
C18 Junebug / PICkit2 Tutorial 1

Light a LED

In this tutorial we will explore the program and hardware
needed to light a LED. Turning on the LED is easy, the
challenge is getting to the point where you are ready to do it.

We will learn to configure the PIC18F1320 hardware. More
importantly we will learn where to find the needed information
in the processor data sheet and processor header file.

We will introduce C functions.

Advanced readers will find most of what they need to work the
tutorial in the left column. The right column is used to provide
background and additional detail regarding the material in the
left column.

Page 1 Copyright 2008 by 3v0 and BCHS

C18 Junebug / PICkit2 Tutorial 1
Illustration 1 is a photograph of the
Microchip PIC18F1320 used in the
BlueroomElectronic's Junebug.
In this tutorial will take a somewhat
simplistic view of the 18F1320.

As shown in Illustration 2 our PIC consists of a CPU (Central
Processing Unit) and MEMORY. The CPU reads instructions
from the MEMORY. The CPU also reads and writes data to
MEMORY.
Memory comes in two basic types. Memory that the CPU can
change is call RAM or Random Access Memory. Memory that
the CPU can not change is called ROM or Read Only Memory.

ROM memory would be useless if it could not be written by
some means. Our ROM is of a type that can be rapidly written
to by a programmer-tool1 such as the Junebug. For this
reason our ROM is called FLASH ROM.

In illustration 3 we have divided our memory in to RAM and
FLASH ROM. RAM memory is colored GREEN and FLASH
ROM memory is RED. The CPU can read and write the RAM
(GREEN) but it can only read from the ROM (RED).

1A person who writes a computer program is called a
programmer as it the device use to program or write ROM
memory. We will use the programmer to refer to a person who
programmes.. When talking about the device that programs
ROM will use programmer-tool or Junebug.

Page 2 Copyright 2008 by 3v0 and BCHS

Illustration 1:

Illustration 2:

Illustration 3:

C18 Junebug / PICkit2 Tutorial 1
The 18F1320 can be configured in several ways.
Configuration options are set by the programmer-tool during
programming. They will discuss the nature of these options
as required. For now accept that the the options are stored in
a special location in FLASH ROM.2

2 Configuration memory is used to setup the processor prior to program
execution. It starts at 0x300000 can not be read or written by the CPU.

Without a place to store your program the uC would be rather
useless. The machine code the compiler generates fom your
program is save in FLASH MEMORY using the programmer-
tool.

Page 3 Copyright 2008 by 3v0 and BCHS

Illustration 4: Illustration 5:

C18 Junebug / PICkit2 Tutorial 1
The introduction to this text I said we were going to turn on a
LED. We have looked at enough hardware to program and
run a program do not know how we are going to interface with
the led. Bit first lets take a look at what it takes to illuminate
an LED without a uC.

In Schematic 1: a battery is used to power the circuit. If we do
not limit the amount of current to an LED it will take as much
as they can get. That is where R1 comes it. It provides
resistance in the circuit to limit the current flow. When a
resistor is used in this way it is called a current limiting
resistor, or limit resistor. Red LEDs powered by 5 volts do well
with a limit resistor between 330 and 1K (1000) ohms.

LEDs only light when the current flows in the correction
direction. Notice the bar on the right side of LED1. The bar
indicates which end of the LED should be connected to the
minus side of the battery. Current flows in the direction
indicated by the arrow.

Rather than a battery we will be using our PIC to power the
LED circuit.

Page 4 Copyright 2008 by 3v0 and BCHS

Illustration 6:

Schematic 1:

C18 Junebug / PICkit2 Tutorial 1
The 18F1320's communicate with the outside world is through
IO PORTS. The Junebug's 18F1320 controls the six LEDs
with IO PORTA. We will be using two PORTA bits in place of
the battery in Schematic 1 .

I need to show you the schematic symbol the the
PIC18F1320. There are a lot of labels and pins. Do Not
Panic ! We will sort it all out step by step.

If you were to count the pins/bit on PORTA in the above
illustration you would find that there are 8. PORTA bits are
often referred to as RA0 through RA7.3 We are only
interested the underlined labels in RA0 and RA6. We will use
these two bits to power our LED. For now we can ignore the

3 In the computer world we tend to number things starting with 0. In this
case the first bit in PORTA is know as RA0.

other names associated with them.

Junebug users may continue on Page 7 . PICkit2 users will
need to construct the circuit Single LED in Schematic 3.

PICTURE OF BREADBOARDED CIRCUIT HERE

Page 5 Copyright 2008 by 3v0 and BCHS

Schematic 2:

C18 Junebug / PICkit2 Tutorial 1

Page 6 Copyright 2008 by 3v0 and BCHS

Schematic 3:

C18 Junebug / PICkit2 Tutorial 1
To control the voltages on the PORTA pins we need to know
about two registers. On our PIC a register is a byte of RAM
memory which is special in some way.

