
© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 1 

Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 2: Flash an LED 

 

 

In lesson 1 we lit a single LED connected to one of the pins of a PIC10F200 or PIC12F508. 

Now we’ll make it flash. 

In doing this, we will learn about: 

 Using loops to create delays 

 Variables 

 Using exclusive-or (xor) to flip bits 

 The ‘read-modify-write’ problem 

 

The development environments and microcontrollers used for this lesson are the same as those in lesson 1. 

Again, it is assumed that you are using a Microchip PICkit 2or PICkit 3 programmer and either the 

Gooligum Baseline and Mid-range PIC Training and Development Board or Microchip’s Low Pin Count 

(LPC) Demo Board, with Microchip’s MPLAB 8 or MPLAB X integrated development environment.  But it 

is of course possible to adapt these instructions to a different programmers and/or development boards. 

We will also assume that, if you have the Gooligum training board, you will continue to use the PIC10F200, 

and that it you have the Microchip LPC Demo Board, you will be using a PIC12F508 – both introduced in 

lesson 1. 

Example Circuit 

Here’s the PIC10F200 version of the circuit again: 

 

If you have the Gooligum training board, simply plug the 

PIC10F200 into the 8-pin IC socket marked ‘10F’. 

 

Connect a shunt across the jumper (JP12) on the LED 

labelled ‘GP1’, and ensure that every other jumper is 

disconnected.  

 

 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/devboards/base-mid/base-mid.html


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 2 

 

Here’s the corresponding PIC12F508 version: 

 

You will need to use a PIC12F508 if you have 

Microchip’s Low Pin Count Demo Board. 

 

Refer back to lesson 1 to see how to build this circuit, 

either by soldering a resistor, LED (and optional isolating 

jumper) to the demo board, or by making connections on 

the demo board’s 14-pin header. 

 

 

 

 

Creating a new project 

It is a good idea, where practical, to base a new software project on work you’ve done before.  In this case, it 

makes sense to build on the program from lesson 1 – we just have to add extra instructions to flash the LED. 

How to create a new project, based on an existing one, depends on whether you’re using MPLAB 8 or 

MPLAB X, so we’ll take a look at both. 

MPLAB 8.xx 

There are a couple of ways to do this, but the following method works well. 

First, open the project you created in lesson 1 in MPLAB 8.  You can do this easily by double-clicking the 

‘*.mcp’ project file in your project folder. 

Now use the “Project  

Save Project As…” 

menu item to save the 

project in a new folder, 

with a new name.   

 

When a project is saved 

to a new location, all the 

files belonging to that 

project (“User” files, 

with relative paths) are 

copied to that location.  

You will find that in this 

case the ‘*.asm’ source 

file from lesson 1 has 

been copied into your 

new folder. 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 3 

The next step is to use the project wizard ( “Project  Project Wizard…”) to reconfigure the project, giving 

the source file a new name. 

The correct device (PIC10F200 or PIC12F508) will already be selected, as will the toolsuite (MPASM), so 

simply click 

“Next” until you 

get to Step 

Three, and select 

“Reconfigure 

Active Project” 

and “Make 

changes without 

saving”, as 

shown: 

 

 

 

 

 

 

 

 

 

 

 

You are now presented with the following window, showing the assembler source file with a “U” to indicate 

a user file, in the 

new project 

directory, but 

with the same 

name as before: 

 

 

 

 

 

 

 

 

 

 

 

 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 4 

Click on the “U” until it changes to a “C”.  You can now click on the file name and rename it to something 

more appropriate to this lesson, such as ‘BA_L2-Flash_LED.asm’: 

Finally click “Next” then “Finish” and the project is reconfigured, with the renamed source file: 

 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 5 

It’s a good idea at this point to save your new project, using the “Save Workspace” icon, or the “Project  

Save Project” menu item. 

If you double-click on the source file (‘BA_L2-Flash_LED-10F200.asm’ in this example), you’ll see a copy 

of your code from lesson 1: 

 

 

MPLAB X 

To create a new project in MPLAB X, based on an existing project, you first need to run MPLAB X (you 

can’t simply double-click on a project file, like you can with MPLAB 8 projects), and then open your 

existing project within MPLAB X. 

