
© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 1

Introduction to PIC Programming

Midrange Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 6: Introduction to Interrupts

The lessons up until now have been re-visiting topics covered in the baseline assembler tutorial series,

adapting the material to midrange PICs, and introducing specific features of the midrange architecture (not

found in baseline PICs) where relevant. The most significant of these features, not present in the baseline

architecture, is support for interrupts. As we will see in this lesson, interrupts make it much easier to

implement regular “background” tasks (such as refreshing a multiplexed display – see for example baseline

lesson 8) and allow programs to respond in a timely manner to external events, without having to sit in a

busy-wait, or polling loop. Both of these applications of interrupts are demonstrated in this lesson.

In summary, this lesson covers:

 Introduction to interrupts on the midrange PIC architecture

 Interrupt service routines (including saving and restoring processor context)

 Timer-driven interrupts

 Debouncing single switches with timer-driven interrupts

 External interrupts on the INT pin

Interrupts

An interrupt is a means of interrupting the main program flow in response to an event, so that the event can

be dealt with, or serviced. The event (referred to an interrupt source) can be internal to the PIC, such as a

timer overflowing, or external, such as a change on an input pin.

When the interrupt is triggered, program execution immediately jumps to an interrupt service routine (ISR),

which, in the midrange PIC architecture, is always located at address 0004h. The ISR must save the current

processor state, or context (i.e. the contents of any registers which the ISR will modify, such as W and

STATUS), service the interrupt, and then restore the context before returning to the main program. In this

way, the main program will never “notice” that the interrupt has happened – the interrupt will be completely

transparent, except for whatever action the interrupt service routine was intended to perform.

Some examples will make this clearer! But first, some more details…

Each interrupt source can be enabled or disabled, independently.

The enable bits for the interrupt sources covered in this lesson are located in the INTCON register:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF

T0IE enables the Timer0 interrupt, while INTE enables interrupts triggered by the external INT pin.

http://www.gooligum.com.au/tut_baseline.html
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 2

To enable an interrupt source, that source‟s enable bit must be set.

Interrupts are controlled overall by the global interrupt enable bit, GIE:

If GIE = 0, all interrupts are disabled.

If GIE = 1, interrupts can occur, depending on which interrupt sources are enabled.

For an interrupt to occur, that interrupt‟s source must be enabled, in addition to GIE being set.

For example, to enable Timer0 interrupts, you could use:

 movlw 1<<GIE|1<<T0IE ; enable interrupt on Timer0 overflow

 movwf INTCON

Or, if you were setting up a number of interrupt sources and didn‟t want to allow interrupts to happen

straight away, you might write something like:

 bsf INTCON,T0IE ; enable Timer0 interrupt source

 ... ; (initialise some other things)

 bsf INTCON,GIE ; enable interrupts

Context Saving

When an interrupt occurs, the current instruction completes executing, the address of the next instruction (the

return address) is pushed onto the stack, the GIE bit is cleared to prevent any more interrupts from occurring

while this interrupt is being serviced, and execution jumps to the instruction at address 0004h.

At this point, the only the program counter (PC) has been saved. Every other register holds whatever value it

did when the interrupt was triggered.

As mentioned above, the ISR should be transparent to the main program. If the ISR modifies the contents of

any register that the main program would “expect” to remain constant, that register should be saved at the

start of the ISR, and restored to its original value returning to the main program, so that the main program

will never “know” that an interrupt has occurred.

The Microchip-supplied template, „…\MPASM Suite\Template\Object\12F629TMPO.ASM‟, includes the

following code which you can use as the framework of your interrupt service routine:

;--

; INTERRUPT SERVICE ROUTINE

;--

INT_VECTOR CODE 0x0004 ; interrupt vector location

 MOVWF W_TEMP ; save off current W register contents

 MOVF STATUS,w ; move status register into W register

 MOVWF STATUS_TEMP ; save off contents of STATUS register

; isr code can go here or be located as a call subroutine elsewhere

 MOVF STATUS_TEMP,w ; retrieve copy of STATUS register

 MOVWF STATUS ; restore pre-isr STATUS register contents

 SWAPF W_TEMP,f

 SWAPF W_TEMP,w ; restore pre-isr W register contents

 RETFIE ; return from interrupt

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 3

This code uses two variables, declared in the template code as:

INT_VAR UDATA_SHR 0x20

W_TEMP RES 1 ; variable used for context saving

STATUS_TEMP RES 1 ; variable used for context saving

to save the contents of the W and STATUS registers.

Note that these variables are placed in shared memory
1
. Of course, on the PIC12F629, this is the only type

of data memory available; it is all shared. But even on devices with banked as well as shared memory, it is

necessary to use shared memory for context saving (at least for W and STATUS), because you cannot know

which bank is selected when the interrupt is triggered. If you select a specific bank by changing the bank

selection bits (RP0 and RP1) in STATUS, you will lose the original value of these bits unless you save the

contents of STATUS first. The only way to do that, without losing the current bank selection, is to copy

STATUS to shared memory, before any bank selection is done. And since the only way to save the

STATUS register is to copy it to W first, the current contents of W must be saved first.

The instructions to save the contents of W and STATUS are straightforward:

 movwf W_TEMP ; save off current W register contents

 movf STATUS,w ; move status register into W register

 movwf STATUS_TEMP ; save off contents of STATUS register

After this, any other registers you wish to save (such as PCLATH) can be copied to variables in the same

way – and these variables can be in banked memory, because the bank selection bits (in STATUS) have

been saved.

For example:

 movwf W_TEMP ; save W and STATUS

 movf STATUS,w ; to variables in shared memory

 movwf STATUS_TEMP

 movf PCLATH,w ; save PLCATH

 banksel PCLATH_TEMP ; to variable which can be in banked memory

 movwf PCLATH_TEMP

To restore the context (W, STATUS and any other registers you choose to save, such as PCLATH) at the

end of the interrupt routine, you might think that these instructions could simply be reversed:

 banksel PCLATH_TEMP ; restore PCLATH

 movf PCLATH_TEMP,w

 movwf PCLATH

 movf STATUS_TEMP,w ; restore STATUS

 movwf STATUS

 movf W_TEMP,w ; restore W (!!! This clobbers Z flag !!!)

Unfortunately, this approach won’t work!

The final movf instruction, used above to restore the W register, has a side effect: it affects the Z flag (part

of the STATUS register), depending on the value being copied. This means that, whatever value Z had

before the interrupt was triggered may be lost. Z will be set or cleared depending on the value in the W,

instead of retaining the value it held when the interrupt was triggered. That‟s almost certain to interfere with

the main code – something we must avoid.

1
 The template code explicitly specifies the address (0x20) for this shared memory section. This is unnecessary; the

linker can be relied on to place any data section declared by „UDATA_SHR‟ correctly, within shared memory.

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 4

To restore W without affecting the Z flag, the template code employs a “trick”:

The „swapf‟ instruction – “swap nybbles in file register” – is typically used where data is encoded in the

two 4-bit nybbles (or “nibbles”) comprising an 8-bit byte, as we saw when discussing binary-coded decimal

(BCD) in baseline lesson 8. The contents of bits 0-3 of the specified register are swapped with bits 4-7.

If the swap operation is repeated, the nybbles end up back in their original order, leaving the data unchanged.

As with most instructions which operate on a register, the result of the swap operation can either be written

back to the register, or to W. This makes it possible to use two successive swapf instructions to copy the

original contents of a register to W, as in the ISR template code:

 swapf W_TEMP,f ; restore pre-isr W register contents

 swapf W_TEMP,w

Why use this strange construct, instead of a simple „movf‟?

The answer is that the swapf instruction does not affect any STATUS flags, while movf does. That means

that it can be used to restore W without affecting STATUS, making the interrupt service routine truly

transparent.

The final instruction in the ISR template is „retfie‟ – “return from interrupt and enable interrupts”.

The retfie instruction pops the program counter off the stack, returning execution to the main program. It

also sets the GIE bit, allowing interrupts to occur again.

Interrupt Flags

Given that a number of different interrupt sources may be enabled, your interrupt service routine must be

able to determine which source triggered the interrupt, so that it can respond to that event.

Interrupt flags are used for this – when an “interrupt source” event (such as a timer overflow) occurs, the

corresponding interrupt flag is set, to indicate that this event has occurred.

The flags for the interrupt sources covered in this lesson are also located in the INTCON register:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF

T0IF indicates that Timer0 has overflowed, while INTF indicates that an external interrupt signal has been

detected on the INT pin.

