V _{IN} _ = 4V		6		
		MAX 14732, VDD = +30V	V _{IN} _ = 25V		3.7		
Off-Input Capacitance		MAX14753, V _{DD} = +50V	V _{INA_} , V _{INB_} = 4V		6		pF
			V _{INA_} , V _{INB_} = 25V		3.7		
		MAX14752, V _{DD} = +50V	Vour_ = 4V		35		
		MAX 14732, VDD = +30V	V _{OUT} _ = 25V		20		
Off-Output Capacitance	Cout_off M	MAX14753, V _{DD} = +50V	VOUTA_, VOUTB_ = 4V		19		рF
		IVIAX 14733, VUU = +30V	VOUTA_, VOUTB_ = 25V		11		

Note 2: All parameters in single-supply operation are expected to be the same as in dual-supplies operation.

Note 3: IN-OUT capacitances are negligible (< 1pF).

Test Circuits/Timing Diagrams/Truth Tables

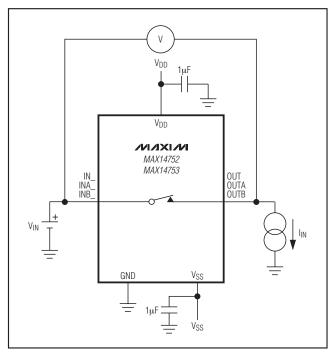


Figure 1. On-Resistance

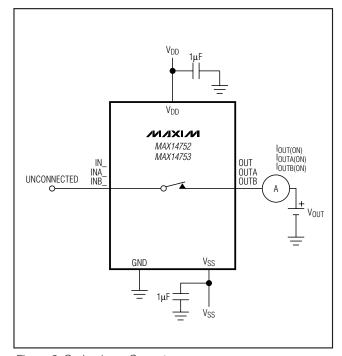


Figure 2. On-Leakage Current

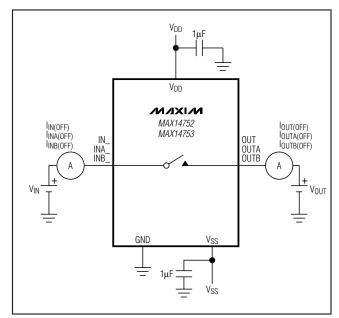


Figure 3. Off-Leakage Current

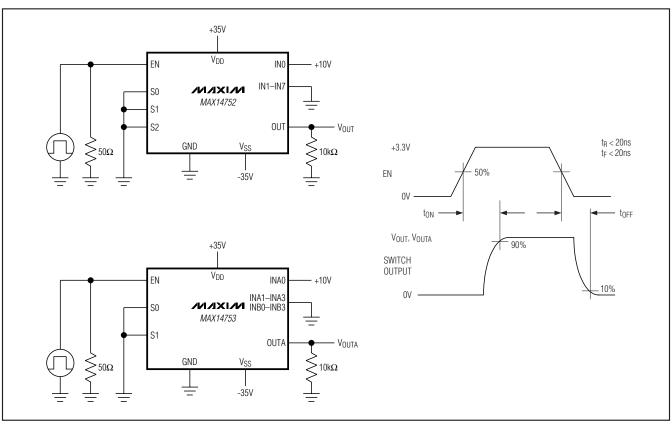