If you were recently working on the project you want to copy (such as the project from lesson 1), it is 

probably already visible in the Projects window.  If it’s not, it may appear under the “File  Open Recent 

Project” menu list.  Or you can use the “File  Open Project” menu item, or click on the “Open Project…” 

toolbar button and browse to your project folder, select it, and click ‘Open Project’: 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 6 

 

You should now right-click the project name (‘BA_L1-Turn_on_LED-10F200’ in this example) in the 

Projects window, and select “Copy…”. 

The “Copy Project” dialog now gives you a chance to give your copied project a new name, such as 

‘BA_L2-Flash_LED’.  You can also specify (and create, if you wish) a new folder for this project, by 

browsing to it: 

When you are satisfied with your new project name and location, click ‘Copy’. 

Your new project should now appear in the Projects window. 

You can close your old project by right-clicking it and selecting “Close”, so that only your new project is 

visible. 

If you expand your new project, you’ll see that source file from the old project has been copied into the new 

project, with its original name: 

To rename the source file, to 

something more appropriate for 

this project, right-click it and 

select “Rename…”. 

Type in the new name, such as 

‘BA_L2-Flash_LED’ and then 

click ‘OK’. 

Note that there is no need to type 

the ‘.ASM’ suffix – the Rename 

dialog will keep the existing file 

extension. 

 

You now have a new project, with 

a new name in a new location, 

with a renamed source file, copied 

from your old project. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 7 

If you double-click your new source file, you’ll see a copy of your code from lesson 1 in an editor window: 

Flashing the LED 

Whether you are using MPLAB 8 or X, you can now use the editor to update your code from lesson 1. 

We’ll need to add some code to make the LED flash, but first the comments should be updated to reflect the 

new project.  For example: 

;************************************************************************ 

;                                                                       * 

;   Filename:      BA_L2-Flash_LED-10F200.asm                           * 

;   Date:          20/1/12                                              * 

;   File Version:  1.0                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Baseline PIC                                         * 

;   Processor:     10F200                                               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 1                                 * 

;                                                                       * 

;   Flashes a LED at approx 1 Hz.                                       * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 8 

;   Pin assignments:                                                    * 

;       GP1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

We’re using the same PIC device as before, and it will be configured the same way, so we can leave the 

processor definition and configuration sections unchanged.  There is also no need to change the internal RC 

oscillator calibration or reset vector sections. 

So, for the PIC10F200 version, we still have, unchanged from lesson 1: 

    list        p=10F200            

    #include    <p10F200.inc>    

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF 

 

 

;***** RC CALIBRATION  

RCCAL   CODE    0x0FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration 

 

while for the PIC12F508, we have instead (also unchanged from lesson 1): 

    list        p=12F508           

    #include    <p12F508.inc>       

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, int RC clock  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** RC CALIBRATION 

RCCAL   CODE    0x1FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

         

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration 

 

 

Again, we need to set up the PIC so that only GP1 is configured as an output, so we can leave the 

initialisation code from lesson 1 intact: 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 9 

In lesson 1, we made GP1 high, and left it that way.  To make it flash, we need to set it high, then low, and 

then repeat.  You may think that you could achieve this with something like: 

flash 

        movlw   b'000010'       ; set GP1 high 

        movwf   GPIO 

        movlw   b'000000'       ; set GP1 low 

        movwf   GPIO 

        goto    flash           ; repeat forever 

 

If you try this code, you’ll find that the LED appears to remain on continuously.  In fact, it’s flashing too fast 

for the eye to see. 

Our PIC is using an internal RC oscillator
1
, clocked at a nominal 4 MHz.  Each instruction executes in four 

clock cycles, or 1 µs – except instructions which branch to another location, such as ‘goto’, which require 

two instruction cycles, or 2 µs
2
. 

This loop takes a total of 6 µs, so the LED flashes at 1/(6 µs) = 166.7 kHz.  That’s much to fast to see! 

To slow it down to a more sedate (and visible!) 1 Hz, we have to add a delay.  But before looking at delays, 

we can make a small improvement to the code. 

To flip, or toggle, a single bit – to change it from 0 to 1 or from 1 to 0, you can exclusive-or it with 1. 