If an interrupt flag has been set, and the corresponding interrupt source is enabled, and the global interrupt

enable (GIE) bit is also set, an interrupt will occur.

As soon as you have serviced an interrupt, to stop it re-occurring, you must always clear its interrupt flag.

Note that, when an event occurs, the interrupt flag for that event will be set, regardless of whether that

interrupt source has been enabled. For example, you can poll the T0IF flag to check to see whether Timer0

has overflowed, without having to use interrupts.

Whenever any interrupt event has been serviced, the interrupt flag corresponding to that event

must be cleared, or else the interrupt will be re-triggered immediately after interrupts are re-

enabled, when the ISR exits.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 5

Timer0 Interrupts

Timer0 can be used to regularly generate

interrupts, which can be used to drive

“background” tasks, such as:

 Generating a regular output;

for example flashing an LED.

 Monitoring and debouncing inputs

Meanwhile, a “main program” can continue to

perform other “foreground” tasks.

These techniques are illustrated by examples in

this section, using the circuit from lesson 4,

shown on the right.

Example 1a: Flashing an LED

To begin, we‟ll simply flash an LED, without attempting to make it flash at exactly 1 Hz.

We saw in lesson 4 that, given a 1 MHz instruction clock (derived from a 4 MHz processor clock) with

maximum prescaling (1:256), the longest period that Timer0 can generate is 256 × 256 × 1 µs = 65.5 ms.

Therefore, if we configured the PIC to use a 4 MHz clock, and set up Timer0 in timer mode with a 1:256

prescaler, TMR0 would overflow (rollover from 255 to 0) every 65.5 ms.

If we then enabled Timer0 interrupts, the interrupt would be triggered on every TMR0 overflow, i.e. every

65.5 ms. So the interrupt service routine (ISR) would be called every 65.5. ms.

If the ISR toggled an LED every time it was called, the LED would change state every 65.5 ms – it would

flash with a period of 65.5 ms × 2 = 131 ms, giving a frequency of 7.6 Hz.

Having an LED flash as 7.6 Hz is not ideal, but the flashing is visible (just), and that‟s the slowest flash rate

we can generate with the simple approach described above. So we‟ll start there.

Firstly, we‟ll need some variables to save the processor context during the ISR.

It‟s also a good idea, when using interrupts to modify a port, to use a shadow register to avoid potential read-

modify-write problems (described in baseline lesson 2). It‟s usually cleaner, and safer (avoiding problems)

to have either the interrupt service routine or the main program writing directly to a port (such as GPIO), but

not both.

So the variable definitions we need are:

CONTEXT UDATA_SHR ; variables used for context saving

cs_W res 1

cs_STATUS res 1

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

Note that these could have been placed in a single section, but it‟s good to get into habits that will still be

appropriate for larger projects on bigger PICs; the 12F629 is a little unusual in only having a single bank of

shared data memory. Giving each logical group of variables its own data section gives the linker more

flexibility when allocating memory.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 6

Since the interrupt vector is located at address 0004h, while the reset vector (where program execution

begins) is at address 0000h, we can‟t continue to simply place our main program at 0000h; it could only be a

maximum of four instructions long!

So it‟s normal to place the ISR at 0004h, and to place code at 0000h which does nothing more than jump to

the start of the main program, somewhere else in memory:

RESET CODE 0x0000 ; processor reset vector

 pagesel Start

 goto Start

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; ISR code goes here

 ; ...

 ; end of ISR

;***** MAIN PROGRAM

MAIN CODE

Start ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; then update OSCCAL

 movwf OSCCAL

Note that, because the “MAIN” code segment really could be placed anywhere in memory, it is necessary to

use a „pagesel‟ directive, in case the main program is located on a different page.

That‟s not possible on the 12F629, which only has a single page of program memory, but it‟s a good idea to

include the „pagesel‟ anyway, in case you ever move your code to a PIC with more memory.

The main program then starts by calibrating the internal RC oscillator, as shown above, before configuring

the port and Timer0, as we have seen before:

 ; configure port

 movlw ~(1<<nLED) ; configure LED pin (only) as an output

 banksel TRISIO

 movwf TRISIO

 ; configure timer

 movlw b'11000111' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 banksel OPTION_REG ; -> increment TMR0 every 256 us

 movwf OPTION_REG

There‟s nothing new or different here – the timer is simply set up as usual.

Next, it‟s a good idea to initialise the port and any variables, before the interrupts start:

 ; initialise port

 banksel GPIO

 clrf GPIO ; start with all LEDs off

 clrf sGPIO ; update shadow

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 7

Now that everything is initialised and ready to go, the Timer0 interrupt can be enabled:

 ; configure interrupts

 movlw 1<<GIE|1<<T0IE ; enable Timer0 and global interrupts

 movwf INTCON

Note that there is no need for a „banksel‟ before accessing INTCON, because it is mapped into every bank.

With Timer0 setup, and the Timer0 interrupt enabled, an interrupt will be triggered every 65.5 ms, calling the

interrupt service routine at 0004h.

As discussed above, the first thing the ISR must do is to save the processor context:

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

It would then be normal to test various interrupt flags, to determine the source of this particular interrupt.

But since only Timer0 interrupts have been enabled, we know that a Timer0 overflow must have occurred, so

we know that this ISR only needs to service, or handle, Timer0 overflow events.

The first thing we must do (or the last, of you prefer – it doesn‟t matter, as long as you ensure that you do it)

is to clear the interrupt flag corresponding to this event.

In this case, because we know this is a Timer0 interrupt, we much clear T0IF:

 ; handle Timer0 interrupt

 ; TMR0 overflows every 65.5 ms

 ; (only Timer0 interrupts are enabled)

 bcf INTCON,T0IF ; clear interrupt flag

The interrupt routine is now free to do whatever it was intended to do; in this case, toggle an LED:

 ; toggle LED

 movf sGPIO,w ; only update shadow register

 xorlw 1<<nLED

 movwf sGPIO

Note that only the shadow copy of GPIO is being updated, as discussed above.

Finally, the ISR must restore the processor context, before returning:

 ; restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

 swapf cs_W,w

 retfie

As mentioned earlier, the retfie instruction sets the GIE bit, re-enabling interrupts so that the next event

(whenever it occurs) can be serviced.

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 8

So with the ISR flipping a bit in the shadow copy of GPIO every 65.5 ms, all that remains for the main

program to do is to continually copy the shadow register to the GPIO port, to make the changes made by the

ISR visible (literally, in this case…):

;***** Main loop

loop ; continually copy shadow GPIO to port

 movf sGPIO,w

 banksel GPIO

 movwf GPIO

 ; repeat forever

 goto loop

Complete program

Here is how the code fragments above fit together:

;**

; Description: Lesson 6 example 1a *

; *

; Demonstrates use of Timer0 interrupt to perform a background task *

; *

; Flash an LED at approx 7.6 Hz (50% duty cycle). *

; *

;**

; Pin assignments: *

; GP2 - flashing LED *

; *

;**

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no "register not in bank 0" warnings

 errorlevel -312 ; no "page or bank selection not needed" messages

;***** CONFIGURATION

 ; ext reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

; pin assignments

 constant nLED=2 ; flashing LED on GP2

;***** VARIABLE DEFINITIONS

CONTEXT UDATA_SHR ; variables used for context saving

cs_W res 1

cs_STATUS res 1

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

;**

RESET CODE 0x0000 ; processor reset vector

 pagesel Start

 goto Start

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 9

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

 ; handle Timer0 interrupt

 ; TMR0 overflows every 65.5 ms

 ; (only Timer0 interrupts are enabled)

 bcf INTCON,T0IF ; clear interrupt flag

 ; toggle LED

 movf sGPIO,w ; only update shadow register

 xorlw 1<<nLED

 movwf sGPIO

 ; restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

 swapf cs_W,w

 retfie

;***** MAIN PROGRAM

MAIN CODE

Start ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; then update OSCCAL

 movwf OSCCAL

;***** Initialisation

 ; configure port

 movlw ~(1<<nLED) ; configure LED pin (only) as an output

 banksel TRISIO

 movwf TRISIO

 ; configure timer

 movlw b'11000111' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 banksel OPTION_REG ; -> increment TMR0 every 256 us

 movwf OPTION_REG

 ; initialise port

 banksel GPIO

 clrf GPIO ; start with all LEDs off

 clrf sGPIO ; update shadow

 ; configure interrupts

 movlw 1<<GIE|1<<T0IE ; enable Timer0 and global interrupts

 movwf INTCON

;***** Main loop

loop ; continually copy shadow GPIO to port

 movf sGPIO,w

 banksel GPIO

 movwf GPIO

 ; repeat forever

 goto loop

 END

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 10

Example 1b: Slower flashing

The LED in the example above flashed at around 7.6 Hz, which was done by toggling it every 65.5 ms.

