
Accolade VHDL Reference Guide

 Home Product Information Resources Contacts

Welcome to the VHDL
Language Guide

The sections below provide detailed
information about the VHDL language. If you
are new to VHDL, we suggest you begin with
the Language Overview and A First Look at
VHDL sections.

 The main sections of this guide are listed
below:

 Language Overview
 A First Look at VHDL
 Objects, Data Types and Operators
 Using Standard Logic
 Concurrent Statements
 Sequential Statements
 Modularity Features
 Partitioning Features
 Test Benches

 Keyword Reference
 Examples Gallery

Copyright (c) 2000-2001, Altium Limited. All
rights reserved. PeakVHDL is a trademark of
Altium Limited. For more information visit
www.altium.com

http://www.acc-eda.com/vhdlref/ [12/19/2004 12:08:34 PM]

http://www.acc-eda.com/index.html
http://www.acc-eda.com/index.html
http://www.acc-eda.com/contacts.html
http://www.acc-eda.com/support/index.html
http://www.acc-eda.com/products/index.html
http://www.acc-eda.com/index.html
http://www.acc-eda.com/index.html
http://www.acc-eda.com/index.html
http://www.acc-eda.com/index.html
http://www.acc-eda.com/products/index.html
http://www.acc-eda.com/support/index.html
http://www.acc-eda.com/contacts.html
http://www.altium.com/

Language Overview

Language Overview

What is VHDL?
VHDL is a programming language that has been designed and optimized for
describing the behavior of digital systems.

VHDL has many features appropriate for describing the behavior of electronic
components ranging from simple logic gates to complete microprocessors and custom
chips. Features of VHDL allow electrical aspects of circuit behavior (such as rise and
fall times of signals, delays through gates, and functional operation) to be precisely
described. The resulting VHDL simulation models can then be used as building blocks
in larger circuits (using schematics, block diagrams or system-level VHDL
descriptions) for the purpose of simulation.

VHDL is also a general-purpose programming language: just as high-level
programming languages allow complex design concepts to be expressed as computer
programs, VHDL allows the behavior of complex electronic circuits to be captured into
a design system for automatic circuit synthesis or for system simulation. Like Pascal,
C and C++, VHDL includes features useful for structured design techniques, and
offers a rich set of control and data representation features. Unlike these other
programming languages, VHDL provides features allowing concurrent events to be
described. This is important because the hardware described using VHDL is inherently
concurrent in its operation.

One of the most important applications of VHDL is to capture the performance
specification for a circuit, in the form of what is commonly referred to as a test bench.
Test benches are VHDL descriptions of circuit stimuli and corresponding expected
outputs that verify the behavior of a circuit over time. Test benches should be an
integral part of any VHDL project and should be created in tandem with other
descriptions of the circuit.

A standard language
One of the most compelling reasons for you to become experienced with and
knowledgeable in VHDL is its adoption as a standard in the electronic design
community. Using a standard language such as VHDL virtually guarantees that you
will not have to throw away and recapture design concepts simply because the design
entry method you have chosen is not supported in a newer generation of design tools.
Using a standard language also means that you are more likely to be able to take

http://www.acc-eda.com/vhdlref/refguide/language_overview/language_overview.htm (1 of 5) [12/19/2004 12:08:35 PM]

Language Overview

advantage of the most up-to-date design tools and that you will have access to a
knowledge base of thousands of other engineers, many of whom are solving problems
similar to your own.

A brief history of VHDL
VHDL, which stands for VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language, was developed in the early 1980s as a spin-off of a high-speed
integrated circuit research project funded by the U.S. Department of Defense. During
the VHSIC program, researchers were confronted with the daunting task of describing
circuits of enormous scale (for their time) and of managing very large circuit design
problems that involved multiple teams of engineers. With only gate-level design tools
available, it soon became clear that better, more structured design methods and tools
would be needed.

To meet this challenge, a team of engineers from three companies — IBM, Texas
Instruments and Intermetrics — were contracted by the Department of Defense to
complete the specification and implementation of a new, language-based design
description method. The first publicly available version of VHDL, version 7.2, was
released in 1985. In 1986, the Institute of Electrical and Electronics Engineers, Inc.
(IEEE) was presented with a proposal to standardize the language, which it did in
1987 after substantial enhancements and modifications were made by a team of
commercial, government and academic representatives. The resulting standard, IEEE
1076-1987, is the basis for virtually every simulation and synthesis product sold today.
An enhanced and updated version of the language, IEEE 1076-1993, was released in
1994, and VHDL tool vendors have been responding by adding these new language
features to their products.

Although IEEE Standard 1076 defines the complete VHDL language, there are
aspects of the language that make it difficult to write completely portable design
descriptions (descriptions that can be simulated identically using different vendors’
tools). The problem stems from the fact that VHDL supports many abstract data types,
but it does not address the simple problem of characterizing different signal strengths
or commonly used simulation conditions such as unknowns and high-impedance.

Soon after IEEE 1076-1987 was adopted, simulator companies began enhancing
VHDL with new, non-standard types to allow their customers to accurately simulate
complex electronic circuits. This caused problems because design descriptions
entered into one simulator were often incompatible with other simulation
environments. VHDL was quickly becoming a nonstandard.

http://www.acc-eda.com/vhdlref/refguide/language_overview/language_overview.htm (2 of 5) [12/19/2004 12:08:35 PM]

Language Overview

To get around the problem of nonstandard data types, another standard was
developed by an IEEE committee. This standard, numbered 1164, defines a standard
package (a VHDL feature that allows commonly used declarations to be collected into
an external library) containing definitions for a standard nine-valued data type. This
standard data type is called std_logic, and the IEEE 1164 package is often referred
to as the Standard Logic package.

The IEEE 1076-1987 and IEEE 1164 standards together form the complete VHDL
standard in widest use today. (IEEE 1076-1993 is slowly working its way into the
VHDL mainstream, but it does not add significant new features for synthesis users.)

Standard 1076.3 (often called the Numeric Standard or Synthesis Standard) defines
standard packages and interpretations for VHDL data types as they relate to actual
hardware. This standard, which was released at the end of 1995, is intended to
replace the many custom (nonstandard) packages that vendors of synthesis tools
have created and distributed with their products.

IEEE Standard 1076.3 does for synthesis users what IEEE 1164 did for simulation
users: increase the power of Standard 1076, while at the same time ensuring
compatibility between different vendors’ tools. The 1076.3 standard includes, among
other things:

1) A documented hardware interpretation of values belonging to the bit and
boolean types defined by IEEE Standard 1076, as well as interpretations of
the std_ulogic type defined by IEEE Standard 1164.
2) A function that provides "don’t care" or "wild card" testing of values based
on the std_ulogic type. This is of particular use for synthesis, since it is often
helpful to express logic in terms of "don’t care" values.
3) Definitions for standard signed and unsigned arithmetic data types, along
with arithmetic, shift, and type conversion operations for those types.

The annotation of timing information to a simulation model is an important aspect of
accurate digital simulation. The VHDL 1076 standard describes a variety of language
features that can be used for timing annotation. However, it does not describe a
standard method for expressing timing data outside of the timing model itself.

The ability to separate the behavioral description of a simulation model from the timing
specifications is important for many reasons. One of the major strengths of Verilog
HDL (VHDL’s closest rival) is the fact that Verilog HDL includes a feature specifically
intended for timing annotation. This feature, the Standard Delay Format, or SDF,

http://www.acc-eda.com/vhdlref/refguide/language_overview/language_overview.htm (3 of 5) [12/19/2004 12:08:35 PM]

Language Overview

allows timing data to be expressed in a tabular form and included into the Verilog
timing model at the time of simulation.

The IEEE 1076.4 standard, published by the IEEE in late 1995, adds this capability to
VHDL as a standard package. A primary impetus behind this standard effort (which
was dubbed VITAL, for VHDL Initiative Toward ASIC Libraries) was to make it easier
for ASIC vendors and others to generate timing models applicable to both VHDL and
Verilog HDL. For this reason, the underlying data formats of IEEE 1076.4 and
Verilog’s SDF are quite similar.

When should you use VHDL?
Why choose to use VHDL for your design efforts? There are many likely reasons. If
you ask most VHDL tool vendors this question, the first answer you will get is, "It will
improve your productivity." But just what does this mean? Can you really expect to get
your projects done faster using VHDL than by using your existing design methods?

The answer is yes, but probably not the first time you use it, and only if you apply
VHDL in a structured manner. VHDL (like a structured software design language) is
most beneficial when you use a structured, top-down approach to design. Real
increases in productivity will come later, when you have climbed higher on the VHDL
learning curve and have accumulated a library of reusable VHDL components.

Productivity increases will also occur when you begin to use VHDL to enhance
communication between team members and when you take advantage of the more
powerful tools for simulation and design verification that are available. In addition,
VHDL allows you to design at a more abstract level. Instead of focusing on a gate-
level implementation, you can address the behavioral function of the design.

How will VHDL increase your productivity? By making it easy to build and use libraries
of commonly-used VHDL modules. VHDL makes design reuse feel natural. As you
discover the benefits of reusable code, you will soon find yourself thinking of ways to
write your VHDL statements in ways that make them general purpose. Writing
portable code will become an automatic reflex.

Another important reason to use VHDL is the rapid pace of development in electronic
design automation (EDA) tools and in target technologies. Using a standard language
such as VHDL can greatly improve your chances of moving into more advanced tools
(for example, from a basic low-cost simulator to a more advanced one) without having
to re-enter your circuit descriptions. Your ability to retarget circuits to new types of
device targets (for example, ASICs, FPGAs, and complex PLDs) will also be improved

http://www.acc-eda.com/vhdlref/refguide/language_overview/language_overview.htm (4 of 5) [12/19/2004 12:08:35 PM]

Language Overview

by using a standard design entry method.

See also

 A First Look at VHDL
 VHDL Keywords
 VHDL Examples Gallery

http://www.acc-eda.com/vhdlref/refguide/language_overview/language_overview.htm (5 of 5) [12/19/2004 12:08:35 PM]

PeakVHDL VHDL Language Guide

Welcome to the VHDL
Language Guide

The sections below provide detailed
information about the VHDL language. If you
are new to VHDL, we suggest you begin with
the Language Overview and A First Look at
VHDL sections.

 The main sections of this guide are listed
below:

 Language Overview
 A First Look at VHDL
 Objects, Data Types and Operators
 Using Standard Logic
 Concurrent Statements
 Sequential Statements
 Modularity Features
 Partitioning Features
 Test Benches

 Keyword Reference
 Examples Gallery

Copyright (c) 2000-2001, Altium Limited. All
rights reserved. PeakVHDL is a trademark of
Altium Limited. For more information visit
www.altium.com

http://www.acc-eda.com/vhdlref/refguide/vhdlref.htm [12/19/2004 12:08:35 PM]

http://www.altium.com/

A First Look at VHDL

A First Look at VHDL

To help put VHDL into a proper context and emphasize its use as a design entry
language, this section presents several small circuits and shows how they can be
described for synthesis and testing.

In addition to the quick introduction to VHDL presented in this section, there are some
very important concepts that will be introduced. Perhaps the most important concepts
to understand in VHDL are those of concurrency and hierarchy. Since these concepts
are so important (and may be new to you), we will introduce both concurrency and
hierarchy in these initial examples. First, though, we will present a very simple
example so you can see what constitutes the minimum VHDL source file.

As you look at these examples and read the information in this section, you will begin
to understand some of the most important concepts of VHDL, and you will have a
better understanding of how the more advanced features of the language can be
used.

 Simple Example: A Comparator
 First Look: Entities and Architectures
 First Look: Data Types
 First Look: Design Units
 First Look: Levels of Abstraction
 First Look: Sample Circuit

See also

 Examples Gallery

http://www.acc-eda.com/vhdlref/refguide/language_overview/a_first_look_at_vhdl/a_first_look_at_vhdl.htm [12/19/2004 12:08:37 PM]

Objects, Data Types and Operators

Objects, Data Types and Operators

VHDL includes a number of language elements, collectively called objects, that can be
used to represent and store data in the system being described. The three basic types
of objects that you will use when entering a design description for synthesis or
creating functional tests (in the form of a test bench) are signals, variables and
constants. Each object that you declare has a specific data type (such as bit or
integer) and a unique set of possible values.

The values that an object can take will depend on the definition of the type used for
that object. For example, an object of type bit has only two possible values, '0' and '1',
while an object of type real has many possible values (floating point numbers within a
precision and range defined by the VHDL standard and by the specific simulator you
are using).

When an explicit value is specified (such as when you are assigning a value to a
signal or variable, or when you are passing a value as a parameter to a subprogram),
that value is represented in the form of a literal.

 Using Signals
 Using Variables
 Using Constants and Literals
 Understanding Types and Subtypes
 Understanding VHDL Operators
 Understanding VHDL Attributes
 Type Conversions and Type Marks

http://www.acc-eda.com/vhdlref/refguide/language_ove..._and_operators/objects__data_types_and_operators.htm [12/19/2004 12:08:37 PM]

Using Standard Logic

Using Standard Logic

In this section we’ll take a close look at two important standards that augment
Standard 1076, adding important capabilities for both simulation and synthesis. These
two standards are IEEE Standards 1164 and 1076.3.

 IEEE Standard 1164
 Using The Standard Logic Package
 Type Conversion and Standard Logic
 Standard Logic Data Types
 Standard Logic Operators
 Standard Logic Type Conversions
 Edge Detection and Other Functions
 Standard 1076.3 (The Numeric Standard)

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/language_ove...s__data_types_and_operators/using_standard_logic.htm [12/19/2004 12:08:37 PM]

Concurrent Statements

Concurrent Statements

In the following sections we will examine the concept of concurrency as it is
implemented in the VHDL language and in VHDL simulators. We will also explore
some of the concurrent language features of VHDL in more detail and learn how
combinational and registered logic can be described using these features. In addition,
we will look briefly at how timing delays are annotated to concurrent assignments in
VHDL, so you will have a better understanding of how simulation models are
constructed.

 The Concurrent Area
 Concurrent Signal Assignments
 Conditional Signal Assignment
 Selected Signal Assignment
 Conditional vs. Selected Assignment
 Procedure Calls
 Generate Statements
 Concurrent Processes
 Component Instantiations
 Port and Generic Mapping
 Delay Specifications
 Signal Drivers

See also

 Sequential Statements
 Blocks

http://www.acc-eda.com/vhdlref/refguide/language_overview/concurrent_statements/concurrent_statements.htm [12/19/2004 12:08:38 PM]

Sequential Statements

Sequential Statements

Sequential VHDL statements allow you to describe the operation, or behavior, of your
circuit as a sequence of related events. Such descriptions are natural for order-
dependent circuits such as state machines and for complex combinational logic that
involves some priority of operations. The use of sequential statements to describe
combinational logic implies that our use of the term sequential in VHDL is somewhat
different from the term as it is often used to describe digital logic. Specifically,
sequential statements written in VHDL do not necessarily represent sequential digital
logic circuits. As we will see, it is possible (and quite common) to write sequential
VHDL statements, using processes and subprograms, to describe what is essentially
combinational logic.

In this chapter we will look at examples of both registered logic and combinational
logic described using sequential statements. We will also examine the various types of
sequential statements available in VHDL. Our primary focus will be on those styles of
sequential VHDL that are most appropriate for synthesizable design descriptions and
for test benches. We will also touch on issues related to delay specifications and the
order in which processes are analyzed—issues closely related to sequential VHDL.

Sequential statements are found within processes, functions, and procedures.
Sequential statements differ from concurrent statements in that they have order
dependency. This order dependency may or may not imply a sequential circuit (one
involving memory elements).

 The Process Statement
 Sequential Statements in Subprograms
 Signal and Variable Assignments
 If-Then-Else Statements
 Case Statements
 Loops

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/sequential_statements.htm [12/19/2004 12:08:38 PM]

Modularity Features

Modularity Features

Modular (or structured) programming is a technique that you can use to enhance your
own design productivity, as well as that of your design team. A modular design
approach allows commonly-used segments of VHDL code to be re-used. It also
enhances design readability.

VHDL includes many features that can help you create modular designs. In this
section we will look at features that allow you to quickly and easily create reusable
segments of your design, based on methods similar to those used in software
programming languages.

 Functions and Procedures
 Declaring a Global Subprogram
 Declaring a Local Subprogram
 Functions
 Subprogram Overloading
 Procedures
 Parameter Types
 Mapping of Parameters

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/modularity_features.htm [12/19/2004 12:08:39 PM]

Partitioning Features

Partitioning Features

VHDL provides many high-level features to help you manage a complex design
description. In fact, design management is one of VHDL’s key strengths when
compared to alternative design entry languages and methods.

The modularity features (procedures and functions) that we have seen in previous
chapters are one aspect of design management, allowing commonly-used
declarations and sequential statements to be collected in one place. Design
partitioning is another important aspect of design management. Design partitioning
goes beyond simpler design modularity methods to provide comprehensive design
management across multiple projects and allow alternative structural implementations
to be tried out with minimal effort.

Design partitioning is particularly useful for those designs being developed in a team
environment, as it promotes cooperative design efforts and well-defined system
interfaces.

 Blocks
 Packages
 Design Libraries
 Components
 Configurations

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/partitioning_features.htm [12/19/2004 12:08:39 PM]

Test Benches

Test Benches

While much of this document has focused on the uses of VHDL for design description
and synthesis, one of the primary reasons to use VHDL is its power as a test stimulus
language. As logic designs become more complex, comprehensive, up-front
verification becomes critical to the success of a design project. In fact, as you become
proficient with simulation, you will quickly find that your VHDL simulator becomes your
primary design development tool. When simulation is used right at the start of the
project, you will have a much easier time with synthesis, and you will spend far less
time re-running time-intensive processes, such as FPGA place-and-route tools and
other synthesis-related software.

To simulate your project, you will need to develop an additional VHDL program called
a test bench. (Some VHDL simulators include a command line stimulus language, but
these features are no replacement for a true test bench.) Test benches emulate a
hardware breadboard into which you will "install" your synthesizable design
description for the purpose of verification. Test benches can be quite simple, applying
a sequence of inputs to the circuit over time. They can also be quite complex, perhaps
even reading test data from a disk file and writing test results to the screen and to a
report file. A comprehensive test bench can, in fact, be more complex and lengthy
(and take longer to develop) than the synthesizable circuit being tested. As you will
begin to appreciate while reading this chapter, test bench development will be where
you make use of the full power of VHDL and your own skills as a VHDL "coder".