Figure 4. Enable Switching Time

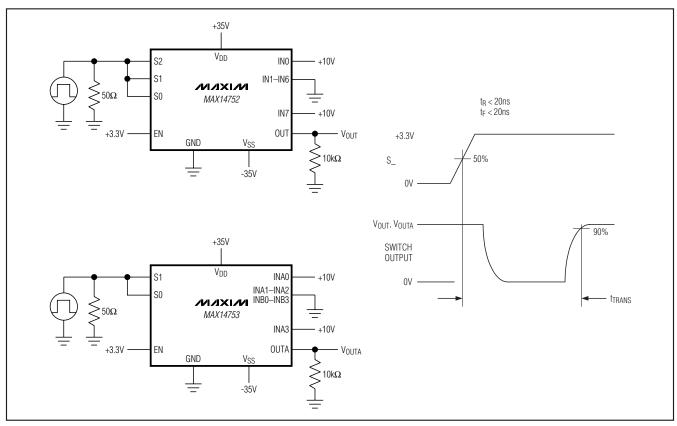


Figure 5. Transition Time

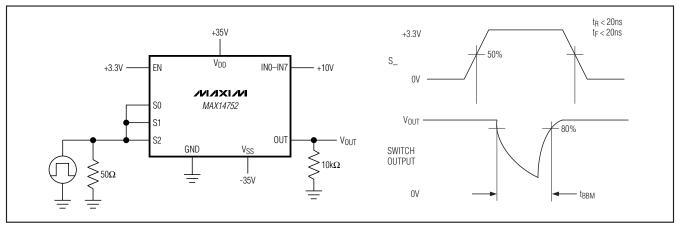


Figure 6. Break-Before-Make Interval

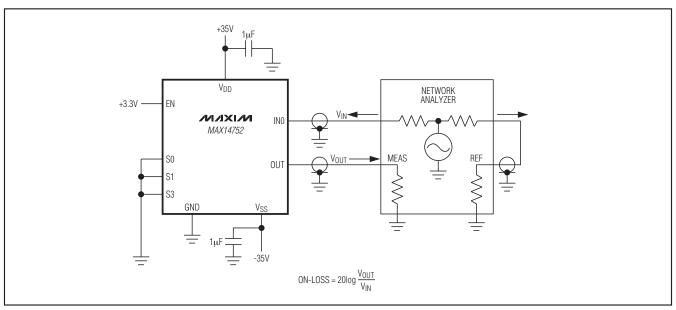


Figure 7. Frequency Response

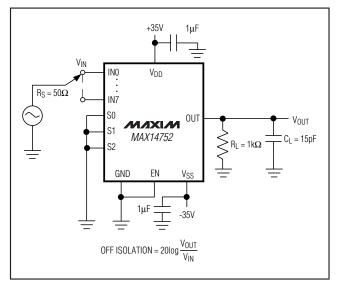


Figure 8. Off-Isolation

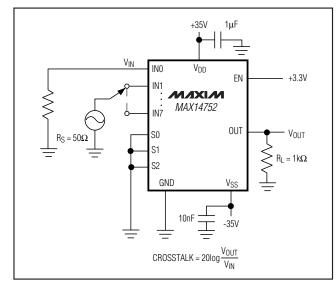


Figure 9. Crosstalk

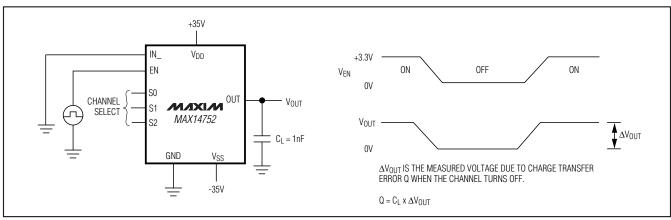
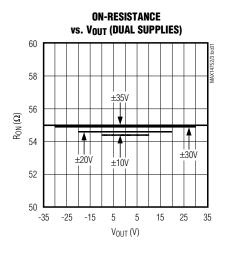
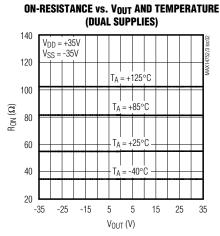
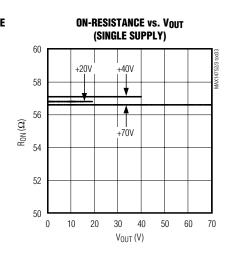


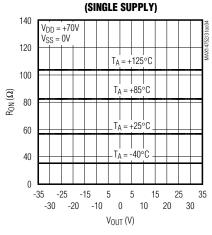
Figure 10. Charge Injection

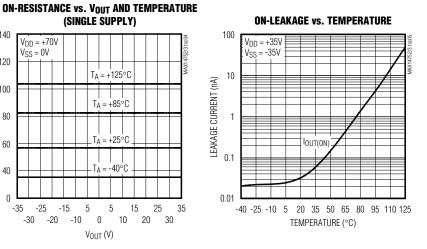
Table 1. MAX14752 Truth Table

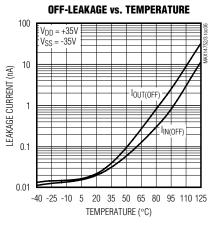

S2	S1	S0	EN	OUT
Х	Χ	Χ	0	All off
0	0	0	1	IN0
0	0	1	1	IN1
0	1	0	1	IN2
0	1	1	1	IN3
1	0	0	1	IN4
1	0	1	1	IN5
1	1	0	1	IN6
1	1	1	1	IN7