The registers of interest are TRISA and PORTA. Register
TRISA determines which bits or pins or PORTA are inputs or
outputs.

Setting a bit to 1 in TRISA makes the corresponding bit in
PORTA an input. Setting a bit to 0 in TRISA make the
corresponding bit in PORTA an output.4

The user program has written 0b11001010 or 0xCA to TRISA.
The non-black bits of PORTA are output because their
corresponding TRISA bits are 0. The gray colored bits are
inputs because their coresponding TRISA bits are 1.

4 RA5 is incapable of acting as an output. Most of the time it is used for
programing flash and reseting the uC.

Page 7 Copyright 2008 by 3v0 and BCHS

Illustration 7:
Illustration 8:

C18 Junebug / PICkit2 Tutorial 1
The value stored in TRISA is 0b11101010 or 0xEA. This value
will cause RA0, RA2, and RA4 to function as outputs. What
values will they output? They will outputting values
corresponding to the bits in PORTA.

Writing 0b11110000 to PORTA sets the voltage on thie pins
that are outputs. RA4 is still a 5V (RED), RA2 and RA0 are
now 0V (BLACK).
To turn on LED1 in Illustration 12 we need to set RA6 to 5V
and RA0 to 0V. This will cause current to flow from RA6
through the resistor, and LED1 to RA0.

If RA6 and RA0 are going to present a voltage they must be
outputs. The remainder of PORTA will be inputs. To do this
set TRISA to 0b10111110 or 0xCE. What value do we need
to write to PORTA? We know that RA6 needs to be 1 and
RA0 needs to be 0. What values should we use for the
remaining bits. It does not matter as long as their
corresponding TRISA bits remain 1.

Page 8 Copyright 2008 by 3v0 and BCHS

Illustration 9:

Schematic 4:

C18 Junebug / PICkit2 Tutorial 1

At this point we have learned everything needed to light an
LED execpt for how to write the code.

The Program

The MPLAB editor uses color to differentiate the
source code. MPLAB shows comments in GREEN.
Reserved Words are show in BLUE.

Processor Configuration.
The PIC18F1320 has a special section of memory used to
store the processor configuration. We use “#pragma
config” to tell the compiler what values to use when
programming the configuration memory

Page 9 Copyright 2008 by 3v0 and BCHS

Illustration 10:

// *** Junebug 18F1320 Static LED demo ***
//
// Turn on LED1
// Set DIP Switch (SW6-1,2,3) on, all others off
//
// NOTE: Project requires a linker scrpt.
// Add either 18f1320i.lkr (for debug)
// or 18f1320.lkr (no debug) to your project.

#pragma config OSC=INTIO2, WDT=OFF, LVP=OFF, DEBUG=ON
#include <p18f1320.h>

void main(void)
{
 TRISA = 0b10111110;
 PORTA = 0b00000001; // Turn LED on
 while(1); // loop forever
}

Listing 1:

C18 Junebug / PICkit2 Tutorial 1
Def in i t i on : Source Code
Programmers write source code. Source code is the sequence
of statements and declarations in the original form, in this
case C. The source code for a program may exist in one or
several files.

De f in i t i on : Comment
Comments make the program easier for people to understand
and are ignored by the compiler. When the compiler sees the
two characters “//” it ignores them and the remainder of the
text on that line.

De f in i t i on : Reserved Words
These words have special meaning defined in C’s formal
specifications. Reserved words include labels for low level
data types and identify programming constructs such as
loops, blocks, conditionals, and branches.

Pragma
The #pragma keyword is used to pass information to the
compiler. It does not cause code or instructions to be
generated. It is one of several compiler directive.

Page 10 Copyright 2008 by 3v0 and BCHS

C18 Junebug / PICkit2 Tutorial 1
The list of available configuration directives for the uC can be
found using HELP from the MPLAB main menu.

HELP>TOPICS>LANGUAGE_TOOLS/PIC18_CONFIG
SETTINGS

The config setting for this program from the help file are
illustrated in Table 1.

Oscillator Selection: OSC = INTIO2 Internal RC, OSC1 as
RA7, OSC2 as RA6

Watchdog Timer: WDT = OFF Disabled

Low Voltage ICSP: LVP = OFF Disabled

Background
Debugger Enable:

DEBUG = ON Enabled

Table 1
We are using the internal oscillator, RA6 (PORTA bit6) and
RA7 (PORTA bit7) will be used as IO pins. We will not be
using the Watchdog Timer or Low Voltage Programming. The
Background Debugger Enable is set to on, this allows us to
use the MPLAB IDE Debugger with our program.

Oscillator Selection:
The PIC18F1320 devices can be operated in ten different
oscillator modes. See PDS Section 2.0 OSCILLATOR
CONFIGURATIONS.

Watchdog Timer:
A WDT triggers a system reset if the main program, due to
some fault condition, such as a hang, neglects to regularly
service the watchdog. The intention is to bring the system
back from the hung state into normal operation. See PDS
Section19.2 Watchdog Timer.