Depending on your needs (and whether timing information related to your target
device technology is available), you may develop one or more test benches to verify
the design functionally (with no delays), to check your assumptions about timing
relationships (using estimates or unit delays), or to simulate with annotated post-route
timing information so you can verify that your circuit will operate in-system at speed.

During simulation, the test bench will be the top level of a design hierarchy. To the
simulator, there is no distinction between those parts of the design that are being
tested and the test bench itself.

In most of this book, we have been emphasizing those aspects of the VHDL language
that are synthesizable. In doing so, we have actually seen only a subset of the VHDL
language in the examples presented. When writing test benches, you will most likely
use a broader range of language features. You may use records and multi-

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/test_benches.htm (1 of 2) [12/19/2004 12:08:39 PM]

Test Benches

dimensional arrays to describe test stimuli, write loops, create subprograms to simplify
repetitive actions, and/or use VHDL's text I/O features to read and write files of data.

 A Simple Test Bench
 Using Assert Statements
 Using Loops and Multiple Processes
 Writing Test Vectors
 Reading and Writing Files with Text I/O

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/test_benches.htm (2 of 2) [12/19/2004 12:08:39 PM]

VHDL Keywords

VHDL Keywords

The topics in this section give full syntax and usage information for VHDL Keywords.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Keyword: ABS
Keyword: ACCESS
Keyword: AFTER
Keyword: ALIAS
Keyword: ALL
Keyword: AND
Keyword: ARCHITECTURE
Keyword: ARRAY
Keyword: ASSERT
Keyword: ATTRIBUTE
Keyword: BEGIN
Keyword: BLOCK
Keyword: BODY
Keyword: BUFFER
Keyword: BUS
Keyword: CASE
Keyword: COMPONENT
Keyword: CONFIGURATION
Keyword: CONSTANT
Keyword: DISCONNENT
Keyword: DOWNTO
Keyword: ELSE
Keyword: ELSIF
Keyword: END
Keyword: END BLOCK
Keyword: END CASE
Keyword: END COMPONENT
Keyword: END FOR
Keyword: END GENERATE

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/vhdl_keywords.htm (1 of 4) [12/19/2004 12:08:40 PM]

VHDL Keywords

Keyword: END IF
Keyword: END LOOP
Keyword: END PROCESS
Keyword: END RECORD
Keyword: END UNITS
Keyword: ENTITY
Keyword: EXIT
Keyword: FILE
Keyword: FOR
Keyword: FUNCTION
Keyword: GENERATE
Keyword: GENERIC
Keyword: GENERIC MAP
Keyword: GROUP
Keyword: GUARDED
Keyword: IF
Keyword: IMPURE
Keyword: IN
Keyword: INERTIAL
Keyword: INOUT
Keyword: IS
Keyword: LABEL
Keyword: LIBRARY
Keyword: LINKAGE
Keyword: LITERAL
Keyword: LOOP
Keyword: MAP
Keyword: MOD
Keyword: NAND
Keyword: NEW
Keyword: NEXT
Keyword: NOR
Keyword: NULL
Keyword: OF
Keyword: ON
Keyword: OPEN

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/vhdl_keywords.htm (2 of 4) [12/19/2004 12:08:40 PM]

VHDL Keywords

Keyword: OR
Keyword: OTHERS
Keyword: OUT
Keyword: PACKAGE
Keyword: PACKAGE BODY
Keyword: PORT
Keyword: PORT MAP
Keyword: POSTPONED
Keyword: PROCEDURE
Keyword: PROCESS
Keyword: PURE
Keyword: RANGE
Keyword: RECORD
Keyword: REGISTER
Keyword: REJECT
Keyword: REM
Keyword: REPORT
Keyword: RETURN
Keyword: ROL
Keyword: ROR
Keyword: SELECT
Keyword: SEVERITY
Keyword: SIGNAL
Keyword: SLA
Keyword: SLL
Keyword: SRA
Keyword: SRL
Keyword: SUBTYPE
Keyword: THEN
Keyword: TO
Keyword: TRANSPORT
Keyword: TYPE
Keyword: UNAFFECTED
Keyword: UNITS
Keyword: UNTIL
Keyword: USE

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/vhdl_keywords.htm (3 of 4) [12/19/2004 12:08:40 PM]

VHDL Keywords

Keyword: VARIABLE
Keyword: WAIT
Keyword: WHEN
Keyword: WHILE
Keyword: WITH
Keyword: XNOR
Keyword: XOR

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/vhdl_keywords.htm (4 of 4) [12/19/2004 12:08:40 PM]

VHDL Examples Gallery

VHDL Examples Gallery

The examples in this section are provided to help you understand specific features of
the VHDL language. In many cases these examples have been simplified for clarity
and do not represent actual production designs. You are encouraged to copy and
modify these examples as needed as you develop your own VHDL designs.

To view the source files for a particular example, click on the example name at left.

Example Name Description
Shifter Simple behavioral example. Demonstrates use of a

process for defining registered logic.
Tcount T flip-flop Counter described using components and

hierarchy.
Video State machine and large counter example. Demonstrates

Moore-type state machine design and large counter.
Parity Parity generator. Demonstrates the use of generate

statements.
Fib93 Fibonacci sequence generator. Demonstrates the use of

text I/O for a test bench.
Crc8s CRC generator example. Demonstrates the use of

records to describe stimulus.

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/vhdl_examples_gallery.htm [12/19/2004 12:08:40 PM]

Welcome to the VHDL Language Guide

Welcome to the VHDL Language Guide

The sections below provide detailed information about the VHDL language. If you are
new to VHDL, we suggest you begin with the Language Overview and A First Look at
VHDL sections.

 The main sections of this guide are listed below:

 Language Overview
 A First Look at VHDL
 Objects, Data Types and Operators
 Using Standard Logic
 Concurrent Statements
 Sequential Statements
 Modularity Features
 Partitioning Features
 Test Benches

 Keyword Reference
 Examples Gallery

Copyright (c) 2000-2001, Altium Limited. All rights reserved. PeakVHDL is a
trademark of Altium Limited. For more information visit www.altium.com

http://www.acc-eda.com/vhdlref/refguide/contents.htm [12/19/2004 12:08:41 PM]

http://www.altium.com/

Simple Example: A Comparator

Simple Example: A Comparator

We’ll start this section by looking at a very simple combinational circuit: an 8-bit
comparator. This comparator accepts two 8-bit inputs, compares them, and produces
a 1-bit result (either 1, indicating a match, or 0, indicating a difference between the two
input values).

A comparator such as this is a combinational function constructed in circuitry from an
arrangement of exclusive-OR gates or from some other lower-level structure,
depending on the capabilities of the target technology. When described in VHDL,
however, a comparator can be a simple language statement that makes use of
VHDL’s built-in relational operators.

Comparator source file
VHDL includes many high-level language features that allow you to describe
combinational logic circuits. The following VHDL source code uses a single concurrent
assignment to describe the operation of our comparator:

-- Eight-bit comparator
--
entity compare is
 port(A, B: in bit_vector(0 to 7);
 EQ: out bit);
end compare;

architecture compare1 of compare is
begin

 EQ <= ‘1’ when (A = B) else ‘0’;

end compare1;

Note: In this and other VHDL source files listed in this document, VHDL keywords are
highlighted in bold face type. In some VHDL books and software documents,
keywords are highlighted by using upper case characters for keywords and lower case
characters for identifiers. Some other books and manuals use lower case for keywords
and upper case for identifiers. Whatever forms you encounter or choose to use, keep
in mind that VHDL itself is case-insensitive: keywords can be entered using either

http://www.acc-eda.com/vhdlref/refguide/language...st_look_at_vhdl/simple_example__a_comparator.htm (1 of 2) [12/19/2004 12:08:41 PM]

Simple Example: A Comparator

upper or lower case, and identifiers (such as signal and variable names) may be
entered in either case as well, with no distinction being made between identifiers that
are written in either case.

One more note: In the above context, the VHDL symbol <= is an assignment operator
that assigns the value on its right to the signal on its left. Any text that follows "--" is a
comment and is used for documentation only.

Now let’s look more closely at this source file. Reading from the top, we see the
following elements:

• An entity declaration that defines the inputs and outputs—the ports—of this
circuit; and
• An architecture declaration that defines what the circuit actually does, using
a single concurrent assignment.

http://www.acc-eda.com/vhdlref/refguide/language...st_look_at_vhdl/simple_example__a_comparator.htm (2 of 2) [12/19/2004 12:08:41 PM]

First Look: Entities and Architectures

First Look: Entities and Architectures

Every VHDL design description consists of at least one entity/architecture pair. (In
VHDL jargon, this combination of an entity and its corresponding architecture is
sometimes referred to as a design entity.) In a large design, you will typically write
many entity/architecture pairs and connect them together to form a complete circuit.

An entity declaration describes the circuit as it appears from the "outside" - from the
perspective of its input and output interfaces. If you are familiar with schematics, you
might think of the entity declaration as being analogous to a block symbol on a
schematic.

The second part of a minimal VHDL design description is the architecture declaration.
Before simulation or synthesis can proceed, every referenced entity in a VHDL design
description must be bound with a corresponding architecture. The architecture
describes the actual function—or contents—of the entity to which it is bound. Using
the schematic as a metaphor, you can think of the architecture as being roughly
analogous to a lower-level schematic referenced by the higher-level functional block
symbol.

Entity declaration
An entity declaration provides the complete interface for a circuit. Using the
information provided in an entity declaration (the names, data types and direction of
each port), you have all the information you need to connect that portion of a circuit
into other, higher-level circuits, or to develop input stimuli (in the form of a test bench)
for verification purposes. The actual operation of the circuit, however, is not included
in the entity declaration.

Let’s take a closer look at the entity declaration for this simple design description:

entity compare is
 port(A, B: in bit_vector(0 to 7);
 EQ: out bit);
end compare;

The entity declaration includes a name, compare, and a port statement defining all
the inputs and outputs of the entity. The port list includes definitions of three ports: A,
B, and EQ. Each of these three ports is given a direction (either in, out or inout), and

http://www.acc-eda.com/vhdlref/refguide/language_o...at_vhdl/first_look__entities_and_architectures.htm (1 of 3) [12/19/2004 12:08:41 PM]

First Look: Entities and Architectures

a type (in this case either bit_vector(0 to 7), which specifies an 8-bit array, or bit,
which represents a single-bit value).

There are many different data types available in VHDL, and we will cover these types
in more detail in other sections of this document. To simplify things in this introductory
circuit, we’re going to stick with the simplest data types in VHDL, which are bit and
bit_vector.

Architecture declaration and body
The second part of a minimal VHDL source file is the architecture declaration. Every
entity declaration you reference in your design must be accompanied by at least one
corresponding architecture (we’ll discuss why you might have more than one
architecture in a moment).

Here’s the architecture declaration for the comparator circuit:

architecture compare1 of compare is
begin

 EQ <= ‘1’ when (A = B) else ‘0’;

end compare1;

The architecture declaration begins with a unique name, compare1, followed by the
name of the entity to which the architecture is bound, in this case compare. Within the
architecture declaration (between the begin and end keywords) is found the actual
functional description of our comparator. There are many ways to describe
combinational logic functions in VHDL; the method used in this simple design
description is a type of concurrent statement known as a conditional assignment. This
assignment specifies that the value of the output (EQ) will be assigned a value of ‘1’
when A and B are equal, and a value of ‘0’ when they differ.

This single concurrent assignment demonstrates the simplest form of a VHDL
architecture. As you will see, there are many different types of concurrent statements
available in VHDL, allowing you to describe very complex architectures. Hierarchy and
subprogram features of the language allow you to include lower-level components,
subroutines and functions in your architectures, and a powerful statement known as a
process allows you to describe complex registered sequential logic as well.

http://www.acc-eda.com/vhdlref/refguide/language_o...at_vhdl/first_look__entities_and_architectures.htm (2 of 3) [12/19/2004 12:08:41 PM]

First Look: Entities and Architectures

See also
 First Look: Design Units
 Conditional Assignment
 Entity Keyword

http://www.acc-eda.com/vhdlref/refguide/language_o...at_vhdl/first_look__entities_and_architectures.htm (3 of 3) [12/19/2004 12:08:41 PM]

First Look: Data Types

First Look: Data Types

Like a high-level software programming language, VHDL allows data to be
represented in terms of high-level data types. A data type is an abstract representation
of stored data, such as you might encounter in software languages. These data types
might represent individual wires in a circuit, or they might represent collections of
wires.

The preceding description of the comparator circuit used the data types bit and
bit_vector for its inputs and outputs. The bit data type has only two possible values:
‘1’ or ‘0’. (A bit_vector is simply an array of bits.) Every data type in VHDL has a
defined set of values, and a defined set of valid operations. Type checking is strict, so
it is not possible, for example, to directly assign the value of an integer data type to a
bit_vector data type. (There are ways to get around this restriction, using what are
called type conversion functions. These are discussed in the section Objects, Data
Types and Operators.

The chart below summarizes the fundamental data types available in VHDL. The
section Using Standard Logic, describes additional standard data types available in
VHDL.

Data Type Values Example
Bit ‘1’, ‘0’ Q <= ‘1’;
Bit_vector (array of bits) DataOut <= "00010101";
Boolean True, False EQ <= True;
Integer -2, -1, 0, 1, 2, 3, 4 . . . Count <= Count + 2;
Real 1.0, -1.0E5 V1 = V2 / 5.3
Time 1 ua, 7 ns, 100 ps Q <= ‘1’ after 6 ns;
Character ‘a’, ‘b’, ‘2, ‘$’, etc. CharData <= ‘X’;
String (Array of characters) Msg <= "MEM: " & Addr

Note: The VHDL symbol <= is an assignment operator that assigns the value(s) on its
right to the variable on its left.

See also

 First Look: Sample Design

http://www.acc-eda.com/vhdlref/refguide/language_o...ew/a_first_look_at_vhdl/first_look__data_types.htm (1 of 2) [12/19/2004 12:08:42 PM]

First Look: Data Types

 Objects, Data Types and Operators
 Type Conversions and Type Marks
 VHDL Operators

http://www.acc-eda.com/vhdlref/refguide/language_o...ew/a_first_look_at_vhdl/first_look__data_types.htm (2 of 2) [12/19/2004 12:08:42 PM]

First Look: Design Units

First Look: Design Units

One concept unique to VHDL (when compared to software programming languages
and to its main rival, Verilog) is the concept of a design unit. Design units in VHDL
(which may also be referred to as library units) are segments of VHDL code that can
be compiled separately and stored in a library.

You have been introduced to two design units already: the entity and the architecture.
There are actually five types of design units in VHDL; entities, architectures,
packages, package bodies, and configurations. Entities and architectures are the only
two design units that you must have in any VHDL design description. Packages and
configurations are optional.

Entities
A VHDL entity is a statement (indicated by the entity keyword) that defines the
external specification of a circuit or sub-circuit. The minimum VHDL design description
must include at least one entity and one corresponding architecture.

When you write an entity declaration, you must provide a unique name for that entity
and a port list defining the input and output ports of the circuit. Each port in the port list
must be given a name, direction (or mode, in VHDL jargon) and a type. Optionally, you
may also include a special type of parameter list (called a generic list) that allows you
to pass additional information into an entity.

An example of an entity declaration is given below:

entity fulladder is
 port (X: in bit;
 Y: in bit;
 Cin: in bit;
 Cout: out bit;
 Sum: out bit);
end fulladder;

Architectures
A VHDL architecture declaration is a statement (beginning with the architecture
keyword) that describes the underlying function and/or structure of a circuit. Each

http://www.acc-eda.com/vhdlref/refguide/language_o.../a_first_look_at_vhdl/first_look__design_units.htm (1 of 4) [12/19/2004 12:08:42 PM]

First Look: Design Units

architecture in your design must be associated (or bound) by name with one entity in
the design.

VHDL allows you to create more than one alternate architecture for each entity. This
feature is particularly useful for simulation and for project team environments in which
the design of the system interfaces (expressed as entities) is performed by a different
engineer than the lower-level architectural description of each component circuit, or
when you simply want to experiment with different methods of description.

An architecture declaration consists of zero or more declarations (of items such as
intermediate signals, components that will be referenced in the architecture, local
functions and procedures, and constants) followed by a begin statement, a series of
concurrent statements, and an end statement, as illustrated by the following example:

architecture concurrent of fulladder is
begin
 Sum <= X xor Y xor Cin;
 Cout <= (X and Y) or (X and Cin) or (Y and Cin);
end concurrent;

Packages and package bodies
A VHDL package declaration is identified by the package keyword, and is used to
collect commonly-used declarations for use globally among different design units. You
can think of a package as a common storage area, one used to store such things as
type declarations, constants, and global subprograms. Items defined within a package
can be made visible to any other design unit in the complete VHDL design, and they
can be compiled into libraries for later re-use.

A package can consist of two basic parts: a package declaration and an optional
package body. Package declarations can contain the following types of statements:

• Type and subtype declarations
• Constant declarations
• Global signal declarations
• Function and procedure declarations
• Attribute specifications
• File declarations
• Component declarations
• Alias declarations
• Disconnect specifications

http://www.acc-eda.com/vhdlref/refguide/language_o.../a_first_look_at_vhdl/first_look__design_units.htm (2 of 4) [12/19/2004 12:08:42 PM]

First Look: Design Units

• Use clauses

Items appearing within a package declaration can be made visible to other design
units through the use of a use statement, as we will see.

If the package contains declarations of subprograms (functions or procedures) or
defines one or more deferred constants (constants whose value is not immediately
given), then a package body is required in addition to the package declaration. A
package body (which is specified using the package body keyword
combination) must have the same name as its corresponding package declaration,
but it can be located anywhere in the design, in the same or a different source file.

The relationship between a package and package body is somewhat akin to the
relationship between an entity and its corresponding architecture. (There may be only
one package body written for each package declaration, however.) While the package
declaration provides the information needed to use the items defined within it (the
parameter list for a global procedure, or the name of a defined type or subtype), the
actual behavior of such things as procedures and functions must be specified within
package bodies.