That is: 

0 XOR 1 = 1 

1 XOR 1 = 0 

So to repeatedly toggle GP1, we can read the current state of GPIO, exclusive-or the bit corresponding to 

GP1, then write it back to GPIO, as follows: 

        movlw   b'000010'       ; bit mask to toggle GP1 only 

flash 

        xorwf   GPIO,f          ; toggle GP1 using mask in W 

        goto    flash           ; repeat forever 

 

The ‘xorwf’ instruction exclusive-ors the W register with the specified register – “exclusive-or W with file 

register”, and writes the result either to the specified file register (GPIO in this case) or to W. 

Note that there is no need to set GP1 to an initial state; whether it’s high or low to start with, it will be 

successively flipped.  

Many of the PIC instructions, like xorwf, are able to place the result of an operation (e.g. add, subtract, or in 

this case XOR) into either a file register or W.   This is referred to as the instruction destination.  A ‘,f’ at 

the end indicates that the result should be written back to the file register; to place the result in W, use ‘,w’ 

instead. 

This single instruction – ‘xorwf GPIO,f’ – is doing a lot of work.  It reads GPIO, performs the XOR 

operation, and then writes the result back to GPIO. 

The read-modify-write problem 

And therein lays a potential problem.  You’ll find it referred to as the read-modify-write problem.  When an 

instruction reads a port register, such as GPIO, the value that is read back is not necessarily the value that 

                                                      

1
 The 12F508 has been configured (using the __config directive) to use its internal RC oscillator, while the 10F200 

can only use an internal RC oscillator; there is no other choice.   

2
 Assuming a 4 MHz processor clock 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 10 

you originally wrote to it.  When the PIC reads a port register, it doesn’t read the value in the “output latch” 

(i.e. the value you wrote to it).  Instead, it reads the pins themselves – the voltages present in the circuit. 

Normally, that doesn’t matter.  When you write a ‘1’, the corresponding pin (if configured as an output) will 

go to a high voltage level, and when you then read that pin, it’s still at a high voltage, so it reads back as a 

‘1’.  But if there’s excessive load on that pin, the PIC may not be able to drive it high, and it will read as a 

‘0’.  Or capacitance loading the output line may mean a delay between the PIC’s attempt to raise the voltage 

and the voltage actually swinging high enough to register as a ‘1’.   Or noise in the circuit may mean that a 

line that normally reads as a ‘1’, sometimes (randomly) reads as a ‘0’. 

In this simple case, particularly when we slow the flashing down to 1 Hz, you’ll find that this isn’t an issue.  

The above code will usually work correctly.  But it’s good to get into good habits early.  For the reasons 

given above, it is considered “bad practice” to assume a value you have previously written is still present on 

an I/O port register. 

It’s better to keep a copy of what the port value is supposed to be, and operate on that, then copy it to the port 

register.  This is referred to as using a shadow register. 

We could use W as a shadow register, as follows: 

        movlw   b'000000'       ; start with W zeroed 

flash 

        xorlw   b'000010'       ; toggle W bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; and write to GPIO 

        goto    flash           ; repeat forever 

 

Each time around the loop, the contents of W are updated and then written to the I/O port. 

The ‘xorlw’ instruction exclusive-ors a literal value with the W register, placing the result in W – 

“exclusive-or literal to W”. 

Normally, instead of ‘movlw  b'000000'’ (or simply ‘movlw  0’) you’d use the ‘clrw’ instruction – 

“clear W”. 

‘clrw’ has the same effect as ‘movlw  0’, except that ‘clrw’ sets the ‘Z’ (zero) status flag, while the 

‘movlw’ instruction doesn’t affect any of the status flags, including Z. 

Status flags are bits in the STATUS register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS GPWUF - - TO   PD   Z DC C 

 

Certain arithmetic or logical operations will set or clear the Z, DC or C status bits, and other instructions can 

test these bits, and take different actions depending on their value.  We’ll see examples of testing these flags 

in later lessons. 