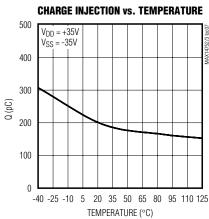

Table 2. MAX14753 Truth Table

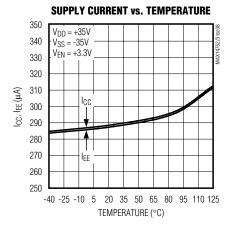

S1	S0	EN	OUTA	OUTB
Х	Χ	0	All off	All off
0	0	1	INA0	INB0
0	1	1	INA1	INB1
1	0	1	INA2	INB2
1	1	1	INA3	INB3

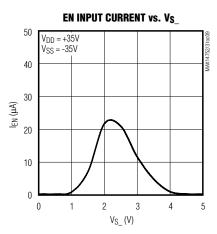

Typical Operating Characteristics

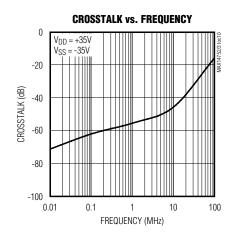

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

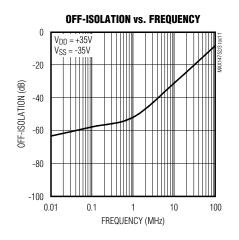


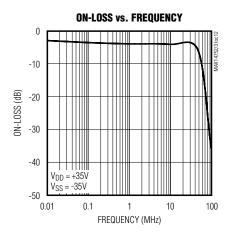


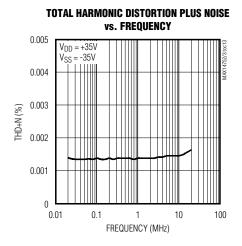











Typical Operating Characteristics (continued)

 $(T_A = +25$ °C, unless otherwise noted.)

MAX14752 Pin Description (Single 8-to-1 Mux)

PIN	NAME	FUNCTION
1	S0	Mux Input Select
2	EN	Mux Enable. Drive EN high to enable the device. The EN high voltage defines input logic voltage level for S0, S1, and S2.
3	V _{SS}	Negative Supply Voltage. Bypass VSS to GND with a 1µF ceramic capacitor.
4	IN0	Bidirectional Analog Input
5	IN1	Bidirectional Analog Input
6	IN2	Bidirectional Analog Input
7	IN3	Bidirectional Analog Input
8	OUT	Bidirectional Analog Output
9	IN7	Bidirectional Analog Input
10	IN6	Bidirectional Analog Input
11	IN5	Bidirectional Analog Input
12	IN4	Bidirectional Analog Input
13	V_{DD}	Positive Supply Voltage. Bypass V _{DD} to GND with a 1µF ceramic capacitor.
14	GND	Ground. Connect GND to V _{SS} for single supply. Bypass GND to V _{SS} with a 1µF ceramic capacitor for dual supply.
15	S2	Mux Input Select
16	S1	Mux Input Select

MAX14753 Pin Description (Dual 4-to-1 Mux)

PIN	NAME	FUNCTION
1	S0	Mux Input Select
2	EN	Mux Enable. Drive EN high to enable the device. The EN high voltage defines input logic voltage level for S0 and S1.
3	Vss	Negative Supply Voltage. Bypass VSS to GND with a 1µF ceramic capacitor.
4	INA0	Bidirectional Analog Input
5	INA1	Bidirectional Analog Input
6	INA2	Bidirectional Analog Input
7	INA3	Bidirectional Analog Input
8	OUTA	Bidirectional Analog Output
9	OUTB	Bidirectional Analog Output
10	INB3	Bidirectional Analog Input
11	INB2	Bidirectional Analog Input
12	INB1	Bidirectional Analog Input
13	INB0	Bidirectional Analog Input
14	V_{DD}	Positive Supply Voltage. Bypass VDD to GND with a 1µF ceramic capacitor.
15	GND	Ground. Connect GND to V _{SS} for single supply. Bypass GND to V _{SS} with a 1µF ceramic capacitor for dual supply.
16	S1	Mux Input Select

Detailed Description

The MAX14752/MAX14753 are 8-to-1 and dual 4-to-1 high-voltage analog multiplexers. Both devices feature 60Ω (typ) on-resistance with 0.03Ω (typ) on-resistance flatness. These low on-resistance multiplexers conduct equally well in either direction.

The MAX14752 is an 8-to-1 multiplexer and MAX14753 is a dual 4-to-1 multiplexer. Both devices operate with dual supplies of ±10V to ±36V or a single supply of +20V to +72V. Both devices can also operate with unbalanced supplies, such as +36V and -10V. These multiplexers support rail-to-rail input and output signals. The control logic level is defined via the EN input. These devices do not require power-supply sequencing.