Low Voltage ICSP:
ICSP or In Circuit Serial Programming allows the uC to be
programmed with removing it from the target board. High
voltage programming requires a programmer capiable of
generating VPP (12V). See PDS Section 19.7 “In-Circuit
Serial Programming”. When LVP is enabled, the
microcontroller can be programmed without requiring high
voltage being applied to the MCLR/VPP/RA5 pin, but the RB5
PGM/KBI1 pin is then dedicated to controlling Program mode
entry and is not available as a general purpose I/O pin.
See PDS Section 19.9 Low-Voltage ICSP Programming.

Background Debugger Enable:
The background debugger provides run control over the uC.
This includes the ability to set and remove break points, step
over, and step into. See PDS Section 19.8 In-Circuit
Debugger

Page 11 Copyright 2008 by 3v0 and BCHS

#pragma config OSC=INTIO2, WDT=OFF, LVP=OFF, DEBUG=ON

C18 Junebug / PICkit2 Tutorial 1

Processor Header File
The processor header file describes the processor and
peripheral registers. The processor we are using is the
PIC18F1320, the processor header file can be found at:

C:\MCC18\h\p18F1320.h

Our MPLAB is setup such that the compiler knows where to
find p18F1320.h. All we need in our program is the line.

Our program refer to the processor registers TRISA and
PORTA. These registers are defined in p18F1320.h. If it were
not included the compiler would generate these errors..

The #include directive to tell the compiler to read source
code from another file. From the compilers viewpoint it is if
you had typed or included the source code from the included
file at the point #include was used.

Memory
PICs in general have several types of memory. We will use
the three following memory types.

Memory
Type

Written By Used For

Configur
ation

Programmer Tool Processor and Peripheral
Settings

Flash Programmer Tool Program Code
RAM Executing Program Variables

Table 1.
It is important to note that the program code created by the
compiler is unchanging and stored in flash memory. The
variables (data that changes) are read and written by the
running program and stored in RAM.

Page 12 Copyright 2008 by 3v0 and BCHS

...\demo1A.c:15:Error [1105] symbol 'TRISA' has not been defined

...\demo1A.c:15:Error [1101] lvalue required

...\demo1A.c:16:Error [1105] symbol 'PORTA' has not been defined

...\demo1A.c:16:Error [1101] lvalue required

#include <p18f1320.h>

C18 Junebug / PICkit2 Tutorial 1
To declare a variable we provide a type, a name, and
optionally one or more modifiers.

(modifiers) type name;

The header files p18f1320.h contains a large number of
definitions that exactly describe the processor and peripheral
registers. The definitions used in this program follows.

These two definitions inform the compiler where TRISA and
PORTA are located in memory.

Processor and peripheral registers already exist as fixed
locations in the processor memory. The modifier extern tells
the compiler it does not need to allocate RAM for these
variables..

Modifier volatile tells the compiler that the variable is
subject to sudden change for reasons which cannot be
predicted from a study of the program . Modifier near tells
the compiler how to find or address the variable. We will
leave the discussion of near and far modifiers for another
tutorial.

Our program uses two types of data. The first is the integer
data type char. We know integers as counting or whole
numbers.
The second is the void type. It is the empty or nul data type
used where there is no data. Table 2 shows the data types
used in our program.

char 8 bit integer

void Empty, or without type

Table 2.

De f in i t i on : Da ta Type

A programmer has to tell the compiler before-hand, the type
of numbers or characters he is using in his program. This
information is know as the data type.

De f in i t i on : Mod i f i e r

A modifier keyword modifies or provides additional information
about the keyword that it precedes.

constant
A constant is a value that never changes. The other type of
values that programs use is variables, symbols that can
represent different values throughout the course of a program.
Webopedia

Page 13 Copyright 2008 by 3v0 and BCHS

extern volatile near unsigned char TRISA;
extern volatile near unsigned char PORTA;

C18 Junebug / PICkit2 Tutorial 1
compiler
A compiler is a computer program (or set of programs) that
translates text written in a computer language (the source
language) into another computer language (the target
language). The original sequence is usually called the source
code and the output called object code.

compiler directive
Commands embedded in source code to tell compilers some
intention about compilation. A compiler directive often tells the
compiler how to compile; other source code tells the compiler
what to compile. In the case of the C18 compiler the config
directive is used to tell the compiler what value(s) to store in
the chip's configuration memory.

data
Data in everyday language is a synonym for information. In
computer science we classify data by it nature, and how it is
stored or represented.

variable
A symbol or name that stands for a value.

Questions

It is best to always write a value to PORTA prior to setting any
TRISA bits to 1. Why?

What is special about RA5 ?

Page 14 Copyright 2008 by 3v0 and BCHS

C18 Junebug / PICkit2 Tutorial 1
Revisions
4/27/2008
It is MPLAB's editor and not the COMPILER that colors source
code.

Page 15 Copyright 2008 by 3v0 and BCHS