An example of a package is given below:

package conversion is
 function to_vector (size: integer; num: integer) return std_logic_vector;
end conversion;

package body conversion is
 function to_vector(size: integer; num: integer) return std_logic_vector is
 variable ret: std_logic_vector (1 to size);
 variable a: integer;
 begin
 a := num;
 for i in size downto 1 loop
 if ((a mod 2) = 1) then
 ret(i) := ‘1’;
 else
 ret(i) := ‘0’;
 end if;
 a := a / 2;
 end loop;

http://www.acc-eda.com/vhdlref/refguide/language_o.../a_first_look_at_vhdl/first_look__design_units.htm (3 of 4) [12/19/2004 12:08:42 PM]

First Look: Design Units

 return ret;
 end to_vector;
end conversion;

Examples of global procedures and functions can be found in the section Modularity
Features.

Configurations
The final type of design unit available in VHDL is called a configuration declaration.
You can think of a configuration declaration as being roughly analogous to a parts list
for your design. A configuration declaration (identified with the configuration
keyword) specifies which architectures are to be bound to which entities, and it allows
you to change how components are connected in your design description at the time
of simulation. (Configurations are not generally used for synthesis, and may not be
supported in the synthesis tool that you will use.)

Configuration declarations are always optional, no matter how complex a design
description you create. In the absence of a configuration declaration, the VHDL
standard specifies a set of rules that provide you with a default configuration. For
example, in the case where you have provided more than one architecture for an
entity, the last architecture compiled will take precedence and will be bound to the
entity.

A simple example of a configuration is given below:

configuration this_build of rcomp is
 for structure
 for COMP1: compare use entity work.compare(compare1);
 for ROT1: rotate use entity work.rotate(rotate1);
 end for;
end this_build;

http://www.acc-eda.com/vhdlref/refguide/language_o.../a_first_look_at_vhdl/first_look__design_units.htm (4 of 4) [12/19/2004 12:08:42 PM]

First Look: Levels of Abstraction

First Look: Levels of Abstraction

VHDL supports many possible styles of design description. These styles differ
primarily in how closely they relate to the underlying hardware. When we speak of the
different styles of VHDL, we are really talking about the differing levels of abstraction
possible using the language—behavior, dataflow, and structure.

Suppose the performance specifications for a given project are: "the compressed data
coming out of the DSP chip needs to be analyzed and stored within 70 nanoseconds
of the strobe signal being asserted..." This human language specification must be
refined into a description that can actually be simulated. A test bench written in
combination with a sequential description is one such expression of the design. These
are all points in the behavior level of abstraction.

After this initial simulation, the design must be further refined until the description is
something a VHDL synthesis tool can digest. Synthesis is a process of translating an
abstract concept into a less-abstract form. The highest level of abstraction accepted
by today’s synthesis tools is the dataflow level.

The structure level of abstraction comes into play when little chunks of circuitry are to
be connected together to form bigger circuits. (If the little chunks being connected are
actually quite large chunks, then the result is what we commonly call a block
diagram.) Physical information is the most basic level of all and is outside the scope
of VHDL. This level involves actually specifying the interconnects of transistors on a
chip, placing and routing macrocells within a gate array or FPGA, etc.

Note: In some formal discussions of synthesis, four levels of abstraction are
described; behavior, RTL, gate-level and layout. It is our view that the three levels of
abstraction presented here provide the most useful distinctions for today’s synthesis
user.

As an example of these three levels of abstraction, it is possible to describe a complex
controller circuit in a number of ways. At the lowest level of abstraction (the structural
level), we could use VHDL’s hierarchy features to connect a sequence of predefined
logic gates and flip-flips to form the complete circuit. To describe this same circuit at a
dataflow level of abstraction, we might describe the combinational logic portion of the
controller (its input decoding and transition logic) using higher-level Boolean logic
functions and then feed the output of that logic into a set of registers that match the

http://www.acc-eda.com/vhdlref/refguide/language_o...look_at_vhdl/first_look__levels_of_abstraction.htm (1 of 5) [12/19/2004 12:08:43 PM]

First Look: Levels of Abstraction

registers available in some target technology. At the behavioral level of abstraction,
we might ignore the target technology (and the requirements of synthesis tools)
entirely and instead describe how the controller operates over time in response to
various types of stimulus.

Behavior
The highest level of abstraction supported in VHDL is called the behavioral level of
abstraction. When creating a behavioral description of a circuit, you will describe your
circuit in terms of its operation over time. The concept of time is the critical distinction
between behavioral descriptions of circuits and lower-level descriptions (specifically
descriptions created at the dataflow level of abstraction).

Examples of behavioral forms of representation might include state diagrams, timing
diagrams and algorithmic descriptions.

In a behavioral description, the concept of time may be expressed precisely, with
actual delays between related events (such as the propagation delays within gates
and on wires), or it may simply be an ordering of operations that are expressed
sequentially (such as in a functional description of a flip-flop). When you are writing
VHDL for input to synthesis tools, you may use behavioral statements in VHDL to
imply that there are registers in your circuit. It is unlikely, however, that your synthesis
tool will be capable of creating precisely the same behavior in actual circuitry as you
have defined in the language. (Synthesis tools today ignore detailed timing
specifications, leaving the actual timing results at the mercy of the target device
technology.) It is also unlikely that your synthesis tool will be capable of accepting and
processing a very wide range of behavioral description styles.

If you are familiar with software programming, writing behavior-level VHDL will not
seem like anything new. Just like a programming language, you will be writing one or
more small programs that operate sequentially and communicate with one another
through their interfaces. The only difference between behavior-level VHDL and a
software programming language is the underlying execution platform: in the case of
software, it is some operating system running on a CPU; in the case of VHDL, it is the
simulator and/or the synthesized hardware.

Dataflow
In the dataflow level of abstraction, you describe your circuit in terms of how data
moves through the system. At the heart of most digital systems today are registers, so
in the dataflow level of abstraction you describe how information is passed between

http://www.acc-eda.com/vhdlref/refguide/language_o...look_at_vhdl/first_look__levels_of_abstraction.htm (2 of 5) [12/19/2004 12:08:43 PM]

First Look: Levels of Abstraction

registers in the circuit. You will probably describe the combinational logic portion of
your circuit at a relatively high level (and let a synthesis tool figure out the detailed
implementation in logic gates), but you will likely be quite specific about the placement
and operation of registers in the complete circuit.

The dataflow level of abstraction is often called register transfer logic, or RTL. This
level of abstraction is an intermediate level that allows the drudgery of combinational
logic to be simplified (and, presumably, taken care of by logic synthesis tools) while
the more important parts of the circuit, the registers, are more completely specified.

There are some drawbacks to using a dataflow method of design in VHDL. First, there
are no built-in registers in VHDL; the language was designed to be general-purpose,
and the emphasis was placed by VHDL’s designers on its behavioral aspects. If you
are going to write VHDL at the dataflow level of abstraction, you must first create (or
obtain) behavioral descriptions of the register elements you will be using in your
design. These elements must be provided in the form of components (using VHDL’s
hierarchy features) or in the form
of subprograms (functions or procedures).

But for hardware designers, it can be difficult to relate the sequential descriptions and
operation of behavioral VHDL with the hardware being described (or modeled). For
this reason, many VHDL users, particularly those who are using VHDL as an input to
synthesis, prefer to stick with levels of abstraction that are easier to relate to actual
hardware devices (such as logic gates and flip-flops). These users are often more
comfortable using the dataflow level of abstraction.

Structure
The third level of abstraction, structure, is used to describe a circuit in terms of its
components. Structure can be used to create a very low-level description of a circuit
(such as a transistor-level description) or a very high-level description (such as a block
diagram).

In a gate-level description of a circuit, for example, components such as basic logic
gates and flip-flops might be connected in some logical structure to create the circuit.
This is what is often called a netlist. For a higher-level circuit—one in which the
components being connected are larger functional blocks—structure might simply be
used to segment the design description into manageable parts.

Structure-level VHDL features, such as components and configurations, are very
useful for managing complexity. The use of components can dramatically improve

http://www.acc-eda.com/vhdlref/refguide/language_o...look_at_vhdl/first_look__levels_of_abstraction.htm (3 of 5) [12/19/2004 12:08:43 PM]

First Look: Levels of Abstraction

your ability to re-use elements of your designs, and they can make it possible to work
using a top-down design approach.

To give an example of how a structural description of a circuit relates to higher levels
of abstraction, consider the design of a simple 5-bit counter. To describe such a
counter using traditional design methods, we might connect five T flip-flops with some
simple decode logic.

The following VHDL design description represents this design in the form of a netlist of
connected components:

entity andgate is
 port(A,B,C,D: in bit := ‘1’; Y: out bit);
end andgate;

architecture gate of andgate is
begin
 Y <= A and B and C and D;
end gate;

entity tff is
 port(Rst,Clk,T: in bit; Q: out bit);
end tff;

architecture behavior of tff is
begin
 process(Rst,Clk)
 variable Qtmp: bit;
 begin
 if (Rst = ‘1’) then
 Qtmp := ‘0’;
 elsif Clk = ‘1’ and Clk’event then
 if T = ‘1’ then
 Qtmp := not Qtmp;
 end if;
 end if;
 Q <= Qtmp;
 end process;
end behavior;

http://www.acc-eda.com/vhdlref/refguide/language_o...look_at_vhdl/first_look__levels_of_abstraction.htm (4 of 5) [12/19/2004 12:08:43 PM]

First Look: Levels of Abstraction

entity TCOUNT is
 port (Rst,Clk: in bit;
 Count: out bit_vector(4 downto 0));
end TCOUNT;

architecture STRUCTURE of TCOUNT is
 component tff
 port(Rst,Clk,T: in bit; Q: out bit);
 end component;
 component andgate
 port(A,B,C,D: in bit := ‘1’; Y: out bit);
 end component;
 constant VCC: bit := ‘1’;
 signal T,Q: bit_vector(4 downto 0);

begin
 T(0) <= VCC;
 T0: tff port map (Rst=>Rst, Clk=>Clk, T=>T(0), Q=>Q(0));
 T(1) <= Q(0);
 T1: tff port map (Rst=>Rst, Clk=>Clk, T=>T(1), Q=>Q(1));
 A1: andgate port map(A=>Q(0), B=>Q(1), Y=>T(2));
 T2: tff port map (Rst=>Rst, Clk=>Clk, T=>T(2), Q=>Q(2));
 A2: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), Y=>T(3));
 T3: tff port map (Rst=>Rst, Clk=>Clk, T=>T(3), Q=>Q(3));
 A3: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), D=>Q(3), Y=>T(4));
 T4: tff port map (Rst=>Rst, Clk=>Clk, T=>T(4), Q=>Q(4));

 Count <= Q;

end STRUCTURE;

This structural representation seems a straightforward way to describe a 5-bit counter,
and it is certainly easy to relate to hardware since just about any imaginable
implementation technology will have the features necessary to implement the circuit.
For larger circuits, however, such descriptions quickly become impractical.

http://www.acc-eda.com/vhdlref/refguide/language_o...look_at_vhdl/first_look__levels_of_abstraction.htm (5 of 5) [12/19/2004 12:08:43 PM]

First Look: Sample Circuit

First Look: Sample Circuit

To help demonstrate some of the important concepts we have covered in the first half
of this chapter, we will present a very simple circuit and show how the function of this
circuit can be described in VHDL. The design descriptions we will show are intended
for synthesis and therefore do not include timing specifications or other information not
directly applicable to today’s synthesis tools.

This sample circuit combines the comparator circuit presented earlier with a simple 8-
bit loadable shift register. The shift register will allow us to examine in detail how
higher-level VHDL descriptions can be written for synthesis of both combinational and
registered logic.

The two subcircuits (the shifter and comparator) will be connected using VHDL’s
hierarchy features and will demonstrate the third level of abstraction: structure.

This diagram has been intentionally drawn to look like a hierarchical schematic with
each of the lower-level circuits represented as blocks. In fact, many of the concepts
we will cover during the development of this circuit are the same concepts familiar to
users of schematic hierarchy. These concepts include the ideas of component
instantiation, mapping of ports, and design partitioning.
In a more structured project environment, you would probably enter a circuit such as
this by first defining the interface requirements of each block, then describing the
overall design of the circuit as a collection of blocks connected together through
hierarchy at the top level. Later, after the system interfaces had been designed, you
would proceed down the hierarchy (using a top-down approach to design) and fill in
the details of each subcircuit.

In this example, however, we will begin by describing each of the lower-level blocks
first and then connect them to form the complete circuit.

Comparator
The comparator portion of the design will be identical to the simple 8-bit comparator
we have already seen. The only difference is that we will use the IEEE 1164 standard
logic data types (std_logic and std_logic_vector) rather than the bit and bit_vector
data types used previously. Using standard logic data types for all system interfaces is
highly recommended, as it allows circuit elements from different sources to be easily
combined. It also provides you the opportunity to perform more detailed and precise

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (1 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

simulation than would otherwise be possible.

The updated comparator design description, using the IEEE 1164 standard logic data
types, is shown below:

-- Eight-bit comparator
--
library ieee;
use ieee.std_logic_1164.all;
entity compare is
 port (A, B: in std_logic_vector(0 to 7);
 EQ: out std_logic);
end compare;

architecture compare1 of compare is
begin
 EQ <= ‘1’ when (A = B) else ‘0’;
end compare1;

Let’s take a closer look at this simple VHDL design description. Reading from the top
of the source file, we see:

• a comment field, indicated by the leading double-dash symbol ("--"). VHDL
allows comments to be embedded anywhere in your source file, provided they
are prefaced by the two hyphen characters as shown. Comments in VHDL
extend from the double-dash symbol to the end of the current line. There is no
block comment facility in VHDL.

• a library statement that causes the named library IEEE to be loaded into
the current compile session. When you use VHDL libraries, it is
recommended that you include your library statements once at the beginning
of the source file, before any use clauses or other VHDL statements.

• a use clause, specifying which items from the IEEE library are to be made
available for the subsequent design unit (the entity and its corresponding
architecture). The general form of a use statement includes three fields
delimited by a period: the library name (in this case ieee), a design unit within
the library (normally a package, in this case named std_logic_1164), and the
specific item within that design unit (or, as in this case, the special keyword

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (2 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

all, which means everything) to be made visible.

• an entity declaration describing the interface to the comparator. Note that
we have now specified std_logic and std_logic_vector, which are standard
data types provided in the IEEE 1164 standard and in the associated IEEE
library.

• an architecture declaration describing the actual function of the comparator
circuit.

Conditional signal assignment
The function of the comparator is defined using a simple concurrent assignment to
port EQ. The type of statement used in the assignment to EQ is called a conditional
signal assignment.

Conditional signal assignments make use of the when-else language feature and
allow complex conditional logic to be described. The following VHDL description of a
multiplexer makes the use of the conditional signal assignment more clear:

architecture mux1 of mux is
begin
 Y <= A when (Sel = "00") else
 B when (Sel = "01") else
 C when (Sel = "10") else
 D when (Sel = "11");
end mux1;

Selected signal assignment
Another form of signal assignment can be used as an alternative to the conditional
signal assignment. The selected signal assignment has the following general form
(again, using a multiplexer as an example):

architecture mux2 of mux is
begin
 with Sel select
 Y <= A when "00",
 B when "01",
 C when "10",
 D when "11";

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (3 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

end mux2;

Choosing between a conditional or selected signal assignment for circuits such as this
is largely a matter of taste. For most designs, there is no difference in the results
obtained with either type of assignment statement. For some circuits, however, the
conditional signal assignment can imply priorities that result in additional logic being
required. This difference is discussed in detail in the section, Concurrent Statements.

Note: In the 1993 version of the VHDL language standard, there is one important
difference between the conditional signal assignment and a selected signal
assignment that may cause some confusion. In Standard 1076-1993, a conditional
assignment statement does not have to include a final, terminating else clause, and
the conditions specified do not have to be all-inclusive. When one or more possible
input conditions are missing from a conditional assignment, the default behavior under
those conditions is for the target signal to hold its value. This means that the
conditional assignment statement can be used to effectively create a latch. Some
synthesis tools support this use of a conditional signal assignment, while others do
not. The best advice: do not write incomplete conditional signal assignments.

Shifter (entity)
The second and most complex part of this design is the 8-bit shifter. This circuit
accepts 8-bit input data, loads this data into a register and, when the load input signal
is low, rotates this data by one bit with each rising edge clock signal. The shift register
is provided with an asynchronous reset, and the data stored in the register are
accessible via the output signal Q.

They are many ways to describe a shifter such as this in VHDL. If you are going to use
synthesis tools to process the design description into an actual device technology,
however, you must restrict yourself to well established synthesis conventions when
entering the design description. We will examine two of these conventions when
entering this design.

Using a process
The first design description that we will write for this shifter is a description that uses a
VHDL process statement to describe the behavior of the entire circuit over time. The
process is a behavioral language feature, but its use for synthesis is quite constrained,
as we will see in this and later chapters.

The VHDL source code for the shifter is shown below:

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (4 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

--
-- Eight-bit shifter
--
library ieee;
use ieee.std_logic_1164.all;
entity rotate is
 port(Clk, Rst, Load: in std_logic;
 Data: in std_logic_vector(0 to 7);
 Q: out std_logic_vector(0 to 7));
end rotate;

architecture rotate1 of rotate is
 signal Qreg: std_logic_vector(0 to 7);
begin
 reg: process(Rst,Clk)
 begin
 if Rst = ‘1’ then -- Async reset
 Qreg <= "00000000";
 elsif (Clk = ‘1’ and Clk’event) then
 if (Load = ‘1’) then
 Qreg <= Data;
 else
 Qreg <= Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 end process;
 Q <= Qreg;
end rotate1;

Let’s look closely at this source file. Reading from the top, we see:

• a comment field, as described previously.
• library and use statements, allowing us to use the IEEE 1164 standard
logic data types.
• an entity declaration defining the interface to the circuit. Note that the
direction (mode) of Q is written as out, indicating that we will not attempt to
read its value within this design unit. (If Q was to be used directly as the
register, rather than introducing an intermediate signal Qreg, it would need to
be of mode inout or buffer.)