That‟s a little too fast.

We saw that, with a 4 MHz processor clock, the longest possible interval between Timer0 interrupts is 65.5

ms. So, to flash an LED any slower than this, we can‟t toggle it on every interrupt; we have to skip some of

them. That means counting each interrupt, and only toggling the LED when the count reaches a certain

value.

A simple way to implement this, if we are not concerned with exact timing, is to use an 8-bit counter, and to

let it reach 255 before toggling the LED when it overflows to 0 (something easily done using the incfsz

instruction).

If, every time an interrupt is triggered by a Timer0 overflow, the ISR increments a counter, we‟re essentially

implementing a 16-bit timer, based on Timer0, with TMR0 as the least significant eight bits, and the counter

incremented by the ISR being the most significant eight bits.

If the ISR increments the counter whenever Timer0 overflows (every 256 ticks of TMR0), and it toggles the

LED whenever the counter overflows (every 256 interrupts), the LED is being toggled every N × 256 × 256

(where N is the prescale ratio) instruction cycles.

Assuming a 1 MHz instruction clock, LED will be toggled every N × 256 × 256 µs = N × 65.536 ms.

To flash the LED at 1 Hz, we need to toggle it every 500 ms. That would require N = 7.63.

That‟s not available, but we can use N = 8 (prescale ratio of 1:8), which is close – the resulting toggle period

is 8 × 256 × 256 µs = 524.3 ms, giving a flash rate of 0.95 Hz.

That‟s close enough for now!

To implement the Timer0 overflow counter, we‟ll need a variable to store it in:

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

t0cnt res 1 ; counts timer0 overflows

 ; (incremented by ISR every 2.048 ms)

We then need to add instructions to the ISR to increment this counter, and toggle the LED only when it

overflows back to zero:

 ; toggle LED every 256 interrupts (524 ms)

 incfsz t0cnt,f ; increment interrupt count (every 2.048 ms)

 goto isr_end ; if count overflow

 ; (every 256 interrupts = 524 ms)

 movf sGPIO,w ; toggle LED

 xorlw 1<<nLED ; using shadow register

 movwf sGPIO

And finally the configuration of Timer0 needs to be changed, to select a 1:8 prescaler:

 ; configure timer

 movlw b'11000010' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----010 prescale = 8 (PS = 010)

 banksel OPTION_REG ; -> increment TMR0 every 8 us

 movwf OPTION_REG

With these changes to the code in the first example, the LED will flash at a much more sedate 0.95 Hz.

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 11

Example 1c: Flashing an LED at exactly 1 Hz

What if we needed (for some reason) to flash the LED at exactly 1 Hz, given an accurate 4 MHz processor

clock?
2
 Of course this is a contrived example, but there are many cases where an accurate output frequency

must be generated; an obvious example is a real-time clock.

It‟s not possible to achieve this exact timing, using the technique in the example above, where the timer is

allowed to run freely, with an interrupt being triggered every 256 ticks. Why? We need to toggle the LED

every 500 ms, which, with a 4 MHz processor clock, is 500,000 instruction cycles. And 500,000 is not

exactly divisible by 256 – there is no way to count to 500,000, using whole multiples of 256.

To solve this problem, we need to make the timer overflow (triggering an interrupt) every N ticks, where N

divides exactly into 500,000. And, of course, since Timer0 is an 8-bit timer, N < 256, since it is not possible

for Timer0 to count more than 256 ticks. We also want N to be as high as possible, because if Timer0

overflows less often, fewer interrupts are triggered, and less time is spent servicing interrupts.

In this case, the best result is when N = 250. That is, Timer0 overflows after every 250 ticks.

To make a timer overflow after some number of ticks, you can preload it with an appropriate value. For

example, if you had an 8-bit timer, and you wanted it to overflow after 100 ticks, you could load it with the

value 156 (equal to 256 – 100), and then start it counting. Since it is starting from 156, after 100 ticks it will

have counted to 256, and overflow back to zero. The timer could then be reloaded with 156, and count for

another 100 ticks, before repeating the process.

But there are some problems with this approach – some of them specific to Timer0 on midrange PICs:

 Timer0 is always counting; there is no way to stop it incrementing, load a value, and then restart it
3

 When a value is written to TMR0, the timer increment is inhibited for the following two instruction

cycles.

The data sheet notes that “the user can work around this by writing an adjusted value to the TMR0

register.” In other words, if you wanted to count 100 cycles, you should preload the value 158, not

156, because the timer does not increment for two cycles after the new value is written.

 Preloading a value in this way only gives accurate results when the prescaler is not used.

The prescaler is a counter, which is not directly accessible. Whenever a value is written to TMR0,

the prescaler is cleared. It will then not be incremented for the next two instruction cycles.

For example, if the prescale ratio is set to 1:8, Timer0 normally increments every eight instruction

clocks. So when a value is written to TMR0, ten instruction clocks (two plus the normal eight) will

elapse before TMR0 is incremented.

This means that, if you were using a 1:8 prescaler, and you preloaded a value to 156 to TMR0, the

timer will overflow after 802 instruction cycles, not the 800 cycles (8 × 100) that you probably

intended. Increasing the preloaded value to compensate for these extra two instruction cycles

doesn‟t help – a value of 157 will cause an overflow after 794 cycles (8 × 99 + 2). This isn‟t what is

wanted.

To accurately compensate for the timer being inhibited after TMR0 is written, the prescaler should

not be used.

2
 In practice, the internal RC oscillator used in this example is only accurate to around ±2%, varying with VDD and

temperature. For higher accuracy, an external crystal should be used.

3
 Timer0 can be halted by selecting counter mode, but then it will be incremented if there is an external signal on the

T0CKI pin, so this approach is only possible if GP2/T0CKI isn‟t being used; it is not a general solution.

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 12

 Some time will have elapsed between the timer overflow and the instruction where you load the new

value into the timer.

This is especially true when the timer is being updated within an interrupt service routine; there is

some latency between the timer overflow event and the ISR being called (two instruction cycles on a

midrange PIC), and then the ISR must save the processor context, and potentially determine the

source of the interrupt, before loading a new value into the timer.

It‟s possible to account for this latency, by adjusting the value to be loaded into the timer, but only if

there is no other interrupt source which may delay the timer interrupt from being triggered. If

another interrupt is being serviced when the timer overflows, some unknown amount of time will

elapse before the timer interrupt begins – it would be very difficult to allow for that.

Luckily, it is not difficult to avoid all these problems!

To use Timer0 to provide a precise time base to drive an interrupt:

 Do not use the prescaler (assign it to the watchdog timer).

 Do not load a fixed start value into the timer.

Instead, add an offset to the current timer value, making the timer “skip forward” by an appropriate

amount, shortening the timer cycle from 256 counts to whatever period you require.

 Adjust the offset to allow for the fact that the timer is inhibited for two cycles after it is written, and

that the timer increments once (if no prescaler is used) during the add instruction.

This means that the offset to be added must be 3 cycles larger than you may expect, to achieve a

given timer period.

For example, to make Timer0 overflow after 250 cycles, instead of the usual 256 cycles, with no prescaler,

you would use:

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

This needs to be done after every Timer0 overflow (i.e. within the interrupt service routine), so that the

interrupt is triggered precisely every 250 instruction cycles.

Recall that, with a 4 MHz processor clock, TMR0 will increment every 1 µs.

If we adjust TMR0 in the ISR as shown above, the interrupt will be triggered every 250 µs.

Toggling the LED every 500 ms means toggling after every 500 ms ÷ 250 µs = 2000 interrupts.

This means that the ISR must be able to count to 2000, so that it can toggle the LED after 2000 interrupts.

And since a single 8-bit variable can only hold a count up to 255, we need more than a single 8-bit variable,

so that we can count up to 2000.

This could be done by using two registers to implement a single 16-bit variable (see baseline lesson 10).

However, a more useful approach in this case is to recognise that, if we count 40 interrupts, exactly 10 ms

will have elapsed, since 10 ms = 40 × 250 µs.

This makes it easy to schedule an operation (such as polling inputs, as we‟ll see later) every 10 ms – often a

convenient time base.