 

We’re not using Z here, so we can use clrw to make the code more readable: 

        clrw     ; use W to shadow GPIO - initially zeroed 

flash 

        xorlw   b'000010'       ; toggle W bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; and write to GPIO 

        goto    flash           ; repeat forever 

 

 

It would be very unusual to be able to use W as a shadow register, because it is used in so many PIC 

instructions.  When we add delay code, it will certainly need to be able to change the contents of W, so we’ll 

have to use a file register to hold the shadow copy of GPIO. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 11 

 

In lesson 1, we saw how to allocate data memory for variables (such as shadow registers), using the UDATA 

and RES directives.  In this case, we need something like: 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

sGPIO   res 1                    ; shadow copy of GPIO 

 

 

The flashing code now becomes: 

        clrf    sGPIO           ; clear shadow register 

flash 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

        goto    flash           ; repeat forever 

 

That’s nearly twice as much code as the first version, that operated on GPIO directly, but this version is 

much more robust. 

There are two new instructions here. 

‘clrf’ clears (sets to 0) the specified register – “clear file register”. 

‘movf’, with ‘,w’ as the destination, copies the contents of the specified register to W – “move file register 

to destination”.  This is the instruction used to read a register. 

‘movf’, with ‘,f’ as the destination, copies the contents of the specified register to itself.  That would seem 

to be pointless; why copy a register back to itself?  The answer is that the ‘movf’ instruction affects the Z 

status flag, so copying a register to itself is a sneaky way to test whether the value in the register is zero. 

Delay Loops 

To make the flashing visible, we need to slow it down, and that means getting the PIC to “do nothing” 

between LED changes. 

The baseline PICs do have a “do nothing” instruction: ‘nop’ – “no operation”.  All it does is to take some 

time to execute. 

How much time depends on the clock rate.  Instructions are executed at one quarter the rate of the processor 

clock.  In this case, the PIC is using the internal RC clock, running at a nominal 4 MHz (see lesson 1).  The 

instructions are clocked at ¼ of this rate: 1 MHz.   Each instruction cycle is then 1 µs. 

Most baseline PIC instructions, including ‘nop’, execute in a single cycle.  The exceptions are those which 

jump to another location (such as ‘goto’) or if an instruction is conditionally skipped (we’ll see an example 

of this soon).  So ‘nop’ provides a 1 µs delay – not very long! 

Another “do nothing” instruction is ‘goto $+1’.  Since ‘$’ stands for the current address, ‘$+1’ is the 

address of the next instruction.  Hence, ‘goto $+1’ jumps to the following instruction – apparently useless 

behaviour.  But all ‘goto’ instructions executes in two cycles.  So ‘goto $+1’ provides a 2 µs delay in a 

single instruction – equivalent to two ‘nop’s, but using less program memory. 

 

To flash at 1 Hz, the PIC should light the LED, wait for 0.5 s, turn off the LED, wait for another 0.5 s, and 

then repeat. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 12 

Our code changes the state of the LED once each time around the loop, so we need to add a delay of 0.5 s 

within the loop.  That’s 500,000 µs, or 500,000 instruction cycles.  Clearly we can’t do that with ‘nop’s or 

‘goto’s alone! 

The answer, of course, is to use loops to execute instructions enough times to build up a useful delay.  But 

we can’t just use a ‘goto’, or else it would loop forever and the delay would never finish.  So we have to 

loop some finite number of times, and for that we need to be able to count the number of times through the 

loop (incrementing or decrementing a loop counter variable) and test when the loop is complete. 

 

Here’s an example of a simple “do nothing” delay loop: 

        movlw   .10 

        movwf   dc1  ; dc1 = 10 = number of loop iterations 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The first two instructions write the decimal value “10” to a loop counter variable called ‘dc1’. 

The ‘decfsz’ instruction performs the work of implementing the loop – “decrement file register, skip if 

zero”.  First, it decrements the contents of the specified register, writes the result back to the register (as 

specified by the ‘,f’ destination), then tests whether the result was zero.  If it’s not yet zero, the next 

instruction is executed, which will normally be a ‘goto’ which jumps back to the start of the loop.  But if the 

result of the decrement is zero, the next instruction is skipped; since this is typically a ‘goto’, skipping it 

means exiting the loop. 

The ‘decfsz’ instruction normally executes in a single cycle.  But if the result is zero, and the next 

instruction is skipped, an extra cycle is added, making it a two-cycle instruction. 