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (5 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

• an architecture declaration, consisting of a single process statement that
defines the operation of the shifter over time in response to events appearing
on the clock (Clk) and asynchronous reset (Rst).

Process statement
The process statement in VHDL is the primary means by which sequential operations
(such as registered circuits) can be described. For use in describing registered
circuits, the most common form of a process statement is:

 architecture arch_name of ent_name is
 begin
 process_name: process(sensitivity_list)
 local_declaration;
 local_declaration;
 . . .
 begin
 sequential statement;
 sequential statement;
 sequential statement;
 .
 .
 .
 end process;
 end arch_name;

A process statement consists of the following items:

• An optional process name (an identifier followed by a colon character).
• The process keyword.
• An optional sensitivity list, indicating which signals result in the process
being executed when there is some event detected. (The sensitivity list is
required if the process does not include one or more wait statements to
suspend its execution at certain points. We will look at examples that do not
use a sensitivity list later on in this section).
• An optional declarations section, allowing local objects and subprograms
to be defined.
• A begin keyword.
• A sequence of statements to be executed when the process runs.
• an end process statement.

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (6 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

The easiest way to think of a VHDL process such as this is to relate it to a small
software program that executes (in simulation) any time there is an event on one of
the process inputs, as specified in the sensitivity list. A process describes the
sequential execution of statements that are dependent on one or more events
occurring. A flip-flop is a perfect example of such a situation; it remains idle, not
changing state, until there is a significant event (either a rising edge on the clock input
or an asynchronous reset event) that causes it to operate and potentially change its
state.

Although there is a definite order of operations within a process (from top to bottom),
you can think of a process as executing in zero time. This means that (a) a process
can be used to describe circuits functionally, without regard to their actual timing, and
(b) multiple processes can be "executed" in parallel with little or no concern for which
processes complete their operations first. (There are certain caveats to this behavior
of VHDL processes. These caveats will be described in detail in the section Sequential
Statements.)

Let’s see how the process for our shifter operates. For your reference, the process is
shown below:

 reg: process(Rst,Clk)
 begin
 if Rst = ‘1’ then -- Async reset
 Qreg <= "00000000";
 elsif (Clk = ‘1’ and Clk’event) then
 if (Load = ‘1’) then
 Qreg <= Data;
 else
 Qreg <= Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 end process;

As written, the process is dependent on (or sensitive to) the asynchronous inputs Rst
and Clk. These are the only signals that can have events directly affecting the
operation of the circuit; in the absence of any event on either of these signals, the
circuit described by the process will simply hold its current value (that is, the process
will remain suspended).

Now let’s examine what happens when an event occurs on either one of these

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (7 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

asynchronous inputs. First, consider what happens when the input Rst has an event in
which it transitions to a high state (represented by the std_ulogic value of ‘1’). In this
case, the process will begin execution and the first if statement will be evaluated.
Because the event was a transition to ‘1’, the simulator will see that the specified
condition (Rst = ‘1’) is true and the assignment of signal Qreg to the reset value of
"00000000" will be performed. The remaining statements of the if-then-elsif
expression (those that are dependent on the elsif condition) will be ignored. (The
assignment statement immediately following the process, the assignment of output
signal Q to the value of Qreg, is not subject to the if-then-elsif expression of the
process or its sensitivity list, and is therefore valid at all times.) Finally, the process
suspends, all signals that were assigned values in the process (in this case Qreg) are
updated, and the process waits for another event on Clk or Rst.

What about the case in which there is an event on Clk? In this case, the process will
again execute, and the if-then-elsif expressions will be evaluated, in turn, until a valid
condition is encountered. If the Rst input continues to have a high value (a value of
‘1’), then the simulator will evaluate the first if test as true, and the reset condition will
take priority. If, however, the Rst input is not a value of ‘1’, then the next expression
(Clk = ‘1’ and Clk’event) will be evaluated. This expression is the most commonly-
used convention for detecting clock edges in VHDL. To detect a rising edge clock, we
write the expression Clk = ‘1’ in the conditional expression, just as we did when
detecting a reset condition. For this circuit, however, the expression Clk = ‘1’ would
not be specific enough, since the process may have begun execution as the result of
an event on Rst that did not result in Rst transitioning to a ‘1’. To ensure that the
event we are responding to is actually an event on Clk, we use the built-in VHDL
attribute ‘event to check if Clk was that signal triggering the process execution.

If the event that triggered the process execution was actually a rising edge on Clk,
then the simulator will go on to check the remaining if-then logic to determine which
assignment statement is to be executed. If Load is determined to be ‘1’, then the first
assignment statement is executed and the data is loaded from input Data to the
registers. If Load is not ‘1’, then the data in the registers is shifted, as specified, using
the bit slice and concatenation operations available in the language.

Confusing? Perhaps; but if you simply use the style just presented as a template for
describing registered logic and don’t worry too much about the details of how it is
executed during simulation, you should be in pretty good shape. Just keep in mind
that every assignment to a signal you make that is dependent on a Clk = ‘1’ and
Clk’event expression will result in at least one register when synthesized. (More
detailed discussions of how flip-flops and latches are generated from synthesis tools

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (8 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

can be found in the section Sequential Statements.)

Process statements without sensitivity lists
VHDL process statements have two primary forms. The first form uses the sensitivity
list described in the previous section and executes during simulation whenever there
is an event on any signal in the sensitivity list. This first form of a process statement is
the most common (and recommended) method for describing registered sequential
logic for the purposes of synthesis.

There is another form of process statement that is useful for other applications,
however. This form does not include a sensitivity list. Instead, it includes one or more
statements that suspend the execution of the process until some condition has been
met. The best example of such a process is a test bench, in which a sequence of test
inputs are applied over time, with a predefined time value (or external triggering event)
defined as the condition for re-activation of the process. The general form of such a
process is:

 architecture arch_name of ent_name is
 begin
 process_name: process
 local_declaration;
 local_declaration;
 . . .
 begin
 sequential statement;
 sequential statement;
 wait until (condition);
 sequential statement;
 . . .
 wait for (time);
 . . .
 end process;
 end arch;

Examples of this form of process will be examined later in this chapter and in the
section Test Benches.

VHDL requires that all processes include either a sensitivity list, or one or more wait
statements to suspend the process. (It is not legal to have both a sensitivity list and a

http://www.acc-eda.com/vhdlref/refguide/language_o..._first_look_at_vhdl/first_look__sample_circuit.htm (9 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

wait statement.)

Concurrent and sequential VHDL
Understanding the fundamental difference between concurrent and sequential
statements in VHDL is important to making effective use of the language.

Concurrent statements are those statements that appear between the begin and end
statements of a VHDL architecture. This area of your VHDL architecture is what is
known as the concurrent area. In VHDL, all statements in the concurrent area are
executed at the same time, and there is no significance to the order in which the
statements are entered.

Sequential statements are executed one after the other in the order that they appear
between the begin and end statements of a VHDL process, procecure or function.

The interaction of concurrent and sequential statements is illustrated in the example
below. While the if-elsif-end-if statements in the body of the process are executed
sequentially (i.e., one after the other), the body of the process is treated by VHDL as a
single concurrent statement and is executed at the same time as all other concurrent
statements in the simulation.

 architecture rotate2 of rotate is
 signal Qreg: std_logic_vector(0 to 7);
 begin -- Concurrent section starts here
 reg: process(Rst,Clk)
 begin -- Sequential section starts here
 if Rst = ‘1’ then -- Async reset
 Qreg <= "00000000";
 elsif (Clk = ‘1’ and Clk’event) then
 if (Load = ‘1’) then
 Qreg <= Data;
 else
 Qreg <= Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 end process; -- Sequential section ends here

 Q <= Qreg;

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (10 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

 end rotate2; -- Concurrent section ends here

Note: Writing a description of a circuit using the sequential programming features of
VHDL (statements entered within processes and subprograms) does not necessarily
mean that the circuit being described is sequential in its operation. Sequential circuits
require some sort of internal memory (such as one or more flip-flops or latches) to
operate, and a VHDL process or subprogram may or may not imply such memory
elements. As we will see in later chapters, it is actually quite common to describe
strictly combinational circuits—circuits having no memory and, hence, no sequential
behavior—using sequential statements within processes and subprograms.

Signals and variables
There are two fundamental types of objects used to carry data from place to place in a
VHDL design description: signals and variables. You can use variables to simplify
sequential statements (within processes, procedures and functions), but you must
always use signals to carry information between concurrent elements of your design
(such as between two independent processes).

Signals and variables are described in more detail in a later chapter. For now, it is
useful to think of signals as wires (as in a schematic) and variables as temporary
storage areas similar to variables in a traditional software programming language.

In many cases, you can choose whether to use signals or variables to perform the
same task. For your first design efforts you should probably stick to using signals,
unless you fully understand the consequences of using variables for your particular
application.

Using a procedure to describe registers
As we have seen from the first version of the 8-bit shifter, describing registered logic
using processes requires you to follow some established conventions (if you intend to
synthesize the design) and to consider the behavior of the entire circuit. In the shifter
design description previously shown, the registers were implied by the placement and
use of statements such as if Clk = ‘1’ and Clk’event. Assignment statements subject
to that clause resulted in D-type flip-flops being implied for the signals.

For smaller circuits, this mixing of combinational logic functions and registers is fine
and not difficult to understand. For larger circuits, however, the complexity of the
system being described can make such descriptions hard to manage, and the results
of synthesis can often be confusing. For these circuits, you might choose to retreat to

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (11 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

more of a dataflow level of abstraction and to clearly define the boundaries between
registered and combinational logic.

One way to do this is to remove the process from your design and replace it with a
series of concurrent statements representing the combinational and registered
portions of the circuit. You can do this using either procedures or lower-level
components to represent the registers. The following VHDL design description uses a
register procedure to describe the same shifter circuit previously described:

architecture shift3 of shift is
 signal D,Qreg: std_logic_vector(0 to 7);
begin

 D <= Data when (Load = ‘1’) else
 Qreg(1 to 7) & Qreg(0);

 dff(Rst, Clk, D, Qreg);

 Q <= Qreg;

end rotate3;

In the shift3 version of the design description above, the behavior of the D-type flip-
flop has been placed in an external procedure, dff(), and intermediate signals have
been introduced to more clearly describe the separation between the combinational
and registered parts of the circuit.

In this example, the combinational logic of the counter has been written in the form of
a single concurrent signal assignment, while the registered operation of the counter’s
output has been described using a call to a procedure named dff.

What does the dff procedure look like? The following is one possible procedure for a
D-type flip-flop:

procedure dff (signal Rst, Clk: in std_logic;
 signal D: in std_logic_vector(0 to 7);
 signal Q: out std_logic_vector(0 to 7)) is
begin
 if Rst = ‘1’ then
 Q <= "00000000";

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (12 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

 elsif Clk = ‘1’ and Clk’event then
 Q <= D;
 end if;
end dff;

Warning: bad code!
The above procedure is actually rather poorly written, as it assumes a specific width
(eight bits) for the D and Q parameters. A more flexible and reusable procedure could
be written that makes use of attributes (such as ‘length) to determine the actual
number of bits of the signals within the procedure.

Notice that this procedure has a striking resemblance to the process statement
presented earlier. The same if-then-elsif structure used in the process is used to
describe the behavior of the registers. Instead of a sensitivity list, however, the
procedure has a parameter list describing the inputs and outputs of the procedure.

The parameters defined within a procedure or function definition are called its formal
parameters. When the procedure or function is executed in simulation, the formal
parameters are replaced by the values of the actual parameters specified when the
procedure or function is used. If the actual parameters being passed into the
procedure or function are signal objects, then the signal keyword can be used (as
shown above) to ensure that all information about the signal object, including its value
and all of its attributes, is passed into the procedure or function.

Using a component to describe registers
It is important to note that if you wish to use procedures to describe your registers, you
will need to make sure the synthesis tool you are using allows this. While most VHDL
synthesis tools support the use of procedures for registers, some do not, while others
have severe restrictions on the use of procedures. If you are not sure, or if you want to
have the most portable design descriptions possible, you should replace procedures
such as this with components, as in the following example:

architecture shift4 of shift is
 component dff
 port(Rst, Clk: std_logic;
 D: in std_logic_vector(0 to 7);
 Q: out std_logic_vector(0 to 7));
 end component;

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (13 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

 signal D, Qreg: std_logic_vector(0 to 7);

begin

 D <= Data when (Load = ‘1’) else
 Qreg(1 to 7) & Qreg(0);
 REG1: dff port map(Rst, Clk, D, Qreg);
 Q <= Qreg;

end shift4;

An entity and architecture pair describing exactly the same behavior as the dff
procedure is shown below:

library ieee;
use ieee.std_logic_1164.all;

entity dff is
 port (Rst, Clk: in std_logic;
 D: in std_logic_vector(0 to 7);
 Q: out std_logic_vector(0 to 7));
end dff;

architecture behavior of dff is
begin
 process (Rst, Clk)
 begin
 if Rst = ‘1’ then
 Q <= "00000000";
 elsif Clk = ‘1’ and Clk’event then
 Q <= D;
 end if;
 end process;
end behavior;

Structural VHDL
The structure level of abstraction is used to combine multiple components to form a
larger circuit or system. As such, structure can be used to help manage a large and
complex design, and structure can make it possible to reuse components of a system

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (14 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

in other design projects.

Because structure only defines the interconnections between components, it cannot
be used to completely describe the function of a circuit; at the lowest level, all
components of your system must be described using behavioral and/or dataflow levels
of abstraction.
To demonstrate how the structure level of abstraction can be used to connect lower-
level circuit elements into a larger circuit, we will connect the comparator and shift
register circuits into a larger circuit.

Notice that we have drawn this diagram in much the same way you might enter it into
a schematic capture system. Structural VHDL has many similarities with schematic-
based design, as we will see.

Design hierarchy
When you write structural VHDL, you are in essence writing a textual description of a
schematic netlist (a description of how the components on the schematic are
connected by wires, or nets). In the world of schematic entry tools, such netlists are
usually created for you automatically by the schematic editor. When writing VHDL, you
enter the same sort of information by hand. (Note: many schematic capture tools in
existence today are capable of writing netlist information in the form of a VHDL source
file. This can save you a lot of time if you are used to drawing block diagrams in a
schematic editor.)

When you use components and wires (signals, in VHDL) to connect multiple circuit
elements together, it is useful to think of your new, larger circuit in terms of a hierarchy
of components. In this view, the top-level drawing (or top-level VHDL entity and
architecture) can be seen as the highest level in a hierarchy.

In this example, we have introduced a new top-level component (called shiftcomp)
that references the two lower-level components shift and compare. Because the new
shiftcomp design entity can itself be viewed as a component, and considering the fact
that any component can be referenced more than once, we quickly see how very large
circuits can be constructed from smaller building blocks.

The following VHDL source file describes our complete circuit using structural VHDL
statements (component declarations and component instantiations) to connect
together the compare and shift portions of the circuit:

library ieee;

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (15 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

use ieee.std_logic_1164.all;
entity shiftcomp is port(Clk, Rst, Load: in std_ulogic;
 Init: in std_ulogic_vector(0 to 7);
 Test: in std_ulogic_vector(0 to 7);
 Limit: out std_ulogic);
end shiftcomp;

architecture structure of shiftcomp is

 component compare
 port(A, B: in std_ulogic_vector(0 to 7); EQ: out std_ulogic);
 end component;

 component shift
 port(Clk, Rst, Load: in std_ulogic;
 Data: in std_ulogic_vector(0 to 7);
 Q: out std_ulogic_vector(0 to 7));
 end component;

 signal Q: std_ulogic_vector(0 to 7);

begin

 COMP1: compare port map (A=>Q, B=>Test, EQ=>Limit);
 SHIFT1: shift port map (Clk=>Clk, Rst=>Rst, Load=>Load, Data=>Init, Q=>Q);

end structure;

Note: In the above context, the VHDL symbol => is used to associate the signals
within an architecture to ports defined within the lower-level component.

There are many ways to express the interconnection of components and to improve
the portability and reusability of those components. We will examine these more
advanced uses of components in a later chapter.

Test benches
At this point, our sample circuit is complete and ready to be processed by a synthesis
tool. Before processing the design, however, we should take the time to verify that it
actually does what it is intended to do, by running a simulation.

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (16 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

Simulating a circuit such as this one requires that we provide more than just the
design description itself. To verify the proper operation of the circuit over time in
response to input stimulus, we will need to write a test bench.

The easiest way to understand the concept of a test bench is to think of it as a virtual
circuit tester. This tester, which you will describe in VHDL, applies stimulus to your
design description and (optionally) verifies that the simulated circuit does what it is
intended to do.

To apply stimulus to your design, your test bench will probably be written using one or
more sequential processes, and it will use a series of signal assignments and wait
statements to describe the actual stimulus. You will probably use VHDL’s looping
features to simplify the description of repetitive stimulus (such as the system clock),
and you may also use VHDL’s file and record features to apply stimulus in the form of
test vectors.

To check the results of simulation, you will probably make use of VHDL’s assert
feature, and you may also use the text I/O features to write the simulation results to a
disk file for later analysis.

For complex design descriptions, developing a comprehensive test bench can be a
large-scale project in itself. In fact, it is not unusual for the test bench to be larger and
more complex than the underlying design description. For this reason, you should plan
your project so that you have the time required to develop the test bench in addition to
developing the circuit being tested. You should also plan to create test benches that
are re-usable, perhaps by developing a master test bench that reads test data from a
file.

When you create a test bench for your design, you use the structural level of
abstraction to connect your lower-level (previously top-level) design description to the
other parts of the test bench.