We can then use a second variable to count 10 ms periods. After every 50 × 10 ms, 500 ms has elapsed, and

the LED should be toggled.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 13

So to count in units of 10 ms, we need two variables:

cnt_t0 res 1 ; counts timer0 interrupts

 ; (decremented by ISR every 250 us)

cnt_10ms res 1 ; counts 10 ms periods

 ; (decremented by ISR every 10 ms)

We use the first to count for 40 interrupts, to generate a 10 ms time base:

 decfsz cnt_t0,f ; decrement interrupt count

 goto isr_end ; when count = 0 (every 40 interrupts = 10 ms)

 movlw .40 ; reload count

 movwf cnt_t0

Note again that it‟s often easiest to use decfsz to count a fixed number of iterations (40, in this case).

Then we can count for 50 of these 10 ms periods, in the same way:

 decfsz cnt_10ms,f ; decrement 10 ms period count

 goto isr_end ; when count = 0 (every 50 times = 500 ms)

 movlw .50 ; reload count

 movwf cnt_10ms

After 50 × 10 ms, we can toggle the LED, as we did before:

 movf sGPIO,w ; toggle LED

 xorlw 1<<nLED ; using shadow register

 movwf sGPIO

Of course, in the initialisation part of the main program, we need to configure Timer0 with no prescaler:

 movlw b'11001000' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----1--- no prescaling (PSA = 1)

 ; (prescaler assigned to WDT)

 banksel OPTION_REG ; -> increment TMR0 every 1 us

 movwf OPTION_REG

And we should initialise the variables used above:

 movlw .40 ; timer0 overflow count = 40

 movwf cnt_t0

 movlw .50 ; 10 ms period count = 50

 movwf cnt_10ms

With these modifications in place, the LED will now flash with a frequency of exactly 1 Hz, assuming that

the processor clock is exactly 4 MHz (which, since we are using the internal RC oscillator, will not be the

case; it‟s not that accurate. Nevertheless, the LED flashes every 4,000,000 processor cycles, precisely).

Complete program

Here is how the code fragments above fit together:

;**

; Description: Lesson 6 example 1c *

; *

; Demonstrates use of Timer0 interrupt to perform a background task *

; *

; Flash an LED at exactly 1 Hz (50% duty cycle). *

; *

;**

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 14

; Pin assignments: *

; GP2 - flashing LED *

; *

;**

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no "register not in bank 0" warnings

 errorlevel -312 ; no "page or bank selection not needed" messages

;***** CONFIGURATION

 ; ext reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

; pin assignments

 constant nLED=2 ; flashing LED on GP2

;***** VARIABLE DEFINITIONS

CONTEXT UDATA_SHR ; variables used for context saving

cs_W res 1

cs_STATUS res 1

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

cnt_t0 res 1 ; counts timer0 interrupts

 ; (decremented by ISR every 250 us)

cnt_10ms res 1 ; counts 10 ms periods

 ; (decremented by ISR every 10 ms)

;**

RESET CODE 0x0000 ; processor reset vector

 pagesel Start

 goto Start

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

 ; service Timer0 interrupt

 ; TMR0 overflows every 250 clocks = 250 us

 ; (only Timer0 interrupts are enabled)

 ;

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

 bcf INTCON,T0IF ; clear interrupt flag

 ; count for 10 ms (40 interrupts x 250 us)

 decfsz cnt_t0,f ; decrement interrupt count

 goto isr_end ; when count = 0 (every 40 interrupts = 10 ms)

 movlw .40 ; reload count

 movwf cnt_t0

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 15

 ; toggle LED every 500 ms

 decfsz cnt_10ms,f ; decrement 10 ms period count

 goto isr_end ; when count = 0 (every 50 times = 500 ms)

 movlw .50 ; reload count

 movwf cnt_10ms

 movf sGPIO,w ; toggle LED

 xorlw 1<<nLED ; using shadow register

 movwf sGPIO

isr_end ; restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

 swapf cs_W,w

 retfie

;***** MAIN PROGRAM

MAIN CODE

Start ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; then update OSCCAL

 movwf OSCCAL

;***** Initialisation

 ; configure port

 movlw ~(1<<nLED) ; configure LED pin (only) as an output

 banksel TRISIO

 movwf TRISIO

 ; configure timer

 movlw b'11001000' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----1--- no prescaling (PSA = 1)

 ; (prescaler assigned to WDT)

 banksel OPTION_REG ; -> increment TMR0 every 1 us

 movwf OPTION_REG

 ; initialise port

 banksel GPIO

 clrf GPIO ; start with all LEDs off

 clrf sGPIO ; update shadow

 ; initialise variables

 movlw .40 ; timer0 overflow count = 40

 movwf cnt_t0

 movlw .50 ; 10 ms period count = 50

 movwf cnt_10ms

 ; configure interrupts

 movlw 1<<GIE|1<<T0IE ; enable Timer0 and global interrupts

 movwf INTCON

;***** Main loop

loop ; continually copy shadow GPIO to port

 movf sGPIO,w

 banksel GPIO

 movwf GPIO

 ; repeat forever

 goto loop

 END

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 16

Example 2: Flash LED while responding to input

Now that we have a timer-driven interrupt flashing the LED on GP2 at 1 Hz, that flashing will continue

independently, “on its own”, regardless of whatever the main program code is doing.
4

This is the main reason for using a timer interrupt to drive a background process like this; once the process is

set up, you do not need to worry about maintaining it in the main code. It may seem complex to set up the

interrupt code, but, once done, it makes your main code much easier to write.

To illustrate this, we can re-implement example 2 from lesson 4, where we the LED on GP1 is lit whenever

the pushbutton is pressed, while the LED on GP2 continues to flash steadily at 1 Hz.

In lesson 4, we used this simple piece of code to read the pushbutton and light the LED on GP1 only when it

is pressed:

 banksel GPIO

 bcf sGPIO,GP1 ; assume button up -> LED off

 btfss GPIO,GP3 ; if button pressed (GP3 low)

 bsf sGPIO,GP1 ; turn on LED

 movf sGPIO,w ; copy shadow to GPIO

 movwf GPIO

In the main loop in example 1, above, we are doing nothing but copy the shadow register to GPIO:

loop ; continually copy shadow GPIO to port

 movf sGPIO,w

 banksel GPIO

 movwf GPIO

 ; repeat forever

 goto loop

All we need do, then, is to insert the pushbutton-handling code into the main loop:

loop

 ; check and respond to button press

 banksel GPIO

 bcf sGPIO,nB_LED ; assume button up -> LED off

 btfss GPIO,nBUTTON ; if button pressed (GP3 low)

 bsf sGPIO,nB_LED ; turn on indicator LED

 ; continually copy shadow GPIO to port

 movf sGPIO,w

 movwf GPIO

 ; repeat forever

 goto loop

And of course you could add any other code to the main loop, in the same way. There is no need to be

“aware” of the interrupt-driven process; it runs quite independently.

Note that symbols have been used here, which were defined as:

 constant nB_LED=1 ; “button pressed” indicator LED on GP1

 constant nF_LED=2 ; flashing LED on GP2

 constant nBUTTON=3 ; pushbutton on GP3

4
 Assuming of course that the main program continues to regularly copy the shadow register to GPIO, and does not

disable the Timer0 interrupt, nor change the configuration of Timer0.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 17

The only other change that has to be made to the code in example 1 is to configure both GP1 and GP2 as

outputs:

 movlw ~(1<<nB_LED|1<<nF_LED) ; configure LED pins as outputs

 banksel TRISIO

 movwf TRISIO

No changes are needed within the interrupt service routine.