Applications Information

Current Through the Mux

The current flowing through each on-channel of the MAX14752/MAX14753 multiplexers must be limited to ±5mA for normal operation. If the current exceeds this limit, an internal leakage current from that channel to VSS appears. Larger input current does not destroy the device if the max power dissipation is not exceeded.

Input Voltage Clamping

For applications that require input voltages beyond the normal operating voltages, the internal input diodes to V_{DD} and V_{SS} can be used to limit the input voltages. As shown in Figure 11, series resistors can be employed at the inputs to limit the currents flowing into the diodes during undervoltage and overvoltage conditions. Choose the

limiting resistors such that the input currents are limited to I_{IN} (max) = 100mA. The values of the current limit resistors can be calculated as the larger of R_{LIM+} and R_{LIM-} .

$$\begin{split} R_{LIM+} &= \frac{V_{IN_}(\text{max}) - V_{DD}}{I_{IN_}(\text{max})} \\ R_{LIM-} &= \frac{V_{SS} - V_{IN_}(\text{min})}{I_{IN_}(\text{max})} \end{split}$$

During an undervoltage or overvoltage condition, the input impedance is equal to R_{LIM}. The additional power dissipation due to the fault currents needs to be calculated. The MAX14752/MAX14753 multiplexer operates normally on a channel that is on during an overvoltage or undervoltage clamping condition on a second channel that is not switched.

Beyond-the-Rail Input

If input voltages are expected to go beyond the supply voltages, but within the absolute maximum supply voltages of the MAX14752/MAX14753, add two diodes in series with the supplies as shown in Figure 12.

During undervoltage and overvoltage events, the internal diodes pull VDD/VSS supplies up/down. An advantage of this scheme is that the input impedance is high and currents do not flow through the MAX14752/MAX14753 during overvoltage and undervoltage events. The input voltages must be limited to the voltages specified in the *Absolute Maximum Ratings* section.

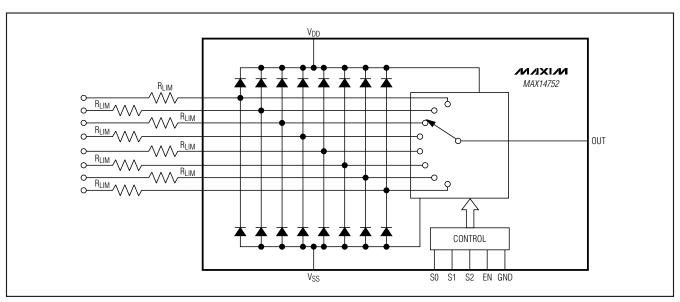


Figure 11. Input Overvoltage and Undervoltage Clamping

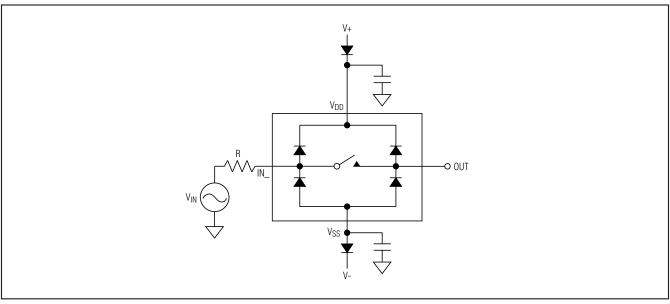
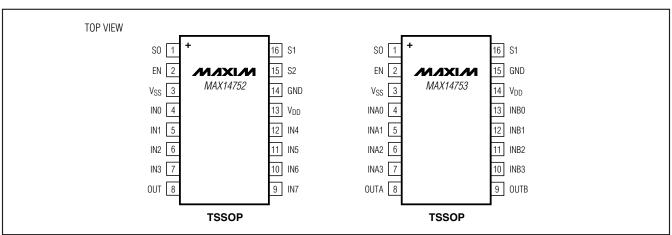



Figure 12. Beyond-the-Rail Application

Pin Configurations

Chip Information

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
16 TSSOP	U16+1	21-0066	

MIXIM

PROCESS: CMOS

_Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/08	Initial release	_
1	10/08	Changed the units from mA to µA for V _{DD} and V _{SS} supply current in the <i>DC Electrical Characteristics—Dual Supplies</i> table	2
2	2/09	Added capacitance information to EC table	2, 4, 13, 14, 15, 16
3	7/10	Deleted the "Input Capacitance" parameter from the DC Electrical Characteristics—Dual Supplies	3

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.