Sample test bench
The following VHDL source statements, with explanatory comments, describe a
simple test bench for our sample circuit:

library ieee;
use ieee.std_logic_1164.all;

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (17 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

entity testbnch is -- No ports needed in a
end testbnch; -- testbench

use work.shiftcomp;
architecture behavior of testbnch is
 component shiftcomp is -- Declares the lower-level
 port(Clk, Rst, Load: in std_logic; -- component and its ports
 Init: in std_logic_vector(0 to 7);
 Test: in std_logic_vector(0 to 7);
 Limit: out std_logic);
 end component;
 signal Clk, Rst, Load: std_logic; -- Introduces top-level signals
 signal Init: std_logic_vector(0 to 7); -- to use when testing the
 signal Test: std_logic_vector(0 to 7); -- lower-level circuit
 signal Limit: std_logic;
begin
 DUT: shiftcomp port map -- Creates an instance of the
 (Clk, Rst, Load, Init, Test, Limit); -- lower-level circuit (the
 -- unit under test)
 clock: process
 variable clktmp: std_logic := ‘0’; -- This process sets up a
 begin -- background clock of 100 ns
 clktmp := not clktmp; -- period.
 Clk <= clktmp;
 wait for 50 ns;
 end process;

 stimulus: process -- This process applies
 begin -- stimulus to the design
 Rst <= ‘0’; -- inputs, then waits for some
 Load <= ‘1’; -- amount of time so we can
 Init <= "00001111"; -- observe the results during
 Test <= "11110000"; -- simulation.
 wait for 100 ns;
 Load <= ‘0’;
 wait for 600 ns;
 end process;
end behavior;

More advanced applications of test benches can be found in the section Test

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (18 of 19) [12/19/2004 12:08:45 PM]

First Look: Sample Circuit

Benches.

http://www.acc-eda.com/vhdlref/refguide/language_...first_look_at_vhdl/first_look__sample_circuit.htm (19 of 19) [12/19/2004 12:08:45 PM]

Understanding Types and Subtypes

Understanding Types and Subtypes

The VHDL 1076 specification describes four classes of data types:

• Scalar types represent a single numeric value or, in the case of
enumerated types, an enumeration value. The standard types that fall into
this class are integer, real (floating point), physical, and enumerated types. All
of these basic types can be thought of as numeric values.

• Composite types represent a collection of values. There are two classes
of composite types: arrays containing elements of the same type, and records
containing elements of different types.

• Access types provide references to objects in much the same way that
pointer types are used to reference data in software programming languages.

• File types reference objects (typically disk files) that contain a sequence
of values.

Each type in VHDL has a defined set of values. For example, the value of an integer
data type has a defined range of at least -2147483647 to +2147483647. In most
cases you will only be interested in a subset of the possible values for a type, so
VHDL provides the ability to specify a constraint whenever an object of a given type is
declared. The following declaration creates an object of type integer that is
constrained to the positive values of 0 to 255:

 signal ShortInt: integer range 0 to 255;

VHDL also provides a feature called a subtype, allowing you to declare an alternate
data type that is a constrained version of an existing type. For example, the
declaration

 subtype SHORT integer range 0 to 255;

creates an alternate scalar type with a constrained range. Because SHORT is a
subtype of integer, it carries with it all operations available for the integer base type.

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (1 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

The four classes of data types are discussed in more detail below.

Scalar types
Scalar types are those types that represent a single value, and are ordered in some
way so that relational operations (such as greater than, less than, etc.) can be applied
to them. These types include the obvious numeric types (integer and real) as well as
less obvious enumerated types such as Boolean and Character.

Bit type
The bit data type is the most fundamental representation of a wire in VHDL. The bit
type has only two possible values, ‘0’ and ‘1’, that can be used to represent logical 0
and 1 values (respectively) in a digital system. The following example uses bit data
types to describe the operation of a full adder:

entity fulladder is
 port (X: in bit;
 Y: in bit;
 Cin: in bit;
 Cout: out bit;
 Sum: out bit);
end fulladder;

architecture concurrent of fulladder is
begin

 Sum <= X xor Y xor Cin;
 Cout <= (X and Y) or (X and Cin) or (Y and Cin);

end concurrent;

The bit data type supports the following operations: and, or, nand, nor, xor, xnor, not,
=, /=, <, <=, >, and >=.

Note: The IEEE 1164 specification describes an alternative to bit called std_ulogic.
Std_ulogic has nine possible values, allowing the values and states of wires (such as
high-impedence, unknown, etc.) to be more accurately described. (See Chapter 4,
Using Standard Logic.)

Boolean type

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (2 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

The Boolean type has two possible values, True and False. Like the bit data type,
the Boolean type is defined as an enumerated type. The Boolean type does not have
any implied width; it is simply the result of a logical test (such as a comparison
operation or an if statement) or the expression of some logical state (such as in the
assignment, ErrorFlag <= True;).

Integer type
An integer type includes integer values in a specified range. The only predefined
integer type is integer. Integer types have a minimum default range of -2147483647
to +2147483647, inclusive. However, you can restrict that value with a range
constraint and/or declare a new integer subtype with a range constrained range, as in
the following example:

subtype byteint integer range 0 to 255;

The predefined subtype natural restricts integers to the range of 0 to the specified (or
default) upper range limit. The predefined subtype positive restricts integers to the
range of 1 to the specified (or default) upper range limit.

An alternative to the integer data type is provided with IEEE Standard 1076.3. This
standard defines the standard data types signed and unsigned, which are array
types (based on the IEEE 1164 9-valued data types) that have properties of both array
(composite) and numeric (scalar) data types. Like an array, you can perform shifting
and masking operations on them and, like integers, you can perform arithmetic
operations on them. More information about the IEEE 1076.3 data types can be found
in the section Using Standard Logic.

Real (floating point) types
Floating point types are used to approximate real number values. The predefined
floating point type provided in VHDL is called real. It has possible values in the range
of at least -1.0E38 to +1.0E38.

The following declaration decribes a signal of type real that has been initialized to a
real value of 4589.3:

 signal F0: real := 4589.3;

The real data type supports the following operations: =, /=, <, <=, >, >=, +, -, abs, +, -,
*, and /.

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (3 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

Note: Floating point types have little use in synthesizable designs, as no synthesis
tool available today will accept them.

Character type
VHDL’s character data type is similar to the character types you might be familiar with
from software languages. Characters can be used to represent string data (such as
you might use in a test bench), to display messages during simulation, or to represent
actual data values in your design description. Unlike many software languages,
character values in VHDL have no explicit value. This means that they cannot be
simply mapped onto numeric data types or assigned directly to arrays of bits.

There is no specific numeric value associated with a given character literal in VHDL.
(You cannot, for example, assign a character literal to an 8-bit array without providing
a type conversion function that assigns unique array values—such as ASCII
values—to the target array for each character value.)

The character data type is an enumerated type. However, there is an implied ordering
(refer to the IEEE 1076-1993 specification for details).

Severity_level type
Severity_level is a special data type used in the report section of an assert
statement. There are four possible values for an object of type severity_level: note,
warning, error and failure. You might use these severity levels in your test bench, for
example, to instruct your simulator to stop processing when an error (such as a test
vector failure) is encountered during a simulation run. The following assert statement
makes use of the FAILURE severity level to indicate that the simulator should halt
processing if the specified condition evaluates false:

 assert (error_flag = ‘1’)
 report "There was an error; simulation has halted."
 severity FAILURE;

Time and other physical types
Time is a standard data type that falls into the catagory of physical types in VHDL.
Physical types are those types that are used for measurement. They are distinquished
by the fact that they have units of measure, such as (in the case of time) seconds,
nanoseconds, etc. Each unit in the physical type (with the exception of the base unit)
is based on some multiple of the preceding unit. The definition for type time, for

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (4 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

example, might have been written as follows (the actual definition is implementation-
dependent):

 type time is range -2147483647 to 2147483647
 units
 fs;
 ps = 1000 fs;
 ns = 1000 ps;
 us = 1000 ns;
 ms = 1000 us;
 sec = 1000 ms;
 min = 60 sec;
 hr = 60 min;
 end units;

Enumerated types
As we have seen, enumerated types are used to describe (internally) many of the
standard VHDL data types. You can also use enumerated types to describe your own
unique data types. For example, if you are describing a state machine, you might want
to make use of an enumerated type to represent the various states of the machine, as
in the following example:

architecture FSM of VCONTROL is
 type states is (StateLive,StateWait,StateSample,StateDisplay);
 signal current_state, next_state: states;
begin
 . . .
 -- State transitions:
 STTRANS: process(current_state,Mode,VS,ENDFR)
 begin
 case current_state is
 when StateLive => -- Display live video on the output
 . . .
 when StateWait => -- Wait for vertical sync
 . . .
 when StateSample => -- Sample one frame of video
 . . .
 when StateDisplay => -- Display the stored frame
 . . .

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (5 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

 end case;
 end process;
end FSM;

In this example (the control logic for a video frame grabber, described in detail in the
section Sequential Statements), an enumerated type (states) is defined in the
architecture, and two signals (current_state and next_state) are declared for use in
the subsequent state machine description. Using enumerated types in this way has
two primary advantages: first, it is very easy to debug a design that uses enumerated
types, because you can observe the symbolic type names during simulation; second,
and perhaps more importantly for this state machine description, you can defer the
actual encoding of the symbolic values until the time that you implement the design in
hardware.

Synthesis tools generally recognize the use of enumerated types in this way and can
perform special optimizations, assigning actual binary values to each symbolic name
during synthesis. Synthesis tools generally also allow you to override the encoding of
enumerated data types, so you have control over the encoding process.

Composite types

Data Type Values Comment
bit_vector "00100101", "10", etc. Array of bit
string "Simulation failed!", etc. Array of characters
records Any collection of values User defined composite data

type

Composite types are collections of one or more types of values. An array is a
composite data type that contains items of the same type, either in a single dimension
(such as a list of numbers or characters) or in multiple dimensions (such as a table of
values). Records, on the other hand, define collections of possibly unrelated data
types. Records are useful when you need to represent complex data values that
require multiple fields.

Array types
An array is a collection of one or more values or objects of the same type. Arrays are
indexed by a number that falls into the declared range of the array.

The following is an example of an array type declaration:

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (6 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

 type MyArray is array (15 downto 0) of std_ulogic;

This array type declaration specifies that the new type MyArray contains 16 elements,
numbered downward from 15 to 0. Arrays can be given ranges that decrement from
left to right (as shown) or increment (using the to keyword instead of downto). Index
ranges do not have to begin or end at zero.

The index range (in this case 15 downto 0) is what is known as the index constraint. It
specifies the legal bounds of the array. Any attempt to assign values to, or read values
from, an element outside the range of the array will result in an error during analysis or
execution of the VHDL design description.

The index constraint for an array can specify an unbounded array using the following
array range syntax:

 type UnboundedArray is array (natural range <>) of std_ulogic;

This array type declaration specifies that the array UnboundedArray will have a index
constraint matching the range of integer subtype natural, which is defined as 0 to the
highest possible integer value (at least 2,147,483,647).

An array type is uniquely identified by the types (and constraints) of its elements, the
number of elements (its range), and the direction and order of its indices.

Arrays can have multiple indices, as in the following example:

 type multi is array(7 downto 0, 255 downto 0) of bit;

Note: Multidimensional arrays are not generally supported in synthesis tools. They
can, however, be useful for describing test stimulus, memory elements, or other data
that require a tabular form.

The following example (a parity generator) demonstrates how array elements can be
accessed, in this case within a loop:

entity parity10 is
 port(D: in array(0 to 9) of bit;
 ODD: out bit);
 constant WIDTH: integer := 10;

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (7 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

end parity10;

architecture behavior of parity10 is
begin
 process(D)
 variable otmp: Boolean;
 begin
 otmp := false;
 for i in 0 to D’length - 1 loop
 if D(i) = ‘1’ then
 otmp := not otmp;
 end if;
 end loop;
 if otmp then
 ODD <= ‘1’;
 else
 ODD <= ‘0’;
 end if;
 end process;
end behavior;

The direction of an array range has an impact on the index values for each element.
For example, the following declarations:

 signal A: bit_vector(0 to 3);
 signal B: bit_vector(3 downto 0);

create two objects, A and B, that have the same width but different directions. The
aggregate assignments:

 A <= (‘1’,’0',’1',’0');
 B <= (‘0’,’1',’0',’1');

are exactly identical to the assignments:

A(0) <= ‘1’;
A(1) <= ‘0’;
A(2) <= ‘1’;
A(3) <= ‘0’;

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (8 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

B(3) <= ‘0’;
B(2) <= ‘1’;
B(1) <= ‘0’;
B(0) <= ‘1’;

In this case, the arrays have the same contents when viewed in terms of their array
indices. Assigning the value of B to A, as in:

 A <= B;

which would be exactly equivalent to the assignments:

 A(0) <= B(3);
 A(1) <= B(2);
 A(2) <= B(1);
 A(3) <= B(0);

The leftmost element of array A has an index of 0, while the leftmost value of array B
has an index value of 1.

Record types
A record is a composite type that has a value corresponding to the composite value of
its elements. The elements of a record may be of unrelated types. They may even be
other composite types, including other records. You can access data in a record either
by referring to the entire record (as when copying the contents of one record object to
another record object), or individually by referring to a field name. The following
example demonstrates how you might declare a record data type consisting of four
elements:

 type data_in_type is
 record
 ClkEnable: std_logic;
 Din: std_logic_vector(15 downto 0);
 Addr: integer range 0 to 255;
 CS: std_logic;
 end record;

The four names, ClkEnable, Din, Addr and CS are all field names of the record,
representing data of specific types that can be stored as a part of the record. For
example, an object of type data_in_type could be created and initialized with the

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (9 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

following signal declaration:

 signal test_record: data_in_type := (‘0’, "1001011011110011", 165, ‘1’);

This initialization would be identical to the assignments:

 test_record.ClkEnable <= ‘0’;
 test_record.Din <= "1001011011110011";
 test_record.Addr <= 165;
 test_record.CS <= ‘1’;

Records types are not generally synthesizable; however, they can be very useful
when describing test stimulus. Examples shown in Chapter 9, Writing Test Benches,
show how records can be used in combination with arrays to organize test stimulus.

Access and incomplete types
Access types and incomplete types are used to create data indirection in VHDL. You
can think of access types as being analogous to pointers in software programming
languages such as C or Pascal. Incomplete types are required to create recursive
types such as linked lists, trees and stacks. Access and incomplete types can be
useful for creating dynamic representations of data (such as stacks), but they are not
supported in today’s synthesis tools. Refer to the IEEE VHDL Language Reference
Manual for more information about these language features.

File types
File types are very useful for writing test benches. File types differ in the VHDL 1076-
1987 and 1076-1993 specifications. Discussions and examples of each are presented
below.

VHDL 1076-1987 file types
A file type is a special type of variable that contains sequential data. In the 1987 VHDL
standard language, files are implicitly opened when they are declared, and it is not
possible to explicitly close them. Objects of type file can be read from and written to
using functions and procedures (read, write, and endfile) that are provided in the
standard library. Additional functions and procedures for formating of data read from
files is provided in the Text I/O library, which is also part of the 1076 standard. The
built-in functions available for reading and writing files in VHDL (the 1987
specification) are:

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (10 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

Read(f, object)—Given a declared file and an object, read one field of data from the
file into that object. When the read procedure is invoked, data is read from the file and
the file is advanced to the start of the next data field in the file.

Write(f, object)—Given a declared file and an object, write the data contained in the
object to the file.

Endfile(f)—Given a declared file, return a boolean true value if the current file marker
is at the end of the file.

Files in VHDL are sequential; there is no provision for opening a file and reading from
a random location in that file, or for writing specific locations in a file.

To use an object of type file, you must first declare the type of its contents, as shown
below:

 type file_of_characters is file of character;

This declaration creates a new type, called file_of_characters, that consists of a
sequence of character values. To use this file type, you would then create an object of
type file_of_characters, as shown below:

 file testfile: file_of_characters is in "TESTFILE.ASC";

This statement creates the object testfile and opens the indicated disk file. You can
now use the built-in read procedure to access data in the file. A complete architecture
that loops through a file and reads each character is shown below:

architecture sample87 of readfile is
begin
 Read_input: process
 type character_file is file of character;
 file cfile: character_file is in "TESTFILE.ASC";
 variable C: character;
 variable char_cnt: integer := 0;
 begin

 while not endfile(cfile) loop
 read (cfile, C) ; -- Get a character from cfile into C
 char_cnt = char_cnt + 1; -- Keep track of the number of

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (11 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

 -- characters
 end loop;
 end process;
end sample87;

VHDL 1076-1993 file types
In VHDL ’93, file types and associated functions and procedures were modified to
allow files to be opened and closed as needed. In the 1987 specification, there is no
provision for closing a file, and problems can arise when it is necessary for two parts
of the same design description to open the same file at different points, or when
existing files must be both read from and written to (as when appending data). The
built-in functions available for file operations in VHDL ’93 are:

File_open(f, fname, fmode)—Given a declared file object, file name (a string value)
and a mode (either READ-MODE, WRITE_MODE, or APPEND_MODE), open the
indicated file.

File_open(status, f, fname, fmode)—Same as above, but return the status of the file
open request in the first parameter, which is of type file_open_status. The status
returned is either OPEN_OK (meaning the file was successfully opened),
STATUS_ERROR (meaning the file was not opened because there was already an
open file associated with the file object), NAME_ERROR (meaning there was a
system error related to the file name specified) or MODE_ERROR (meaning that the
specified mode is not valid for the specified file).

File_close(f)—Close the specified file.

Read(f, object)—Given a declared file and an object, read one field of data from the
file into that object. When the read procedure is invoked, data is read from the file and
the file is advanced to the start of the next data field in the file.

Write(f, object)—Given a declared file and an object, write the data contained in the
object to the file.

Endfile(f)—Given a declared file, return a boolean true value if the current file marker
is at the end of the file.
A complete architecture that opens a file and loops through it, reading each character
in the file, is shown below:

architecture sample93 of readfile is

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (12 of 13) [12/19/2004 12:08:47 PM]

Understanding Types and Subtypes

begin
 Read_input: process
 type character_file is file of character;
 file cfile: character_file;
 variable C: character;
 variable char_cnt: integer := 0;
 begin
 file_open(cfile, "TESTFILE.ASC", READ_MODE);
 while not endfile(cfile) loop
 read (cfile, C) ; -- Get a character from cfile into C
 char_cnt = char_cnt + 1; -- Keep track of the number of
 -- characters
 end loop;
 file_close(cfile);
 end process;
end sample93;

http://www.acc-eda.com/vhdlref/refguide/languag..._operators/understanding_types_and_subtypes.htm (13 of 13) [12/19/2004 12:08:47 PM]

Type Conversions and Type Marks

Type Conversions and Type Marks

VHDL is a strongly typed language, meaning that you cannot simply assign a literal
value or object of one type to an object of another type. To allow the transfer of data
between objects of different types, VHDL includes type conversion features for types
that are closely related. VHDL also allows type conversion functions to be written for
types that are not closely related. In addition, VHDL includes type mark features to
help specify (or qualify) the type of a literal value when the context or format of the
literal makes its type ambiguous.