Complete program

Although the changes to the code in example 1 are minor, here is how they fit together:

;**

; Description: Lesson 6 example 2 *

; *

; Demonstrates use of Timer0 interrupt to perform a background task *

; while performing other actions in repsonse to changing inputs *

; *

; One LED simply flashes at 1 Hz (50% duty cycle). *

; The other LED is only lit when the pushbutton is pressed. *

; *

;**

; Pin assignments: *

; GP1 - "button pressed" indicator LED *

; GP2 - flashing LED *

; GP3 - pushbutton (active low) *

; *

;**

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no "register not in bank 0" warnings

 errorlevel -312 ; no "page or bank selection not needed " messages

;***** CONFIGURATION

 ; int reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4Mhz int clock

 __CONFIG _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

; pin assignments

 constant nB_LED=1 ; "button pressed" indicator LED on GP1

 constant nF_LED=2 ; flashing LED on GP2

 constant nBUTTON=3 ; pushbutton on GP3

;***** VARIABLE DEFINITIONS

CONTEXT UDATA_SHR ; variables used for context saving

cs_W res 1

cs_STATUS res 1

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

cnt_t0 res 1 ; counts timer0 interrupts

 ; (decremented by ISR every 250 us)

cnt_10ms res 1 ; counts 10 ms periods

 ; (decremented by ISR every 10 ms)

;**

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 18

RESET CODE 0x0000 ; processor reset vector

 pagesel Start

 goto Start

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

 ; service Timer0 interrupt

 ; TMR0 overflows every 250 clocks = 250 us

 ; (only Timer0 interrupts are enabled)

 ;

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

 bcf INTCON,T0IF ; clear interrupt flag

 ; count for 10 ms (40 interrupts x 250 us)

 decfsz cnt_t0,f ; decrement interrupt count

 goto isr_end ; when count = 0 (every 40 interrupts = 10 ms)

 movlw .40 ; reload count

 movwf cnt_t0

 ; toggle LED every 500 ms

 decfsz cnt_10ms,f ; decrement 10 ms period count

 goto isr_end ; when count = 0 (every 50 times = 500 ms)

 movlw .50 ; reload count

 movwf cnt_10ms

 movf sGPIO,w ; toggle LED

 xorlw 1<<nF_LED ; using shadow register

 movwf sGPIO

isr_end ; restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

 swapf cs_W,w

 retfie

;***** MAIN PROGRAM

MAIN CODE

Start ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; then update OSCCAL

 movwf OSCCAL

;***** Initialisation

 ; configure port

 movlw ~(1<<nB_LED|1<<nF_LED) ; configure LED pins as outputs

 banksel TRISIO

 movwf TRISIO

 ; configure timer

 movlw b'11001000' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----1--- no prescaling (PSA = 1)

 ; (prescaler assigned to WDT)

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 19

 banksel OPTION_REG ; -> increment TMR0 every 1 us

 movwf OPTION_REG

 ; initialise port

 banksel GPIO

 clrf GPIO ; start with all LEDs off

 clrf sGPIO ; update shadow

 ; initialise variables

 movlw .40 ; timer0 overflow count = 40

 movwf cnt_t0

 movlw .50 ; 10 ms period count = 50

 movwf cnt_10ms

 ; configure interrupts

 movlw 1<<GIE|1<<T0IE ; enable Timer0 and global interrupts

 movwf INTCON

;***** Main loop

loop

 ; check and respond to button press

 banksel GPIO

 bcf sGPIO,nB_LED ; assume button up -> LED off

 btfss GPIO,nBUTTON ; if button pressed (low)

 bsf sGPIO,nB_LED ; turn on indicator LED

 ; continually copy shadow GPIO to port

 movf sGPIO,w

 movwf GPIO

 ; repeat forever

 goto loop

 END

Example 3: Switch debouncing

Lesson 3 explored the topic of switch bounce, and described a counting algorithm to address it, which was

expressed as:

count = 0

while count < max_samples

 delay sample_time

 if input = required_state

 count = count + 1

 else

 count = 0

end

The change in switch state is only accepted when the new state has been continually seen for at least some

minimum period, for example 20 ms. This debounce period is measured by incrementing a count while

sampling the state of the switch, at a steady rate, such as every 1 ms.

“Continually … sampling … at a steady rate” sounds like the type of task that could be performed by a

regular timer interrupt, and indeed it is common to use interrupts to continually sample and debounce inputs.

Although a number of debouncing algorithms exist, offering varying levels of sophistication, the counting

algorithm presented above is effective and is easy to implement in an interrupt service routine.

But when this algorithm was implemented before, in lessons 3 and 4, separate routines were used to wait for

and debounce “button up” and “button down” (low → high and high → low transitions). That approach isn‟t

appropriate in an ISR, since it has to run independently of the main program; it can‟t know what type of

transition the main program is waiting for. If we want to detect and debounce both types of transitions, the

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 20

ISR needs to look for any change in state, and debounce it. And then it needs to have some way of reporting

the fact that an input transition (change in switch state) has occurred, in case the main program chooses to act

on it.

You could have the ISR respond to and act upon switch changes, but this isn‟t normally done unless the

event has to be responded to very quickly; it is generally best to keep the interrupt handling code short, so

that the ISR finishes quickly, in case another, perhaps more important, interrupt is pending.

Normally, this type of signalling from the ISR to the main program is done via a flag which is set by the ISR

to indicate that an event has occurred. The main program then polls this flag and responds to the event when

it is ready to do so.

In this case, we would need a „switch state has changed‟ flag.

We also need a flag, or variable, to hold the “debounced”, or most recently accepted state of the switch input.

The ISR can then periodically compare the current “raw” switch input with the saved “debounced” input, to

determine whether the switch state has changed.

To demonstrate this approach, we‟ll re-implement example 3 from lesson 3, where the LED on GP1 is

toggled each time the pushbutton on GP3 is pressed.

We can re-use and modify the framework from the examples above, where we flashed an LED at 1 Hz.

In those examples, the ISR was triggered every 250 µs, which in turn counted interrupts, to create a 10 ms

time base.

However, for sampling a switch input, 250 µs is a little too short (the more often you sample an input, the

more time overall is spent in the ISR, leaving less time for the main program), while 10 ms is too long. Most

switches stop bouncing within 20 ms, so if you sample every 10 ms, and have a debounce period of 20 ms,

you‟ll be basing the decision that the switch is stable on only two samples – and two samples in a row might

be a “fluke”; it‟s not enough to be sure that the bouncing (or glitches due to EMI) has finished.

Typically a sample rate between 1 ms and 5 ms is recommended; we‟ll use 2 ms here.

So the timing section of the ISR becomes:

 ; *** Service Timer0 interrupt

 ; TMR0 overflows every 250 clocks = 250 us

 ; (only Timer0 interrupts are enabled)

 ;

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

 bcf INTCON,T0IF ; clear interrupt flag

 ; count interrupts for 2 ms (8 interrupts x 250 us)

 decfsz t0_cnt,f ; decrement interrupt count

 goto isr_end ; when count = 0 (every 8 interrupts = 2 ms)

 movlw .2000/.250 ; reload count

 movwf t0_cnt

We also need some variables, discussed above, for the debounce algorithm:

PB_dbstate res 1 ; bit 3 = debounced pushbutton state

 ; (0 = pressed, 1 = released)

PB_change res 1 ; bit 3 = flag indicating pushbutton state change

 ; (1 = new debounced state)

db_cnt res 1 ; debounce counter

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 21

Note that, because only a single bit is needed to represent the switch state, or to flag that the switch has

changed, we can choose to use any of the bits within these variables.

It‟s most convenient (the coding is simplified) if we use bit 3 of the PB_dbstate variable to represent the

debounced state of the switch on GP3. This implies that this technique could be extended to debounce other

switches at the same time, although in practice, another technique, based on “vertical counters” is more

commonly used when debouncing multiple switches. We‟ll look at it in a later lesson.

Of course these variables should be initialised in the main program:

 movlw 1<<nBUTTON ; initial pushbutton state = released

 movwf PB_dbstate

 clrf db_cnt ; debounce counter = 0

 clrf PB_change ; pushbutton change flag = 0

It is a good idea to define the debounce period as a constant, to make it easier to adapt the code for switches

with different characteristics:

 constant MAX_DB_CNT=.20/.2 ; maximum debounce count =

 ; debounce period / sample rate

 ; (20 ms debounce period / 2 ms per sample)

(of course it would be cleaner still to define the debounce period and sample rate as constants, and to derive

the maximum debounce count and sample timing from them – but in a short program like this it‟s not

difficult to see how these things relate to each other, especially if it is documented in comments, as above)

Now for the debounce routine, run every 2 ms as part of the interrupt service routine.

First, we need to determine whether the pushbutton has changed (pressed or released) since it was last

debounced.

To do so, we need to compare GPIO<3> with PB_dbstate<3>, and this means some logic operations:

 ; has raw state changed?

 banksel GPIO

 movlw 1<<nBUTTON ; load raw button state (only) to W

 andwf GPIO,w

 xorwf PB_dbstate,w ; XOR with last debounced state

 btfss STATUS,Z ; (result of XOR is zero if same,

 goto state_change ; so Z flag is clear if state has changed)

Note the use of the „andwf‟ instruction – “and W with file register”, which ANDs the contents of W with

the specified register and writes the results to either the register or W.

It is used here to apply a mask to GPIO, so that only GPIO<3> (the only bit we are interested in) is

transferred to W. Using AND to mask bits in this way was explained in baseline lesson 8.

As we‟ve seen before, XOR can be used to test for equality. Note however that, if we were using any other

bits in PB_dbstate, we‟d have to mask them out before doing the comparison.

Having determined whether the pushbutton‟s raw state has changed, we need to deal with both possibilities.