There is also an ‘incfsz’ instruction, which is equivalent to ‘decfsz’, except that it increments instead of 

decrementing.  It’s used if you want to count up instead of down.  For a loop with a fixed number of 

iterations, counting down is more intuitive than counting up, so ‘decfsz’ is more commonly used for this. 

 

In the code above, the loop counter, ‘dc1’, starts at 10.  At the end of the first loop, it is decremented to 9, 

which is non-zero, so the ‘goto’ instruction is not skipped, and the loop repeats from the ‘dly1’ label.  This 

process continues – 8,7,6,5,4,3,2 and on the 10
th
 iteration through the loop, dc1 = 1.  This time, dc1 is 

decremented to zero, and the “skip if zero” comes into play.  The ‘goto’ is skipped, and execution continues 

after the loop. 

You can see that the number of loop iterations is equal to the initial value of the loop counter (10 in this 

example).  Call that initial number N.  The loop executes N times. 

To calculate the total time taken by the loop, add the execution time of each instruction in the loop: 

        nop    1 

        decfsz  dc1,f  1 (except when result is zero) 

        goto    dly1  2 
 

Note that to specify a decimal value in MPASM, you prefix it with a ‘.’.  If you don’t include the ‘.’, 

the assembler will use the default radix (hexadecimal), and you won’t be using the number you 

think you are!  Although it’s possible to set the default radix to decimal, you’ll run into problems if 

you rely on a particular default radix and then later copy and paste your code into another project, 

with a different default radix, giving different results.  It’s much safer, and clearer, to simply prefix 

all hexadecimal numbers with ‘0x’ and all decimal numbers with ‘.’. 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 13 

That’s a total of 4 cycles, except the last time through the loop, when the decfsz takes an extra cycle and 

the goto is not executed (saving 2 cycles), meaning the last loop iteration is 1 cycle shorter.  And there are 

two instructions before the loop starts, adding 2 cycles. 

Therefore the total delay time = (N × 4  1 + 2) cycles = (N × 4 + 1) µs 

If there was no ‘nop’, the delay would be (N × 3 + 1) µs; if two ‘nop’s, then it would be (N × 5 +1) µs, etc. 

It may seem that, because 255 is the highest 8-bit number, the maximum number of iterations (N) should be 

255.  But not quite.  If the loop counter is initially 0, then the first time through the loop, the ‘decfsz’ 

instruction will decrement it, and if an 8-bit counter is decremented from 0, the result is 255, which is non-

zero, and the loop continues – another 255 times.  Therefore the maximum number of iterations is in fact 

256, with the loop counter initially 0. 

So for the longest possible single loop delay, we can write something like: 

        clrf    dc1             ; loop 256 times 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The two “move” instructions have been replaced with a single ‘clrf’, using 1 cycle less, so the total time 

taken is 256 × 4 = 1024 µs  1 ms. 

That’s still well short of the 0.5 s needed, so we need to wrap (or nest) this loop inside another, using 

separate counters for the inner and outer loops, as shown: 

        movlw   .200            ; loop (outer) 200 times 

        movwf   dc2 

        clrf    dc1             ; loop (inner) 256 times 

dly1    nop                     ; inner loop = 256 x 4 – 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

The loop counter ‘dc2’ is being used to control how many times the inner loop is executed. 

Note that there is no need to clear the inner loop counter (dc1) on each iteration of the outer loop, because 

every time the inner loop completes, dc1 = 0. 

The total time taken for each iteration of the outer loop is 1023 cycles for the inner loop, plus 1 cycle for the 

‘decfsz  dc2,f’ and 2 cycles for the ‘goto’ at the end, except for the final iteration, which, as we’ve 

seen, takes 1 cycle less.  The three setup instructions at the start add 3 cycles, so if the number of outer loop 

iterations is N: 

Total delay time = (N × (1023 + 3)  1 + 3) cycles = (N × 1026 + 2) µs. 

The maximum delay would be with N = 256, giving 262,658 µs.  We need a bit less than double that.  We 

could duplicate all the delay code, but it takes fewer lines of code if we duplicate only the inner loop: 

        ; delay 500ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 



© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 14 

The two inner loops of 1023 cycles each, plus the 3 cycles for the outer loop control instructions (decfsz 

and goto) make a total of 2049 µs.  Dividing this into 500,000 gives 244.02 – pretty close to a whole 

number, so an outer loop count of 244 will be very close to what’s needed. 