Explicit type conversions
The simplest type conversions are explicit type conversions, which are only allowed
between closely related types. Two types are said to be closely related when they are
either abstract numeric types (integers or floating points), or if they are array types of
the same dimensions and share the same types (or the element types themselves are
closely related) for all elements in the array. In the case of two arrays, it is not
necessary for the arrays to have the same direction. If two subtypes share the same
base type, then no explicit type conversion is required.

The following example demonstrates implicit and explicit type conversions:

architecture example of typeconv is
 type array1 is array(0 to 7) of std_logic;
 type array2 is array(7 downto 0) of std_logic;
 subtype array3 is std_logic_vector(0 to 7);
 subtype array4 is std_logic_vector(7 downto 0);
 signal a1: array1;
 signal a2: array2;
 signal a3: array3;
 signal a4: array4;

begin
 a2 <= array2(a1); -- explicit type conversion
 a4 <= a3; -- no explicit type conversion needed
end example;

Type conversion functions

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (1 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

To convert data from one type to an unrelated type (such as from an integer type to an
array type), you must make use of a type conversion function. Type conversion
functions may be obtained from standard libraries (such as the IEEE 1164 library),
from vendor-specific libraries (such as those supplied by synthesis tool vendors), or
you can write you own type conversion functions.

A type conversion function is a function that accepts one argument of a specified type
and returns the equivalent value in another type.
The following two functions are examples of type conversion functions that convert
between integer and array (std_ulogic_vector) data types:

 -- Convert a std_ulogic_vector to an unsigned integer
 --
 function to_uint (a: std_ulogic_vector) return integer is
 alias av: std_ulogic_vector (1 to a'length) is a;
 variable val: integer := 0;
 variable b: integer := 1;
 begin
 for i in a'length downto 1 loop
 if (av(i) = '1') then -- if LSB is '1',
 val := val + b; -- add value for current bit position
 end if;
 b := b * 2; -- Shift left 1 bit
 end loop;

 return val;
 end to_uint;

--
 -- Convert an integer to a std_ulogic_vector
 --
 function to_vector (size: integer; val: integer) return std_ulogic_vector is
 variable vec: std_ulogic_vector (1 to size);
 variable a: integer;
 begin
 a := val;
 for i in size downto 1 loop
 if ((a mod 2) = 1) then
 vec(i) := '1';

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (2 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

 else
 vec(i) := '0';
 end if;
 a := a / 2;
 end loop;
 return vec;
 end to_vector;

The following example (a loadable counter) demonstrates how these two functions
could be used:

library ieee;
use ieee.std_logic_1164.all;

library types; -- Type conversions have been compiled into library 'types'
use types.conversions.all;

entity count16 is
 port (Clk,Rst,Load: in std_ulogic;
 Data: in std_ulogic_vector(3 downto 0);
 Count: out std_ulogic_vector(3 downto 0));
end count16;

architecture count16a of count16 is
begin
 process(Rst,Clk)
 variable Q: integer range 0 to 15;
 begin
 if Rst = '1' then -- Asynchronous reset
 Q := 0;
 elsif rising_edge(Clk) then
 if Load = '1' then
 Q := to_uint(Data); -- Convert vector to integer
 elsif Q = 15 then
 Q := 0;
 else
 Q := Q + 1;
 end if;
 end if;

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (3 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

 Count <= to_vector(4,Q); -- Convert integer to vector
 -- for use outside the process.
 end process;
end count16a;

In this example, the interface specified in the entity port list uses standard logic data
types, including a std_ulogic_vector array data type for the counter output. Because
there are no arithmetic operations defined for the std_ulogic_vector data type, it is
necessary to introduce an intermediate integer variable and convert the Data input
from a std_ulogic_vector type to an integer when assigning it to the intermediate
variable, and to convert the intermediate variable back to a std_ulogic_vector array
type when assigning it to the Count output.

Synthesis note:
The preceding example is unlikely to be synthesizable because the type conversion
functions (to_uint() and to_vector()) are written using unconstrained integers. As a
practical matter, you should never write an arbitrary-width type conversion function
that you intend to use in a synthesizable design description. Instead, you should make
use of type conversion functions provided by your synthesis vendor or use the 1076.3
signed or unsigned type (see the section Using Standard Logic).

Another common application of type conversion functions is the conversion of string
data read from a file to array or record data types suitable for use as stimulus in a test
bench. The following function accepts data in the form of a fixed-length string and
converts it, character by character, into a record data type:

 type test_record is record
 CE: std_ulogic; -- Clock enable
 Set: std_ulogic; -- Preset
 Din: std_ulogic; -- Binary data input
 Doutput: std_ulogic_vector (15 downto 0); -- Expected output
 end record;

 function str_to_record(s: string(18 downto 0)) return test_record is
 variable temp: test_record;
 begin
 case s(18) is
 when '1' => temp.CE := '1';
 when '0' => temp.CE := '0';
 when others => temp.CE = 'X';

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (4 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

 end case;
 case s(17) is
 when '1' => temp.Set := '1';
 when '0' => temp.Set := '0';
 when others => temp.Set = 'X';
 end case;
 case s(16) is
 when '1' => temp.Din := '1';
 when '0' => temp.Din := '0';
 when others => temp.Din = 'X';
 end case;
 for i in 15 downto 0 loop
 case s(i) is
 when '1' => temp.Doutput := '1';
 when '0' => temp.Doutput := '0';
 when others => temp.Doutput = 'X';
 end case;
 end loop;
 return temp;
 end str_to_record;

There are many applications of type conversion functions, and many possible ways to
write them. If you are writing a synthesizable design description, you should
(whenever possible) make use of type conversions that have been provided to you by
your synthesis vendor, as type conversion functions can be difficult (in some cases
impossible) for synthesis tools to handle.

Ambiguous literal types
Functions and procedures in VHDL are uniquely identified not only by their names, but
also by the types of their arguments. (See Subprogram Overloading in Chapter 7,
Creating Modular Designs.) This means that you can, for example, write two functions
to perform similar tasks, but on different types of input data. The ability to overload
functions and procedures can lead to ambiguities when functions are called, if the
types of one or more arguments are not explicitly stated.

For example, consider two type conversion functions with the following interface
declarations:

function to_integer (vec: bit_vector) return integer is

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (5 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

 . . .
end to_uint;

function to_integer (s: string) return integer is
 . . .
end to_uint;

If you were to write an assignment statement such as:

architecture ambiguous of my_entity is
 signal Int35: integer;
begin
 Int35 <= to_integer("00100011"); -- This will produce an error
 . . .
end ambiguous;

then the compiler would produce an error message because it would be unable to
determine which of the two functions is appropriate—the literal "00100011" could be
either a string or bit_vector data type.

To remove data type ambiguity in such cases, you have two options: you can either
introduce an intermediate constant, signal or variable, as in:

architecture unambiguous1 of my_entity is
 constant Vec35: bit_vector := "00100011";
 signal Int35: integer;
begin
 Int35 <= to_integer(Vec35);
 . . .
end unambiguous1;

or introduce a type mark to qualify the argument, as in:

architecture unambiguous2 of my_entity is
 signal Int35: integer;
begin
 Int35 <= to_integer(bit_vector'"00100011");
 . . .
end unambiguous2;

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (6 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

Resolved and unresolved types
A signal requires resolution whenever it is simultaneously driven with more than one
value. By default, data types (whether standard types or types you define) are
unresolved, resulting in errors being generated when there are multiple values being
driven onto signals of those types. These error messages may be the desired
behavior, as it is usually a design error when such conditions occur. If you actually
intend to drive a signal with multiple values (as in the case of a bus interface), then
you will need to use a resolved data type.
Data types are resolved only when a resolution function has been included as a part
of their definition. A resolution function is a function that specifies, for all possible
combinations of one or more input values (expressed as an array of the data type
being resolved), what the resulting (resolved) value will be.

The following sample package defines a resolved data type consisting of four possible
values, '0', 1', 'X' and 'Z'. The resolution function covers all possible combinations of
input values and specifies the resolved value corresponding to each combination:

package types is
 type xbit is ('0', -- Logical 0
 '1', -- Logical 1
 'X', -- Unknown
 'Z' -- High Impedance);

 -- unconstrained array is required for the resolution function...
 type xbit_vector is array (natural range <>) of xbit;

 -- resolution function...
 function resolve_xbit (v : xbit_vector) return xbit;

 -- resolved logic type...
 subtype xbit_resolved is resolve_xbit xbit;

end types;

package body types is

 -- Define resolutions as a table...

 type xbit_table is array(xbit, xbit) of xbit;
 constant resolution_table: xbit_table := (

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (7 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

 -- 0 1 X Z
 ('0', 'X', 'X', '0'), -- 0
 ('X', '1', 'X', '1'), -- 1
 ('X', 'X', 'X', 'X'), -- X
 ('0', '1', 'X', 'Z') -- Z
);

 function resolve_xbit (v: xbit_vector) return xbit is
 variable result: xbit;
 begin
 -- test for single driver
 if (v'length = 1) then
 result := v(v'low); -- Return the same value if only 1 value
 else
 result := 'Z';
 for i in v'range loop
 result := resolution_table(result, v(i));
 end loop;
 end if;
 return result;
 end resolve_xbit;

end types;

The resolution function is invoked automatically whenever a signal of the associated
type is driven with one or more values. The array argument v represents all of the
values being driven onto the signal at any given time.

With the types xbit and xbit_resolved defined in this way, the resolved data type
xbit_resolved can be used for situations in which resolutions are required. The
following example shows how the resolved type xbit_resolved could be used to
describe the operation of a pair of three-state signals driving a common signal:

use work.types.all;
entity threestate is
 port (en1, en2: in xbit_resolved;
 A,B: in xbit_resolved;
 O: out xbit_resolved);
end threestate;

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (8 of 9) [12/19/2004 12:08:48 PM]

Type Conversions and Type Marks

architecture sample of threestate is
 signal tmp1,tmp2: xbit_resolved;
begin

 tmp1 <= A when en1 else 'Z';
 tmp2 <= B when en2 else 'Z';

 O <= tmp1;
 O <= tmp2;

end sample;

In this example, the output O could be driven with various combinations of the values
of A and B and the value 'Z', depending on the states of the two inputs en1 and en2.
The resolution function takes care of calculating the correct value for O for any of
these combinations during simulation.

More information about resolved types, in particular the standard resolved types
std_logic and std_logic_vector, can be found in the section Using Standard Logic.

http://www.acc-eda.com/vhdlref/refguide/language...nd_operators/type_conversions_and_type_marks.htm (9 of 9) [12/19/2004 12:08:48 PM]

IEEE Standard 1164

IEEE Standard 1164

IEEE Standard 1164 was released in the late 1980s, and helped to overcome an
important limitation of VHDL and its various commercial implementations. These
limitations were created by the fact that VHDL, while being rich in data types, did not
include a standard type that would allow multiple values (high-impedance, unknown,
etc.) to be represented for a wire. These metalogic values are important for accurate
simulation, so VHDL simulation vendors were forced to invent their own proprietary
data types using syntactically correct, but non-standard, enumerated types.

IEEE 1164 replaces these proprietary data types (which include systems having four,
seven, or even thirteen unique values) with a standard data type having nine values,
as shown below:

Value Description
'U' Uninitialized
'X' Unknown
'0' Logic 0 (driven)
'1' Logic 1 (driven)
'Z' High impedance
'W' Weak 1
'L' Logic 0 (read)
'H' Logic 1 (read)
'-' Don't-care

These nine values make it possible to accurately model the behavior of a digital circuit
during simulation. For synthesis users, the standard has additional benefits for
describing circuits that involve output enables, as well as for specifying don't-care
logic that can be used to optimize the combinational logic requirements of a circuit.

Advantages of IEEE 1164
There are many compelling reasons to adopt IEEE Standard 1164 for all of your
design efforts and to use it as a standard data type for all system interfaces. For
simulation purposes, the standard logic data types allow you to apply values other
than ‘0’ or ‘1’ as inputs and view the results. This capability could be used, for
example, to verify that an input with an unknown (uninitialized or don’t-care) value
does not cause the circuit to behave in an unexpected manner. The resolved standard

http://www.acc-eda.com/vhdlref/refguide/language_...rview/using_standard_logic/ieee_standard_1164.htm (1 of 2) [12/19/2004 12:08:49 PM]

IEEE Standard 1164

logic data types can be used to model the behavior of multiple drivers in your circuit.
You might use these types to model, for example, the behavior of a three-state bus
driver.

The most important reason to use standard logic data types is portability: if you will be
interfacing to other components during simulation (such as those obtained from third
party simulation model providers) or moving your design description between different
simulation environments, then IEEE 1164 gives you a standard, portable style with
which to describe your circuit.

http://www.acc-eda.com/vhdlref/refguide/language_...rview/using_standard_logic/ieee_standard_1164.htm (2 of 2) [12/19/2004 12:08:49 PM]

Using the Standard Logic Package

Using the Standard Logic Package

To use the IEEE 1164 standard logic data types, you will need to add at least two
statements to your VHDL source files. These statements (shown below) cause the
IEEE 1164 standard library (named ieee) to be loaded and its contents (the
std_logic_1164 package) made visible:

library ieee;
use ieee.std_logic_1164.all;

In most design descriptions, you will place these two statements at the top of your
source file, and repeat them as needed prior to subsequent design units (entity and
architecture pairs) in the file. If your source file includes more than one design unit,
you need to repeat the use statement just prior to each design unit in order to make
the contents of the standard library visible to each design unit, as shown below:

library ieee;
use ieee.std_logic_1164.all;
package my_package is
 . . .
end my_package;

use ieee.std_logic_1164.all;
entity first_one is
 . . .
end first_one;

use ieee.std_logic_1164.all;
architecture structure of first_one is
 . . .
end structure;

use ieee.std_logic_1164.all;
entity second_one is
 . . .
end second_one;

Note: VHDL has special visibility rules for architectures: it is not necessary to place a

http://www.acc-eda.com/vhdlref/refguide/language...ndard_logic/using_the_standard_logic_package.htm (1 of 4) [12/19/2004 12:08:49 PM]

Using the Standard Logic Package

use statement prior to an architecture declaration if the corresponding entity
declaration includes a use statement. In the above example, the use statement
appearing prior to the architecture structure is not actually needed and could be
omitted.

Once you have included the ieee library and made the std_logic_1164 package
visible in your design description, you can make use of the data types, operators and
functions provided for you as a part of the standard.

There are two fundamental data types provided for you in the std_logic_1164
package. These data types, std_logic and std_ulogic, are enumerated types defined
with nine symbolic (single character) values. The following definition of std_ulogic is
taken directly from the IEEE 1164 standard:

type std_ulogic is ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

The std_ulogic data type is an unresolved type, meaning that it is illegal for two
values (such as '0' and '1', or '1' and 'Z') to be simultaneously driven onto a signal of
type std_ulogic. If you are not describing a circuit that will be driving different values
onto a wire (as you might in the case of a bus interface), then you might want to use
the std_ulogic data type to help catch errors (such as incorrectly specified,
overlapping combinational logic) in your design description. If you are describing a
circuit that involves multiple values being driven onto a wire, then you will need to use
the type std_logic. Std_logic is a resolved type based on std_ulogic. Resolved
types are declared with resolution functions, as described in the section Objects, Data
Types and Operators. Resolution functions define the resulting behavior when an
object is driven with multiple values simultaneously.

When using either of these data types, you will use them as one-for-one replacements
for the built-in type bit. The following example shows how you might use the
std_logic data type to describe a simple NAND gate coupled to an output enable:

http://www.acc-eda.com/vhdlref/refguide/language...ndard_logic/using_the_standard_logic_package.htm (2 of 4) [12/19/2004 12:08:49 PM]

Using the Standard Logic Package

library ieee;
use ieee.std_logic_1164.all;
entity nandgate is
 port (A, B, OE: in std_logic; Y: out std_logic);
end nandgate;

architecture arch1 of nandgate is
 signal n: std_logic;
begin
 n <= not (A and B);
 Y <= n when OE = '0' else 'Z';
end arch1;

Note: As written, it is not actually necessary for this circuit to be described using the
resolved type std_logic for correct simulation. Operated as a stand-alone circuit, the
output Y will never be driven with two different values. When connected through
hierarchy into a larger circuit, however, it is highly likely that such a situation will occur,
and std_logic will thus be required.

Std_logic_vector and Std_ulogic_vector
In addition to the single-bit data types std_logic and std_ulogic, IEEE Standard 1164
includes array types corresponding to each of these types. Both std_logic_vector
and std_ulogic_vector are defined in the std_logic_1164 package as unbounded
arrays similar to the built-in type bit_vector. In practice, you will probably use
std_logic_vector or std_ulogic_vector with an explicit width, or you will use a
subtype to create a new data type based on std_logic_vector or std_ulogic_vector
of the width required. The following sample design description uses a subtype (defined
in an external package) to create an 8-bit array based on std_ulogic_vector:

library ieee;
use ieee.std_logic_1164.all;

package my_types is
 subtype std_byte is std_ulogic_vector(7 downto 0);
end my_types;

use ieee.std_logic_1164.all;
entity shiftl is

http://www.acc-eda.com/vhdlref/refguide/language...ndard_logic/using_the_standard_logic_package.htm (3 of 4) [12/19/2004 12:08:49 PM]

Using the Standard Logic Package

 port (DataIN: in std_byte; DataOUT: out std_byte; Err: out std_ulogic);
end shiftl;

architecture arch1 of shiftl is
 signal n: std_logic;
begin
 DataOUT <= DataIN(DataIN'left - 1 downto 0) & '0'; -- Shift left one bit
 Err <= DataIN(DataIN'left); -- Check for overflow
end arch1;

In this example (an 8-bit shifter), the subtype std_byte is defined in terms of
std_ulogic_vector and can be used to replace std_ulogic_vector(7 downto 0)
throughout the design description. The circuit is described in such a way that the width
of the shifter is dependent only on the width of the type std_byte, so it is easy to
modify the width of the circuit later.

http://www.acc-eda.com/vhdlref/refguide/language...ndard_logic/using_the_standard_logic_package.htm (4 of 4) [12/19/2004 12:08:49 PM]

Type Conversion and Standard Logic

Type Conversion and Standard Logic

If you need to describe operations such as counters that are not directly supported in
the standard logic data types, you will almost certainly have to make use of type
conversion functions to convert the standard logic data types at your system
interfaces to types such as integers that support such operations.