If the pushbutton is still in the last debounced state, all we need to do is reset the debounce counter:

 ; raw pushbutton state has not changed

 clrf db_cnt ; reset debounce count

 goto end_debounce ; and exit

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 22

Otherwise, the pushbutton‟s state has changed. We need to see whether the change is stable, by counting the

number of successive times we‟ve seen it in this new state:

state_change

 ; raw pushbutton state has changed

 incf db_cnt,f ; increment count

And then we need to check whether the maximum count has been reached, to determine whether the switch

really has changed state (and has finished bouncing):

 movlw MAX_DB_CNT ; has max count been reached yet?

 xorwf db_cnt,w

 btfss STATUS,Z ; if not,

 goto end_debounce ; exit

If so, we have a new debounced state, so we can update the variables and flags to reflect this:

 ; accept state as changed

 movlw 1<<nBUTTON ; toggle debounced state

 xorwf PB_dbstate,f

 clrf db_cnt ; reset debounce count

 bsf PB_change,nBUTTON ; set pushbutton changed flag

The main program can then poll this PB_change flag, to see whether the button has changed state:

 ; check for debounced button press

 btfss PB_change,nBUTTON ; has button state changed?

 goto end_pb_press

If the button has changed state, we need to refer to the PB_dbstate variable, to see whether it the new

state is “up” or “down” (pressed); we only want to toggle the LED when the button is pressed, not when it is

released:

 btfsc PB_dbstate,nBUTTON ; is button pressed (low)?

 goto end_pb_press

When we know that the button has been pressed, we can toggle the LED, using the shadow copy of GPIO, as

we‟ve done before:

 ; handle button press

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

And finally, now that we‟ve detected and responded to the button press, we need to clear the state change

flag, to be ready for the next change:

 bcf PB_change,nBUTTON ; clear button change flag

And that‟s all.

It‟s relatively complex, compared with the equivalent code we saw in lessons 3 and 4, but most of that

complexity is “hidden” in the ISR; the code in the main program loop is quite simple, making it easier to do

more within the main program, without having to poll and debounce switches – something that the ISR can

take care of in the background. This interrupt-based approach also has the advantage that switch changes are

detected quickly, while the main program does not have to respond to them immediately.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 23

Complete program

Here is the complete “toggle an LED on pushbutton press” program:

;**

; *

; Description: Lesson 6 example 3 *

; *

; Demonstrates use of Timer0 interrupt to implement *

; counting debounce algorithm *

; *

; Toggles LED on GP1 *

; when pushbutton is pressed (high -> low transition) *

; *

;**

; *

; Pin assignments: *

; GP1 - indicator LED *

; GP3 - pushbutton (active low) *

; *

;**

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no "register not in bank 0" warnings

 errorlevel -312 ; no "page or bank selection not needed" messages

;***** CONFIGURATION

 ; int reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4Mhz int clock

 __CONFIG _MCLRE_OFF & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

; pin assignments

 constant nB_LED=1 ; "button pressed" indicator LED on GP1

 constant nBUTTON=3 ; pushbutton on GP3 (active low)

;***** CONSTANTS

 constant MAX_DB_CNT=.20/.2 ; maximum debounce count = debounce period /

sample rate

 ; (20 ms debounce period / 2 ms per

sample)

;***** VARIABLE DEFINITIONS

CONTEXT UDATA_SHR ; variables used for context saving

cs_W res 1

cs_STATUS res 1

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

t0_cnt res 1 ; counts timer0 interrupts

 ; (decremented by ISR every 250 us)

PB_dbstate res 1 ; bit 3 = debounced pushbutton state

 ; (0 = pressed, 1 = released)

PB_change res 1 ; bit 3 = flag indicating pushbutton state

change

 ; (1 = new debounced state)

db_cnt res 1 ; debounce counter

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 24

;**

RESET CODE 0x0000 ; processor reset vector

 pagesel Start

 goto Start

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; *** Save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

 ; *** Service Timer0 interrupt

 ; TMR0 overflows every 250 clocks = 250 us

 ; (only Timer0 interrupts are enabled)

 ;

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

 bcf INTCON,T0IF ; clear interrupt flag

 ; count interrupts for 2 ms (8 interrupts x 250 us)

 decfsz t0_cnt,f ; decrement interrupt count

 goto isr_end ; when count = 0 (every 8 interrupts = 2 ms)

 movlw .2000/.250 ; reload count

 movwf t0_cnt

 ; Debounce pushbutton (every 2 ms)

 ; use counting algorithm: accept change in state

 ; only if new state is seen a number of times in succession

 ; has raw state changed?

 banksel GPIO

 movlw 1<<nBUTTON ; load raw button state (only) to W

 andwf GPIO,w

 xorwf PB_dbstate,w ; XOR with last debounced state

 btfss STATUS,Z ; (result of XOR is zero if same,

 goto state_change ; so Z flag is clear if state has changed)

 ; raw pushbutton state has not changed

 clrf db_cnt ; reset debounce count

 goto end_debounce ; and exit

state_change

 ; raw pushbutton state has changed

 incf db_cnt,f ; increment count

 movlw MAX_DB_CNT ; has max count been reached yet?

 xorwf db_cnt,w

 btfss STATUS,Z ; if not,

 goto end_debounce ; exit

 ; accept new state as changed

 movlw 1<<nBUTTON ; toggle debounced state

 xorwf PB_dbstate,f

 clrf db_cnt ; reset debounce count

 bsf PB_change,nBUTTON ; set pushbutton changed flag

 ; (polled and cleared in main loop)

end_debounce

isr_end ; *** Restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 25

 swapf cs_W,w

 retfie

;***** MAIN PROGRAM

MAIN CODE

Start ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; then update OSCCAL

 movwf OSCCAL

;***** Initialisation

 ; configure port

 movlw ~(1<<nB_LED) ; configure LED pin as output

 banksel TRISIO

 movwf TRISIO

 ; configure timer

 movlw b'11001000' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----1--- no prescaling (PSA = 1)

 ; (prescaler assigned to WDT)

 banksel OPTION_REG ; -> increment TMR0 every 1 us

 movwf OPTION_REG

 ; initialise port

 banksel GPIO

 clrf GPIO ; start with all LEDs off

 clrf sGPIO ; update shadow

 ; initialise variables

 movlw .2000/.250 ; timer0 overflow count = 2ms/250us

 movwf t0_cnt ; (-> 2ms/switch sample)

 movlw 1<<nBUTTON ; initial pushbutton state = released

 movwf PB_dbstate

 clrf db_cnt ; debounce counter = 0

 clrf PB_change ; pushbutton change flag = 0

 ; configure interrupts

 movlw 1<<GIE|1<<T0IE ; enable Timer0 and global interrupts

 movwf INTCON

;***** Main loop

loop

 ; check for debounced button press

 btfss PB_change,nBUTTON ; has button state changed?

 goto end_pb_press

 btfsc PB_dbstate,nBUTTON ; is button pressed (low)?

 goto end_pb_press

 ; handle button press

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

 bcf PB_change,nBUTTON ; clear button change flag

end_pb_press

 ; continually copy shadow GPIO to port

 banksel GPIO

 movf sGPIO,w

 movwf GPIO

 ; repeat forever

 goto loop

 END

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 26

Example 4: Switch debouncing while flashing an LED

Given that the previous example on switch debouncing was built on the framework of the earlier LED

flashing examples, it‟s not difficult to add the LED flashing code back into the interrupt service routine,

demonstrating how a single timer-driven interrupt can be used to schedule multiple concurrent tasks.

Firstly, as before, we need a counter, so that we can count up to 500 ms:

p_2ms_cnt res 1 ; counts 2 ms periods

 ; (decremented by ISR every 2 ms)

Note that this counter is intended to count periods of 2 ms each; this is the same as the switch sample period

from the previous example. That‟s not a coincidence! It makes sense to make use of common time bases if

possible, to avoid adding unnecessary code. And this is why a sample period of 2 ms was chosen in the last

example, instead of 1 ms – to generate a 500 ms delay by counting 1 ms periods, we‟d need to count to 500,

and that‟s not possible with a single 8-bit variable. By using a time base of 2 ms, we not only have an

appropriate period for sampling the switch, but we only need a single 8-bit counter to generate a 500 ms

delay, since 2 ms × 250 = 500 ms, and we can count to 250 with an 8-bit variable.