The calculations are shown in the comments above.  The total time for this delay code is 499,958 cycles.  In 

theory, that’s 499.958 ms – within 0.01% of the desired result!  Given that that’s much more accurate than 

the 4 MHz internal RC oscillator, there is no point trying for more accuracy than this. 

 

But suppose the calculation above had come out as needing some fractional number of outer loop iterations, 

say 243.5 – what would you do?  Generally you’d fine-tune the timing by adding or removing ‘nop’s.  E.g. 

suppose that both inner loops had 2 ‘nop’s instead of 1.  Then they would execute in 256 × 5  1 = 1279 

cycles, and the calculation for the outer loop counter would be 500,000 ÷ (1279 + 1279 + 3) = 195.24.  

That’s not as good a result as the one above, because ideally we want a whole number of loops.  244.02 is 

much closer to being a whole number than 195.24. 

For even finer control, you can add ‘nop’s to the outer loop, immediately before the ‘decfsz  dc2,f’ 

instruction.  One extra ‘nop’ would give the outer loop a total of 1023 + 1023 + 4 = 2050 cycles, instead of 

2049.  The loop counter calculation becomes 500,000 ÷ 2050 = 243.90.  That’s not bad, but 244.02 is better, 

so we’ll leave the code above unchanged. 

With a bit of fiddling, once you get some nested loops close to the delay you need, adding or removing ‘nop’ 

or ‘goto $+1’ instructions can generally get you quite close to the delay you need.  And remember that it is 

pointless to aim for high precision (< 1%) when using the internal RC oscillator.  When using a crystal, it 

makes more sense to count every last cycle accurately, as we’ll see in lesson 7. 

For delays longer than about 0.5 s, you’ll need to add more levels of nesting to your delay loops – with 

enough levels you can count for years! 

 

Complete program 

Putting together all these pieces, here’s the complete PIC10F200 version of our LED flashing program: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 2, example 1                                 * 

;                                                                       * 

;   Flashes a LED at approx 1 Hz.                                       * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

    list        p=10F200            

    #include    <p10F200.inc>    

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog  

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

sGPIO   res 1               ; shadow copy of GPIO 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 15 

dc1     res 1               ; delay loop counters 

dc2     res 1 

 

 

;***** RC CALIBRATION  

RCCAL   CODE    0x0FF       ; processor reset vector 

        res 1               ; holds internal RC cal value, as a movlw k 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000       ; effective reset vector 

        movwf   OSCCAL      ; apply internal RC factory calibration  

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

main_loop 

        ; toggle LED on GP1 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; toggle bit corresponding to GP1 (bit 1) 

        movwf   sGPIO           ;   in shadow register 

        movwf   GPIO            ; and write to GPIO 

 

        ; delay 500ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        goto    main_loop       ; repeat forever 

 

 

        END      

           

 

The 12F508 version is very similar, with changes to the list, #include, __CONFIG and RCCAL CODE 

directives, as shown earlier. 

 

 

If you follow the programming procedure described in lesson 1, you should now see your LED flashing at 

something very close to 1 Hz. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf


© Gooligum Electronics 2012  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 2: Flash an LED Page 16 

Conclusion 

It’s taken two lessons and dozens of pages to get here, but we finally have a flashing LED! 

In this lesson, we built on the first, showing how to base a new project on an existing one, modifying it and 

adding whatever additional features the new project needs. 

We saw how to toggle a pin, discussed how “read-modify-write” operations on a port can be problematic, 

and showed how to use shadow registers can be used to avoid such potential problems. 

We also saw how to use decrement instructions with conditional tests to implement loops, and how to use 

loops to create delays of any length. 

 

In the next lesson we’ll step up to a slightly bigger PIC, the 12F509. 

We’ll also see how to make our programs more modular, so that useful pieces of code such as the 500 ms 

delay developed here can be easily re-used. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

	Introduction to PIC Programming
	Baseline Architecture and Assembly Language
	Lesson 2: Flash an LED
	Example Circuit
	Creating a new project
	MPLAB 8.xx
	MPLAB X

	Flashing the LED
	The read-modify-write problem

	Delay Loops
	Complete program

	Conclusion