Type conversion functions are functions that accept an object of one data type and
return the equivalent data value represented as a different data type. Some type
conversion functions are provided in the IEEE 1164 std_logic_1164 package
(functions to convert between std_logic_vector and bit_vector, for example), but no
functions are provided in that package to convert between standard logic data types
and numeric data types such as integers.

Arithmetic circuits (such as adders and counters) are common elements of modern
digital systems, and of design descriptions intended for synthesis. So what do you do
if you want to use standard logic data types and describe arithmetic operations? There
are actually a number of possible solutions to this problem.

The first solution is to write your own synthesizable type conversion functions, so that
you can translate between standard logic values that you will use for your system
interfaces (such as the ports for your entities) and the internal numeric type signals
and variables you will need to describe your arithmetic function. This is actually a
rather poor solution, as it can be quite difficult (perhaps impossible) to write a general-
purpose (meaning width-independent) type conversion function that your synthesis
tool can handle.

The second solution is to make use of custom type conversion functions or data types
that have been provided by your synthesis vendor for use with their tool. An example
of such a method (using the std_logic_arith package provided by Synopsys) is
shown below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity COUNT16 is
 port (Clk,Rst,Load: in std_logic;

http://www.acc-eda.com/vhdlref/refguide/language_...dard_logic/type_conversion_and_standard_logic.htm (1 of 3) [12/19/2004 12:08:50 PM]

Type Conversion and Standard Logic

 Data: in std_logic_vector(3 downto 0);
 Count: out std_logic_vector(3 downto 0)
);
end COUNT16;

architecture COUNT16_A of COUNT16 is
begin
 process(Rst,Clk)
 -- The unsigned integer type is defined in synopsys.vhd...
 variable Q: unsigned (3 downto 0);
 begin
 if Rst = '1' then
 Q := "0000";
 elsif rising_edge(Clk) then
 if Load = '1' then
 for i in 3 downto 0 loop
 Q(i) := Data(i);
 end loop;
 elsif Q = "1111" then
 Q := "0000";
 else
 Q := Q + "0001";
 end if;
 end if;

 Count <= conv_std_logic_vector(Q,Data'length);

 end process;

end COUNT16_A;

In this example, the conv_std_logic_vector function has been provided in the
std_logic_arith package, which was supplied by a synthesis vendor (in this case,
Synopsys).

Using synthesis tool-specific packages such as std_logic_arith can be quite
convenient, but may result in a non-portable design description. (This is particularly
true if you use tool-specific type conversion functions, which often have completely
different naming conventions and function parameters, and are typically incompatible
with synthesis tools other than those they were originally written for.)

http://www.acc-eda.com/vhdlref/refguide/language_...dard_logic/type_conversion_and_standard_logic.htm (2 of 3) [12/19/2004 12:08:50 PM]

Type Conversion and Standard Logic

The best solution to the numeric data is to use the IEEE 1076.3 standard numeric
data types, which are described in the section IEEE Standard 1076.3.

http://www.acc-eda.com/vhdlref/refguide/language_...dard_logic/type_conversion_and_standard_logic.htm (3 of 3) [12/19/2004 12:08:50 PM]

Standard Logic Data Types

Standard Logic Data Types

This section describes in detail the contents of the IEEE 1164 Standard Logic
package std_logic_1164. The std_logic_1164 package is compiled into a library
named ieee, and includes the following data type and function definitions:

Type Std_ulogic
Type std_ulogic is intended to represent a single wire that can have various logical
(and metalogical) values. Std_ulogic is the base type for other IEEE 1164 (and
related) standard types, including std_logic, std_logic_vector, signed and
unsigned. Std_ulogic has the following definition:

 type std_ulogic is ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);

The std_ulogic data type is an enumerated type similar is usage to the bit data type
provided in the standard (1076) library. Std_ulogic is an unresolved type.

Type Std_ulogic_vector
Type std_ulogic_vector is intended to represent a collection of wires, or a bus of
arbitrary width. Std_ulogic_vector has the following definition:

 type std_ulogic_vector is array (natural range <>) of std_ulogic;

Std_ulogic_vector is an unconstrained array of std_ulogic, and is analogous to the
standard type bit_vector.

Type Std_logic
Type std_logic is a resolved type based on std_ulogic, and has the following

http://www.acc-eda.com/vhdlref/refguide/language_...sing_standard_logic/standard_logic_data_types.htm (1 of 2) [12/19/2004 12:08:50 PM]

Standard Logic Data Types

definition:

 subtype std_logic is resolved std_ulogic;

In the case of multiple drivers, the nine values of std_logic are resolved to values as
indicated in the chart below.

 U X 0 1 Z W L H -
U U U U U U U U U U
X U X X X X X X X X
0 U X 0 1 0 0 0 0 X
1 U X X X 1 1 1 1 X
Z U X 0 1 Z W L H X
W U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X
- U X X X X X X X X

Type Std_logic_vector
Std_logic_vector is an unconstrained array of std_logic:

 type std_logic_vector is array (natural range <>) of std_logic;

Subtypes Based on Std_ulogic
 subtype X01 is resolved std_ulogic range 'X' to '1'; -- ('X','0','1')
 subtype X01Z is resolved std_ulogic range 'X' to 'Z'; -- ('X','0','1','Z')
 subtype UX01 is resolved std_ulogic range 'U' to '1'; -- ('U','X','0','1')
 subtype UX01Z is resolved std_ulogic range 'U' to 'Z'; -- ('U','X','0','1','Z')

The X01, X01Z, UX01, and UX01Z subtypes are used within the std_logic_1164
package to simplify various operations on standard logic data, and may also be used
when you have a need for 3-, 4-, or 5-valued logic systems.

http://www.acc-eda.com/vhdlref/refguide/language_...sing_standard_logic/standard_logic_data_types.htm (2 of 2) [12/19/2004 12:08:50 PM]

Standard Logic Operators

Standard Logic Operators

The following operators are defined for types std_ulogic, std_logic,
std_ulogic_vector and std_logic_vector:

Logical Operators
 function "and" (l : std_ulogic; r : std_ulogic) return UX01;
 function "nand" (l : std_ulogic; r : std_ulogic) return UX01;
 function "or" (l : std_ulogic; r : std_ulogic) return UX01;
 function "nor" (l : std_ulogic; r : std_ulogic) return UX01;
 function "xor" (l : std_ulogic; r : std_ulogic) return UX01;
 function "xnor" (l : std_ulogic; r : std_ulogic) return ux01;
 function "not" (l : std_ulogic) return UX01;

Array Logical Operators
 function "and" (l, r : std_logic_vector) return std_logic_vector;
 function "and" (l, r : std_ulogic_vector) return std_ulogic_vector;
 function "nand" (l, r : std_logic_vector) return std_logic_vector;
 function "nand" (l, r : std_ulogic_vector) return std_ulogic_vector;
 function "or" (l, r : std_logic_vector) return std_logic_vector;
 function "or" (l, r : std_ulogic_vector) return std_ulogic_vector;
 function "nor" (l, r : std_logic_vector) return std_logic_vector;
 function "nor" (l, r : std_ulogic_vector) return std_ulogic_vector;
 function "xor" (l, r : std_logic_vector) return std_logic_vector;
 function "xor" (l, r : std_ulogic_vector) return std_ulogic_vector;
 function "xnor" (l, r : std_logic_vector) return std_logic_vector;
 function "xnor" (l, r : std_ulogic_vector) return std_ulogic_vector;
 function "not" (l : std_logic_vector) return std_logic_vector;
 function "not" (l : std_ulogic_vector) return std_ulogic_vector;

See also

 VHDL Operators

http://www.acc-eda.com/vhdlref/refguide/language_overview/using_standard_logic/standard_logic_operators.htm [12/19/2004 12:08:51 PM]

Standard Logic Type Conversions

Standard Logic Type Conversions

Type Conversions
The std_logic_1164 package includes a variety of type conversion functions to help
convert data between 1076 standard data types (bit and bit_vector) and IEEE 1164
standard logic data types:

 function To_bit (s : std_ulogic; xmap : bit := '0') return bit;
 function To_bitvector (s : std_logic_vector ; xmap : bit := '0') return bit_vector;
 function To_bitvector (s : std_ulogic_vector; xmap : bit := '0') return bit_vector;
 function To_StdULogic (b : bit) return std_ulogic;
 function To_StdLogicVector (b : bit_vector) return std_logic_vector;
 function To_StdLogicVector (s : std_ulogic_vector) return std_logic_vector;
 function To_StdULogicVector (b : bit_vector) return std_ulogic_vector;
 function To_StdULogicVector (s : std_logic_vector) return std_ulogic_vector;

Strength Stripping Functions
The strength stripping functions convert the 9-valued types std_ulogic and std_logic
to the 3-, 4-, and 5-valued types (X01, X01Z, UX01 and UX01Z), converting strength
values (‘H’, ‘L’, and ‘W’) to their ‘0’ and ‘1’ equivalents.

 function To_X01 (s : std_logic_vector) return std_logic_vector;
 function To_X01 (s : std_ulogic_vector) return std_ulogic_vector;
 function To_X01 (s : std_ulogic) return X01;
 function To_X01 (b : bit_vector) return std_logic_vector;
 function To_X01 (b : bit_vector) return std_ulogic_vector;
 function To_X01 (b : bit) return X01;
 function To_X01Z (s : std_logic_vector) return std_logic_vector;
 function To_X01Z (s : std_ulogic_vector) return std_ulogic_vector;
 function To_X01Z (s : std_ulogic) return X01Z;
 function To_X01Z (b : bit_vector) return std_logic_vector;
 function To_X01Z (b : bit_vector) return std_ulogic_vector;
 function To_X01Z (b : bit) return X01Z;
 function To_UX01 (s : std_logic_vector) return std_logic_vector;
 function To_UX01 (s : std_ulogic_vector) return std_ulogic_vector;
 function To_UX01 (s : std_ulogic) return UX01;
 function To_UX01 (b : bit_vector) return std_logic_vector;

http://www.acc-eda.com/vhdlref/refguide/language_...tandard_logic/standard_logic_type_conversions.htm (1 of 2) [12/19/2004 12:08:51 PM]

Standard Logic Type Conversions

 function To_UX01 (b : bit_vector) return std_ulogic_vector;
 function To_UX01 (b : bit) return UX01;

http://www.acc-eda.com/vhdlref/refguide/language_...tandard_logic/standard_logic_type_conversions.htm (2 of 2) [12/19/2004 12:08:51 PM]

Edge Detection and Other Functions

Edge Detection and Other Functions

Edge Detection Functions
The edge detection functions rising_edge() and falling_edge() provide a concise,
portable way to describe the behavior of an edge-triggered device such as a flip-flop:

 function rising_edge (signal s : std_ulogic) return boolean;
 function falling_edge (signal s : std_ulogic) return boolean;

Miscellaneous Checking Functions
The following functions can be used to determine if an object or literal is a don’t-care,
which, for this purpose, is defined as any of the five values 'U', 'X', ‘Z', 'W' or '-':

 function Is_X (s : std_ulogic_vector) return boolean;
 function Is_X (s : std_logic_vector) return boolean;
 function Is_X (s : std_ulogic) return boolean;

http://www.acc-eda.com/vhdlref/refguide/language_ove...tandard_logic/edge_detection_and_other_functions.htm [12/19/2004 12:08:52 PM]

Standard 1076.3

Standard 1076.3

IEEE Standard 1076.3 (the numeric standard) was developed to help synthesis tool
users and vendors by providing standard, portable data types and operations for
numeric data, and by providing more clearly defined meaning for the nine values of
the IEEE 1164 std_ulogic and std_logic data types.

IEEE Standard 1076.3 defines the package numeric_std that allows the use of
arithmetic operations on standard logic (std_logic and std_logic_vector) data types.
(The 1076.3 standard also defines arithmetic forms of the bit and bit_vector data
types in a package named numeric_bit, but this alternative package is not described
here.)

The numeric_std package defines the numeric types signed and unsigned and
corresponding arithmetic operations and functions based on the std_logic (resolved)
data type. The package was designed for use with synthesis tools, and therefore
includes additional functions (such as std_match) that simplify the use of don’t-cares.

There are two numeric data types, unsigned and signed, declared in the
numeric_std package, as shown below:

 type unsigned is array (natural range <>) of std_logic;
 type signed is array (natural range <>) of std_logic;

Unsigned represents unsigned integer data in the form of an array of std_logic
elements. Signed represents signed integer data. In signed or unsigned arrays, the
leftmost bit is treated as the most significant bit. Signed integers are represented in
the signed array in two's complement form.

 Using Numeric Data Types
 Numeric Standard Operators
 Numeric Array Resize Functions
 Numeric Type Conversion Functions
 Numeric Matching Functions
 Numeric Translation Functions

http://www.acc-eda.com/vhdlref/refguide/language_ov..._standard_logic/standard_1076_3/standard_1076_3.htm [12/19/2004 12:08:52 PM]

Using Numeric Data Types

Using Numeric Data Types

There are many different applications of the IEEE 1076.3 numeric data types,
operators and functions. The following example demonstrates how the type unsigned
might be used to simplify the description of a counter:

-- COUNT16: 4-bit counter.
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity COUNT16 is
 port (Clk,Rst,Load: in std_logic;
 Data: in std_logic_vector (3 downto 0);
 Count: out std_logic_vector (3 downto 0)
);
end COUNT16;

architecture COUNT16_A of COUNT16 is
 signal Q: unsigned (3 downto 0);
 constant MAXCOUNT: unsigned (3 downto 0) := "1111";
begin
 process(Rst,Clk)
 begin
 if Rst = '1' then
 Q <= (others => ‘0’);
 elsif rising_edge(Clk) then
 if Load = '1' then
 Q <= UNSIGNED(Data); -- Type conversion
 elsif Q = MAXCOUNT then
 Q <= (others => ‘0’);
 else
 Q <= Q + 1;
 end if;
 end if;

http://www.acc-eda.com/vhdlref/refguide/language...gic/standard_1076_3/using_numeric_data_types.htm (1 of 2) [12/19/2004 12:08:52 PM]

Using Numeric Data Types

 Count <= STD_LOGIC_VECTOR(Q); -- Type conversion

 end process;

end COUNT16_A;

In this example, the type unsigned is used within the architecture to represent the
counter data. The add operation (‘+’) is defined for type unsigned by the 1076-3
standard (in library numeric_std) so the counter can be easily described. Because
the unsigned and std_logic_vector data types share the same element type
(std_logic), conversion between these types is straightforward, as shown.

http://www.acc-eda.com/vhdlref/refguide/language...gic/standard_1076_3/using_numeric_data_types.htm (2 of 2) [12/19/2004 12:08:52 PM]

Numeric Standard Operators

Numeric Standard Operators

Arithmetic Operators
 function "abs" (ARG: signed) return signed;
 function "-" (ARG: signed) return signed;
 function "+" (L, R: unsigned) return unsigned;
 function "+" (L, R: signed) return signed;
 function "+" (L: unsigned; R: natural) return unsigned;
 function "+" (L: natural; R: unsigned) return unsigned;
 function "+" (L: integer; R: signed) return signed;
 function "+" (L: signed; R: integer) return signed;
 function "-" (L, R: unsigned) return unsigned;
 function "-" (L, R: signed) return signed;
 function "-" (L: unsigned;R: natural) return unsigned;
 function "-" (L: natural; R: unsigned) return unsigned;
 function "-" (L: signed; R: integer) return signed;
 function "-" (L: integer; R: signed) return signed;
 function "*" (L, R: unsigned) return unsigned;
 function "*" (L, R: signed) return signed;
 function "*" (L: unsigned; R: natural) return unsigned;
 function "*" (L: natural; R: unsigned) return unsigned;
 function "*" (L: signed; R: integer) return signed;
 function "*" (L: integer; R: signed) return signed;
 function "/" (L, R: unsigned) return unsigned;
 function "/" (L, R: signed) return signed;
 function "/" (L: unsigned; R: natural) return unsigned;
 function "/" (L: natural; R: unsigned) return unsigned;
 function "/" (L: signed; R: integer) return signed;
 function "/" (L: integer; R: signed) return signed;
 function "rem" (L, R: unsigned) return unsigned;
 function "rem" (L, R: signed) return signed;
 function "rem" (L: unsigned; R: natural) return unsigned;
 function "rem" (L: natural; R: unsigned) return unsigned;
 function "rem" (L: signed; R: integer) return signed;
 function "rem" (L: integer; R: signed) return signed;
 function "mod" (L, R: unsigned) return unsigned;
 function "mod" (L, R: signed) return signed;

http://www.acc-eda.com/vhdlref/refguide/language...c/standard_1076_3/numeric_standard_operators.htm (1 of 4) [12/19/2004 12:08:53 PM]

Numeric Standard Operators

 function "mod" (L: unsigned; R: natural) return unsigned;
 function "mod" (L: natural; R: unsigned) return unsigned;
 function "mod" (L: signed; R: integer) return signed;
 function "mod" (L: integer; R: signed) return signed;

Numeric Logical Operators
 function "not" (L: unsigned) return unsigned;
 function "and" (L, R: unsigned) return unsigned;
 function "or" (L, R: unsigned) return unsigned;
 function "nand" (L, R: unsigned) return unsigned;
 function "nor" (L, R: unsigned) return unsigned;
 function "xor" (L, R: unsigned) return unsigned;
 function "xnor" (L, R: unsigned) return unsigned;
 function "not" (L: signed) return signed;
 function "and" (L, R: signed) return signed;
 function "or" (L, R: signed) return signed;
 function "nand" (L, R: signed) return signed;
 function "nor" (L, R: signed) return signed;
 function "xor" (L, R: signed) return signed;
 function "xnor" (L, R: signed) return signed;