We should of course initialise this counter, in the main program, before it is used:

 movlw .500/.2 ; 2 ms period count = 500ms/2ms

 movwf p_2ms_cnt ; (-> toggle LED every 500ms)

Then, either before or after the debounce routine in the ISR (it doesn‟t matter, since they both need to run

every 2 ms), we need some code to count 2 ms periods, to create a 500 ms delay:

 ; toggle LED every 500 ms

 decfsz p_2ms_cnt,f ; decrement 2 ms period count

 goto end_toggle ; when count = 0 (every 250 times = 500 ms)

 movlw .500/.2 ; reload count

 movwf p_2ms_cnt

And finally, when 500 ms has elapsed, we toggle the LED, using the shadow copy of GPIO, as before:

 movf sGPIO,w ; toggle LED

 xorlw 1<<nF_LED ; using shadow register

 movwf sGPIO

Complete interrupt service routine

Most of the code is the same as the previous example, except for the counter variable definition and

initialisation, shown above. But here is the new interrupt service routine, so that you can see how the LED

toggling code fits in after the debounce routine:

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; *** Save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

 ; *** Service Timer0 interrupt

 ; TMR0 overflows every 250 clocks = 250 us

 ; (only Timer0 interrupts are enabled)

 ;

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

 bcf INTCON,T0IF ; clear interrupt flag

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 27

 ; count interrupts for 2 ms (8 interrupts x 250 us)

 decfsz t0_cnt,f ; decrement interrupt count

 goto isr_end ; when count = 0 (every 8 interrupts = 2 ms)

 movlw .2000/.250 ; reload count

 movwf t0_cnt

 ; Debounce pushbutton (every 2 ms)

 ; use counting algorithm: accept change in state

 ; only if new state is seen a number of times in succession

 ; has raw state changed?

 banksel GPIO

 movlw 1<<nBUTTON ; load raw button state (only) to W

 andwf GPIO,w

 xorwf PB_dbstate,w ; XOR with last debounced state

 btfss STATUS,Z ; (result of XOR is zero if same,

 goto state_change ; so Z flag is clear if state has changed)

 ; raw pushbutton state has not changed

 clrf db_cnt ; reset debounce count

 goto end_debounce ; and exit

state_change

 ; raw pushbutton state has changed

 incf db_cnt,f ; increment count

 movlw MAX_DB_CNT ; has max count been reached yet?

 xorwf db_cnt,w

 btfss STATUS,Z ; if not,

 goto end_debounce ; exit

 ; accept state as changed

 movlw 1<<nBUTTON ; toggle debounced state

 xorwf PB_dbstate,f

 clrf db_cnt ; reset debounce count

 bsf PB_change,nBUTTON ; set pushbutton changed flag

 ; (polled and cleared in main loop)

end_debounce

 ; toggle LED every 500 ms

 decfsz p_2ms_cnt,f ; decrement 2 ms period count

 goto end_toggle ; when count = 0 (every 250 times = 500 ms)

 movlw .500/.2 ; reload count

 movwf p_2ms_cnt

 movf sGPIO,w ; toggle LED

 xorlw 1<<nF_LED ; using shadow register

 movwf sGPIO

end_toggle

isr_end ; *** Restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

 swapf cs_W,w

 retfie

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 28

External Interrupts

Although polling input pins for changes is effective in many cases, especially in user interfaces, where the

human user won‟t notice a delay of a few milliseconds before a button press is responded to, some situations

require a more immediate response.

For a very fast response to a digital signal, the external interrupt pin, INT (which shares its pin with GP2)

can be used. This pin is edge-triggered, meaning that an interrupt will be triggered (if enabled) by a rising or

falling transition of the input signal.

Example 5: Using a pushbutton to trigger an external interrupt

To demonstrate how to use external interrupts,

we can use a pushbutton to drive the external

interrupt pin, and toggle an LED whenever the

external interrupt is trigged (i.e. whenever the

pushbutton is pressed).

The circuit for this is shown on the right.

It‟s quite straightforward, but note the capacitor

connected across the switch.

This is used, in conjunction with the two

resistors, to debounce the pushbutton.

When hardware debouncing was discussed in

baseline lesson 4, it was pointed out that this type

of simple RC filter is only effective when driving

a Schmitt trigger input. Luckily, the 12F629‟s

INT input is a Schmitt trigger type, so this simple

form of hardware debouncing is quite adequate.

Of course, the switch debouncing could be done in software, but it is difficult to do for an edge-triggered

interrupt, while retaining a fast response (e.g. a short glitch will trigger the interrupt, but should really be

ignored – this simple circuit will effectively filter out such glitches).

If you are using Microchip‟s Low

Pin Count Demo Board, you can

build this circuit using a

breadboard connected to the 14-pin

header on the demo board, as

shown on the left.

In this picture, a link has been

added, from pin 8 to pin 11 on the

header, so that the LED labelled

„DS2‟ on the demo board lights up

when GP1 goes high.

The component values do not have to be exactly as shown.

As a guide, the RC time constants should be roughly on the order of

the debounce period. The capacitor charges though the 10 kΩ and

1 kΩ resistors, with a time constant of 11 kΩ × 1 µF = 11 ms.

It discharges, when the button is pressed, with a time constant of 1 kΩ × 1 µF = 1 ms. These figures are in

line with a debounce period of 10 ms or so, but any values similar to these will be ok.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 29

As mentioned above, the external interrupt can be triggered on either the rising or falling edge of the signal

on the INT pin.

The type of edge is selected by the INTEDG bit in the OPTION register:

INTEDG = 0 selects interrupt on falling edge.

INTEDG = 1 selects interrupt on rising edge.

In this example, since we want the LED to toggle as soon as the pushbutton is pressed (which in this circuit

creates a high → low transition on INT), we need to select the falling edge:

 ; configure external interrupt

 banksel OPTION_REG

 bcf OPTION_REG,INTEDG ; trigger on falling edge

We then need to enable the external interrupt, by setting the INTE bit (as well as GIE, as always):

 ; configure interrupts

 movlw 1<<GIE|1<<INTE ; enable external and global interrupts

 movwf INTCON

Finally, within the ISR, we need to service the external interrupt.

Since the INT pin is the only interrupt source enabled, it is safe to assume that every interrupt is externally

triggered, so all we need to do is clear the INTF interrupt flag (recall that the interrupt flag for any interrupt

source has to be cleared, when that interrupt has been serviced), and toggle the LED:

 bcf INTCON,INTF ; clear interrupt flag

 ; toggle LED

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

The shadow register is then copied to GPIO in the main loop, as in the earlier examples.

Complete program

Here is how these code fragments (along with code from the previous examples) fit together:

;**

; Description: Lesson 6 example 5 *

; *

; Demonstrates use of external interrupt (INT pin) *

; *

; Toggles LED on GP1 *

; when pushbutton on INT is pressed (high -> low transition) *

; *

;**

; *

; Pin assignments: *

; GP1 - indicator LED *

; INT - pushbutton (active low) *

; *

;**

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OPTION_REG GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 30

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no "register not in bank 0" warnings

 errorlevel -312 ; no "page or bank selection not needed" messages

;***** CONFIGURATION

 ; ext reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

; pin assignments

 constant nB_LED=1 ; "button pressed" indicator LED on GP1

;***** VARIABLE DEFINITIONS

CONTEXT UDATA_SHR ; variables used for context saving

cs_W res 1

cs_STATUS res 1

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

;**

RESET CODE 0x0000 ; processor reset vector

 pagesel Start

 goto Start

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; *** Save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

 ; *** Service external interrupt

 ; Triggered on high -> low transition on INT pin

 ; caused by externally debounced pushbutton press

 ;

 bcf INTCON,INTF ; clear interrupt flag

 ; toggle LED

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

isr_end ; *** Restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

 swapf cs_W,w

 retfie

;***** MAIN PROGRAM

MAIN CODE

Start ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; then update OSCCAL

 movwf OSCCAL

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 31

;***** Initialisation

 ; configure port

 movlw ~(1<<nB_LED) ; configure LED pin as output

 banksel TRISIO

 movwf TRISIO

 ; initialise port

 banksel GPIO

 clrf GPIO ; start with all LEDs off

 clrf sGPIO ; update shadow

 ; configure external interrupt

 banksel OPTION_REG

 bcf OPTION_REG,INTEDG ; trigger on falling edge (INTEDG = 0)

 ; configure interrupts

 movlw 1<<GIE|1<<INTE ; enable external and global interrupts

 movwf INTCON

;***** Main loop

loop

 ; continually copy shadow GPIO to port

 banksel GPIO

 movf sGPIO,w

 movwf GPIO

 ; repeat forever

 goto loop

 END

Example 6: Multiple interrupt sources

So far we‟ve only used a single interrupt source, but it is common for more than one source to be active; for

example, one or more timers scheduling background tasks, while servicing events such as external interrupts.

To demonstrate this, we can combine the

two interrupt sources used in this lesson,

with a Timer0 interrupt flashing one LED,

while the external interrupt is used to

toggle another LED.

This means adding an LED to the circuit in

the previous example, as shown on the

right.

We‟ll flash the LED on GP0 at 1 Hz, and

toggle the LED on GP1 whenever the

pushbutton is pressed.

In the main program, having configured Timer0 and selected the appropriate edge (falling) for the external

interrupt, we need to enable both interrupt sources (as well as global interrupts):

 ; enable interrupts

 movlw 1<<GIE|1<<T0IE|1<<INTE ; enable external, Timer0

 movwf INTCON ; and global interrupts

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 32

The interrupt service routine must include code to service both types of interrupt, but first we need to

determine which source has triggered this interrupt – and that can be done by testing the various interrupt

flags, as follows:

 ; *** Identify interrupt source

 btfsc INTCON,INTF ; external

 goto ext_int

 btfsc INTCON,T0IF ; Timer0

 goto t0_int

 goto isr_end ; none of the above, so exit

The order is important, because it is possible that more than one interrupt source has triggered – that is, more

than one of these flags may be set. That‟s possible because more than one interrupt-triggering event, such as

a timer overflow or an external signal, may have occurred while interrupts were disabled (for example, while

another interrupt was being serviced).

So, if some interrupt sources (such as external events) are more important than others (such as timer

overflows), you should structure your ISR so that the highest priority interrupt sources are serviced first.

Note that the last instruction, „goto isr_end‟, should never be executed. It is there to handle the case

where an interrupt is triggered by a source that you haven‟t written a handler for. If your hardware has a

means of logging or informing the user of an error condition, you could use that capability here. Or it might

be safest to reset your hardware, because clearly something has gone wrong! In this example, we just ignore

the problem by immediately exiting the ISR. If you‟re sure that nothing can ever go wrong, you could leave

out this “catch all” goto.

The individual interrupt handlers are the same as before, except that they must finish with an instruction that

skips to the end of the ISR, so that the other handlers are not executed.

For example:

ext_int ; *** Service external interrupt

 ; Triggered on high -> low transition on INT pin

 ; caused by externally debounced pushbutton press

 ;

 bcf INTCON,INTF ; clear interrupt flag

 ; toggle "button pressed" LED

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

 goto isr_end

Of course, the handler immediately preceding the end of the ISR doesn‟t need this „goto isr_end‟

instruction, since it is at the end of the ISR anyway, but it‟s a good idea to include it regardless, because it

makes it easier to add more interrupt handlers later, without having to remember to add this „goto‟.

Complete program

Here is the complete “toggle LED via external interrupt while flashing LED via timer interrupt” program, so

that you can see how these pieces fit together:

;**

; *

; Description: Lesson 6 example 6 *

; *

; Demonstrates handling of multiple interrupt sources *

; *

; Toggles LED on GP1 when pushbutton on INT is pressed *

; (high -> low transition triggering external interrupt) *

; while LED on GP0 flashes at 1 Hz (driven by Timer0 interrupt) *

; *

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 33

;**

; *

; Pin assignments: *

; GP0 - flashing LED *

; GP1 - "button pressed" indicator LED *

; INT - pushbutton (active low) *

; *

;**

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no "register not in bank 0" warnings

 errorlevel -312 ; no "page or bank selection not needed" messages

;***** CONFIGURATION

 ; ext reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

; pin assignments

 constant nF_LED=0 ; flashing LED on GP0

 constant nB_LED=1 ; "button pressed" indicator LED on GP1

;***** VARIABLE DEFINITIONS

CONTEXT UDATA_SHR ; variables used for context saving

cs_W res 1

cs_STATUS res 1

GENVAR UDATA_SHR ; general variables

sGPIO res 1 ; shadow copy of GPIO

t0_cnt res 1 ; counts timer0 interrupts

 ; (decremented by ISR every 250 us)

p_5ms_cnt res 1 ; counts 5 ms periods

 ; (decremented by ISR every 5 ms)

;**

RESET CODE 0x0000 ; processor reset vector

 pagesel Start

 goto Start

;***** INTERRUPT SERVICE ROUTINE

ISR CODE 0x0004

 ; *** Save context

 movwf cs_W ; save W

 movf STATUS,w ; save STATUS

 movwf cs_STATUS

 ; *** Identify interrupt source

 btfsc INTCON,INTF ; external

 goto ext_int

 btfsc INTCON,T0IF ; Timer0

 goto t0_int

 goto isr_end ; none of the above, so exit

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 34

ext_int ; *** Service external interrupt

 ; Triggered on high -> low transition on INT pin

 ; caused by externally debounced pushbutton press

 ;

 bcf INTCON,INTF ; clear interrupt flag

 ; toggle "button pressed" LED

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

 goto isr_end

t0_int ; *** Service Timer0 interrupt

 ; TMR0 overflows every 250 clocks = 250 us

 ; (only Timer0 interrupts are enabled)

 ;

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

 bcf INTCON,T0IF ; clear interrupt flag

 ; count interrupts for 5 ms (20 interrupts x 250 us)

 decfsz t0_cnt,f ; decrement interrupt count

 goto isr_end ; when count = 0 (every 20 interrupts = 5 ms)

 movlw .5000/.250 ; reload count

 movwf t0_cnt

 ; toggle flashing LED every 500 ms

 decfsz p_5ms_cnt,f ; decrement 5 ms period count

 goto end_flash ; when count = 0 (every 100 times = 500 ms)

 movlw .500/.5 ; reload count

 movwf p_5ms_cnt

 movf sGPIO,w ; toggle LED

 xorlw 1<<nF_LED ; using shadow register

 movwf sGPIO

end_flash

 goto isr_end

isr_end ; *** Restore context then return

 movf cs_STATUS,w ; restore STATUS

 movwf STATUS

 swapf cs_W,f ; restore W

 swapf cs_W,w

 retfie

;***** MAIN PROGRAM

MAIN CODE

Start ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; then update OSCCAL

 movwf OSCCAL

;***** Initialisation

 ; configure port

 movlw ~(1<<nB_LED|1<<nF_LED) ; configure LED pins as outputs

 banksel TRISIO

 movwf TRISIO

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC Assembler, Lesson 6: Introduction to Interrupts Page 35

 ; configure timer

 movlw b'11001000' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----1--- no prescaling (PSA = 1)

 ; (prescaler assigned to WDT)

 banksel OPTION_REG ; -> increment TMR0 every 1 us

 movwf OPTION_REG

 ; initialise port

 banksel GPIO

 clrf GPIO ; start with all LEDs off

 clrf sGPIO ; update shadow

 ; initialise variables

 movlw .5000/.250 ; timer0 overflow count = 5ms/250us

 movwf t0_cnt ; (-> 5ms/switch sample)

 movlw .500/.5 ; 2 ms period count = 500ms/5ms

 movwf p_5ms_cnt ; (-> toggle LED every 500ms)

 ; configure external interrupt

 banksel OPTION_REG

 bcf OPTION_REG,INTEDG ; trigger on falling edge (INTEDG = 0)

 ; enable interrupts

 movlw 1<<GIE|1<<T0IE|1<<INTE ; enable external, Timer0

 movwf INTCON ; and global interrupts

;***** Main loop

loop

 ; continually copy shadow GPIO to port

 banksel GPIO

 movf sGPIO,w

 movwf GPIO

 ; repeat forever

 goto loop

 END

That‟s all for now.

Although this lesson has barely scratched the surface of what can be done with interrupts on midrange PICs,

we‟ll see more examples as topics are introduced in future lessons.

The next interrupt source we‟ll look at is “interrupt on change”, which is commonly used to wake the PIC

from sleep mode. These topics are covered in the next lesson, along with the watchdog timer.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_7.pdf

	Introduction to PIC Programming
	Midrange Architecture and Assembly Language
	Lesson 6: Introduction to Interrupts
	Interrupts
	Context Saving
	Interrupt Flags

	/Timer0 Interrupts
	Example 1a: Flashing an LED
	Complete program

	Example 1b: Slower flashing
	Example 1c: Flashing an LED at exactly 1 Hz
	Complete program

	Example 2: Flash LED while responding to input
	Complete program

	Example 3: Switch debouncing
	Complete program

	Example 4: Switch debouncing while flashing an LED
	Complete interrupt service routine

	External Interrupts
	Example 5: Using a pushbutton to trigger an external interrupt
	Complete program

	Example 6: Multiple interrupt sources
	Complete program