Relational Operators
 function ">" (L, R: unsigned) return boolean;
 function ">" (L, R: signed) return boolean;
 function ">" (L: natural; R: unsigned) return boolean;
 function ">" (L: integer; R: signed) return boolean;
 function ">" (L: unsigned; R: natural) return boolean;
 function ">" (L: signed; R: integer) return boolean;
 function "<" (L, R: unsigned) return boolean;
 function "<" (L, R: signed) return boolean;
 function "<" (L: natural; R: unsigned) return boolean;
 function "<" (L: integer; R: signed) return boolean;
 function "<" (L: unsigned; R: natural) return boolean;
 function "<" (L: signed; R: integer) return boolean;
 function "<=" (L, R: unsigned) return boolean;
 function "<=" (L, R: signed) return boolean;
 function "<=" (L: natural; R: unsigned) return boolean;
 function "<=" (L: integer; R: signed) return boolean;
 function "<=" (L: unsigned; R: natural) return boolean;

http://www.acc-eda.com/vhdlref/refguide/language...c/standard_1076_3/numeric_standard_operators.htm (2 of 4) [12/19/2004 12:08:53 PM]

Numeric Standard Operators

 function "<=" (L: signed; R: integer) return boolean;
 function ">=" (L, R: unsigned) return boolean;
 function ">=" (L, R: signed) return boolean;
 function ">=" (L: natural; R: unsigned) return boolean;
 function ">=" (L: integer; R: signed) return boolean;
 function ">=" (L: unsigned; R: natural) return boolean;
 function ">=" (L: signed; R: integer) return boolean;
 function "=" (L, R: unsigned) return boolean;
 function "=" (L, R: signed) return boolean;
 function "=" (L: natural; R: unsigned) return boolean;
 function "=" (L: integer; R: signed) return boolean;
 function "=" (L: unsigned; R: natural) return boolean;
 function "=" (L: signed; R: integer) return boolean;
 function "/=" (L, R: unsigned) return boolean;
 function "/=" (L, R: signed) return boolean;
 function "/=" (L: natural; R: unsigned) return boolean;
 function "/=" (L: integer; R: signed) return boolean;
 function "/=" (L: unsigned; R: natural) return boolean;
 function "/=" (L: signed; R: integer) return boolean;

Shift and Rotate Functions
 function shift_left (ARG: unsigned; COUNT: natural) return unsigned;
 function shift_right (ARG: unsigned; COUNT: natural) return unsigned;
 function shift_left (ARG: signed; COUNT: natural) return signed;
 function shift_right (ARG: signed; COUNT: natural) return signed;
 function rotate_left (ARG: unsigned; COUNT: natural) return unsigned;
 function rotate_right (ARG: unsigned; COUNT: natural) return unsigned;
 function rotate_left (ARG: signed; COUNT: natural) return signed;
 function rotate_right (ARG: signed; COUNT: natural) return signed;
 function "sll" (ARG: unsigned; COUNT: integer) return unsigned;
 function "sll" (ARG: signed; COUNT: integer) return signed;
 function "srl" (ARG: unsigned; COUNT: integer) return unsigned;
 function "srl" (ARG: signed; COUNT: integer) return signed;
 function "rol" (ARG: unsigned; COUNT: integer) return unsigned;
 function "rol" (ARG: signed; COUNT: integer) return signed;
 function "ror" (ARG: unsigned; COUNT: integer) return unsigned;
 function "ror" (ARG: signed; COUNT: integer) return signed;

See also

http://www.acc-eda.com/vhdlref/refguide/language...c/standard_1076_3/numeric_standard_operators.htm (3 of 4) [12/19/2004 12:08:53 PM]

Numeric Standard Operators

 VHDL Operators

http://www.acc-eda.com/vhdlref/refguide/language...c/standard_1076_3/numeric_standard_operators.htm (4 of 4) [12/19/2004 12:08:53 PM]

Numeric Resize Functions

Numeric Resize Functions

The resize functions are used to convert a fixed-sized signed or unsigned array to a
new (larger or smaller) size. If the resulting array is larger than the input array, the
result is padded with ‘0’s. In the case of a signed array, the sign bit is extended to the
least significant bit.

 function resize (ARG: signed; NEW_SIZE: natural) return signed;
 function resize (ARG: unsigned; NEW_SIZE: natural) return unsigned;

http://www.acc-eda.com/vhdlref/refguide/language_ove...d_logic/standard_1076_3/numeric_resize_functions.htm [12/19/2004 12:08:53 PM]

Numeric Type Conversion Functions

Numeric Type Conversion Functions

The numeric type conversion functions are used to convert between integer data types
and signed and unsigned data types.

 function to_integer (ARG: unsigned) return natural;
 function to_integer (ARG: signed) return integer;
 function to_unsigned (ARG, SIZE: natural) return unsigned;
 function to_signed (ARG: integer; SIZE: natural) return signed;

http://www.acc-eda.com/vhdlref/refguide/language_ov...andard_1076_3/numeric_type_conversion_functions.htm [12/19/2004 12:08:54 PM]

Numeric Matching Functions

Numeric Matching Functions

The matching functions (std_match) are used to determine if two values of type
std_logic are logically equivalent, taking into consideration the semantic values of the
‘X’ (uninitialized) and ‘-’ (don’t-care) literal values. The table of Figure 4-3 (derived
from the match_table constant declaration found in the numeric_std package)
defines the matching of all possible combinations of the std_logic enumerated values.

 U X 0 1 Z W L H -
U F F F F F F F F T
X F F F F F F F F T
0 F F T F F F T F T
1 F F F T F F F T T
Z F F F F F F F F T
W F F F F F F F F T
L F F T F F F T F T
H F F F T F F F T T
- T T T T T T T T T

 function std_match (L, R: STD_ULOGIC) return boolean;
 function std_match (L, R: unsigned) return boolean;
 function std_match (L, R: signed) return boolean;
 function std_match (L, R: std_logic_vector) return boolean;
 function std_match (L, R: STD_ULOGIC_vector) return boolean;

http://www.acc-eda.com/vhdlref/refguide/language_ove...logic/standard_1076_3/numeric_matching_functions.htm [12/19/2004 12:08:54 PM]

Numeric Translation Functions

Numeric Translation Functions

The numeric translation functions convert the nine std_logic values to numeric binary
values (‘0’ or ‘1’) for use in signed and unsigned arithmetic operations. These
translation functions convert the values of ‘L’ and ‘H’ to ‘0’ and ‘1’, respectively. Any
other values (‘U’, ‘X’, ‘Z’, ‘-’, or ‘W’) result in a warning error (assertion) being
generated.

 function to_01 (S: unsigned; XMAP: std_logic := '0') return unsigned;
 function to_01 (S: signed; XMAP: std_logic := '0') return signed;

http://www.acc-eda.com/vhdlref/refguide/language_over...gic/standard_1076_3/numeric_translation_functions.htm [12/19/2004 12:08:55 PM]

Reading and Writing Files with Text I/O

Reading and Writing Files with Text I/O

The text I/O features of VHDL make it possible to open one or more data files, read
lines from those files, and parse the lines to form individual data elements, such as
elements in an array or record. To support the use of files, VHDL has the concept of a
file data type, and includes standard, built-in functions for opening, reading from, and
writing to file data types. (These data types and functions were described in the
section Objects, Data Types and Operators.) The textio package, which is included in
the standard library, expands on the built-in file type features by adding text parsing
and formatting functions, functions and special file types for use with interactive
("std_input" and "std_output") I/O operations, and other extensions.

The following example demonstrates how you can use the text I/O features of VHDL
to read test data from an ASCII file, using the standard text I/O features.

-- Test bench, VHDL ‘93 style
--
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.fib; -- Get the design out of library 'work'

entity testfib is
end entity testfib;

architecture stimulus of testfib is
 component fib is
 port (Clk,Clr: in std_logic;
 Load: in std_ulogic;
 Data_in: in std_ulogic_vector(15 downto 0);
 S: out std_ulogic_vector(15 downto 0));
 end component fib;

 function str_to_stdvec(inp: string) return std_ulogic_vector is
 variable temp: std_ulogic_vector(inp'range) := (others => 'X');
 begin
 for i in inp'range loop

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (1 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

 if (inp(i) = '1') then
 temp(i) := '1';
 elsif (inp(i) = '0') then
 temp(i) := '0';
 end if;
 end loop;
 return temp;
 end function str_to_stdvec;

 function stdvec_to_str(inp: std_ulogic_vector) return string is
 variable temp: string(inp'left+1 downto 1) := (others => 'X');
 begin
 for i in inp'reverse_range loop
 if (inp(i) = '1') then
 temp(i+1) := '1';
 elsif (inp(i) = '0') then
 temp(i+1) := '0';
 end if;
 end loop;
 return temp;
 end function stdvec_to_str;

 signal Clk,Clr: std_ulogic;
 signal Load: std_ulogic;
 signal Data_in: std_ulogic_vector(15 downto 0);
 signal S: std_ulogic_vector(15 downto 0);
 signal done: std_ulogic := '0';

 constant PERIOD: time := 50 ns;

begin
 UUT: fib port map(Clk=>Clk,Clr=>Clr,Load=>Load,
 Data_in=>Data_in,S=>S);

 Clock: process
 variable c: std_ulogic := '0';
 begin
 while (done = '0') loop
 wait for PERIOD/2;
 c := not c;

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (2 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

 Clk <= c;
 end loop;
 end process Clock;

 Read_input: process
 file vector_file: text;

 variable stimulus_in: std_ulogic_vector(33 downto 0);
 variable S_expected: std_ulogic_vector(15 downto 0);
 variable str_stimulus_in: string(34 downto 1);
 variable err_cnt: integer := 0;
 variable file_line: line;

 begin

 file_open(vector_file,"tfib93.vec",READ_MODE);

 wait until rising_edge(Clk);

 while not endfile(vector_file) loop
 readline (vector_file,file_line);
 read (file_line,str_stimulus_in) ;
 assert (false)
 report "Vector: " & str_stimulus_in
 severity note;
 stimulus_in := str_to_stdvec (str_stimulus_in);

 wait for 1 ns;

 --Get input side of vector...
 Clr <= stimulus_in(33);
 Load <= stimulus_in(32);
 Data_in <= stimulus_in(31 downto 16);

 --Put output side (expected values) into a variable...
 S_expected := stimulus_in(15 downto 0);

 wait until falling_edge(Clk);

 -- Check the expected value against the results...

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (3 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

 if (S /= S_expected) then
 err_cnt := err_cnt + 1;
 assert false
 report "Vector failure!" & lf &
 "Expected S to be " & stdvec_to_str(S_expected) & lf &
 "but its value was " & stdvec_to_str(S) & lf
 severity note;
 end if;
 end loop;

 file_close(vector_file);

 done <= '1';

 if (err_cnt = 0) then
 assert false
 report "No errors." & lf & lf
 severity note;
 else
 assert false
 report "There were errors in the test." & lf
 severity note;
 end if;
 wait;

 end process Read_input;
end architecture stimulus;

-- Add a configuration statement. This statement actually states the
-- default configuration, and so it is optional.
configuration build1 of testfib is
 for stimulus
 for DUT: fib use entity work.fib(behavior)
 port map(Clk=>Clk,Clr=>Clr,Load=>Load,
 Data_in=>Data_in,S=>S);
 end for;
 end for;
end configuration build1;

This test bench reads lines from an ASCII file and applies the data contained in each

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (4 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

line as a test vector to stimulate and test a simple Fibonacci sequence generator
circuit. It begins with our by-now-familiar entity-architecture pair:

This test bench reads files of text "dynamically" during simulation, so the test bench
does not have to be recompiled when test stimulus is added or modified. This is a big
advantage for very large designs.

What does the test vector file that this test bench reads look like? The following file
(testfib.vec) describes one possible sequence of tests that could be performed using
this test bench:

1000000000000000000000000000000000
0000000000000000000000000000000001
0000000000000000000000000000000001
0000000000000000000000000000000010
0000000000000000000000000000000011
0000000000000000000000000000000101
0000000000000000000000000000001000
0000000000000000000000000000001101
0000000000000000000000000000010101
0000000000000000000000000000100010
0000000000000000000000000000110111
0000000000000000000000000001011001
0000000000000000000000000010010000
0000000000000000000000000011101001
0000000000000000000000000101111001
0000000000000000000000001001100010
0000000000000000000000001111011011
0000000000000000000000011000111101
0000000000000000000000101000011000
0000000000000000000001000001010101
0000000000000000000001101001101101
0000000000000000000010101011000010
0000000000000000000100010100101111
0000000000000000000110111111110001
0000000000000000001011010100100000
0000000000000000000010010100010001
0000000000000000000000000000000001
0000000000000000000000000000000001
0000000000000000000000000000000010

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (5 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

0000000000000000000000000000000011
0000000000000000000000000000000101
0000000000000000000000000000001000

This file could have been entered manually, using a text editor. Alternatively, it could
have been generated from some other software package or from a program written in
C, Basic or any other language. Reading text from files opens many new possibilies
for testing and for creating interfaces between different design tools.

Although test vectors are quite useful for tabular test data, they are not particularly
readable. In the last example of this chapter, we will describe how you can read and
process test stimulus files that are more command-oriented, rather than simply being
tables of binary values.

Reading Non-tabular Data from Files
You can use VHDL’s text I/O features to read and write many different built-in data
types, including such data types as characters, strings, and integers. This is a
powerful feature of the language that you will make great use of as you become
proficient with the language.

VHDL’s text I/O features are somewhat limited, however, when it comes to reading
data that is not expressed as one of the built-in types defined in Standard 1076. The
primary example of this is when you wish to read or write standard logic data types. In
the previous example (the Fibonacci sequence generator), we made use of type
coversion functions to read standard logic input data as characters. This method
works fine, but it is somewhat clumsy. A better way to approached this common
problem is to develop a reusable package of functions for reading and writing standard
logic data. Writing a comprehensive package of such functions is not a trivial task. It
would probably require a few days of coding and debugging.

Fortunately, one such package already exists and is in widespread use. This package,
std_logic_textio, was originally developed by Synopsys. Synopsys allows the
package to be used and distributed without restriction. We will use the
std_logic_textio package to demonstrate how you might read data fields from a file
and write other data to another file (or, in this case, to the console or simulator
transcript window).

The circuit that we will be testing with our test bench is a 32-bit adder-subtractor unit,
the complete source code for which is provided on the companion CD-ROM. The test
bench that we wish to write will read information from a file in the form of hexadecimal

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (6 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

numeric values. The data file, which we will name TST_ADD.DAT, will include both
the inputs and the expected outputs for the circuit. A listing of TST_ADD.DAT,
containing a small number of test lines, is shown below:

0 00000001 00000001 00000002 0
0 00000002 00000002 00000004 0
0 00000004 00000004 00000008 0
0 FFFFFFFF FFFFFFFF FFFFFFFE 1
0 0000AAAA AAAA0000 AAAAAAAA 0
0 158D7129 E4C28B56 FA4FFC7F 0
1 00000001 00000001 00000000 0
1 A4F67B92 00000001 5B09846F 0
1 FFFFFFFF FFFFFFFE FFFFFFFF 0
1 FFFFFFFE FFFFFFFF 00000001 1
1 00000002 00000004 00000002 1

The standard text I/O features defined in VHDL standard 1076 do not include
procedures to read data in hexadecimal format, so we will make use of the hread
procedure provided in the Synopsys std_logic_textio package. Hread accepts the
same arguments as the standard read procedure, but allows values to be expressed
in hexadecimal format. We will use hread to read the second, third and fourth fields in
each line of the file, as these fields are represented in hexadecimal format.

Because the first and last fields of the data file are single-bit values of type
std_ulogic, we will also make use of an overloaded read procedure provided in
std_logic_textio. VHDL’s built-in read procedure is not capable of reading
std_ulogic values, so the std_logic_textio package includes additional read
procedure definitions that extend read for these values.

Finally, we wish to display the results of simulation in the simulator’s transcript
window, so we use the hwrite and overloaded write procedures provided in
std_logic_textio to format and display the data values. Once again, these are
procedures that are not provided in the standard VHDL text I/O package.

library ieee;
use ieee.std_logic_1164.all;
use work.all;
use std.textio.all;

library textutil; -- Synposys Text I/O package

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (7 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

use textutil.std_logic_textio.all;

entity tst_add is
end tst_add;

architecture readhex of tst_add is
 component adder32 is
 port (cin: in std_ulogic;
 a,b: in std_ulogic_vector(31 downto 0);
 sum: out std_ulogic_vector(31 downto 0);
 cout: out std_ulogic);
 end component;
 for all: adder32 use entity work.adder32(structural);
 signal Clk: std_ulogic;
 signal x, y: std_ulogic_vector(31 downto 0);
 signal sum: std_ulogic_vector(31 downto 0);
 signal cin, cout: std_ulogic;

 constant PERIOD: time := 200 ns;

begin
 UUT: adder32 port map (cin, x, y, sum, cout);

 readcmd: process

 -- This process loops through a file and reads one line
 -- at a time, parsing the line to get the values and
 -- expected result.
 --
 -- The file format is CI A B SUM CO, with A, B and SUM
 -- expressed as hexadecimal values.

 file cmdfile: TEXT; -- Define the file 'handle'
 variable line_in,line_out: Line; -- Line buffers
 variable good: boolean; -- Status of the read operations

 variable CI, CO: std_ulogic;
 variable A,B: std_ulogic_vector(31 downto 0);
 variable S: std_ulogic_vector(31 downto 0);
 constant TEST_PASSED: string := "Test passed:";

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (8 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

 constant TEST_FAILED: string := "Test FAILED:";

 -- Use a procedure to generate one clock cycle...
 procedure cycle (n: in integer) is
 begin
 for i in 1 to n loop
 Clk <= '0';
 wait for PERIOD / 2;
 Clk <= '1';
 wait for PERIOD / 2;
 end loop;
 end cycle;

 begin

 -- Open the command file...

 FILE_OPEN(cmdfile,"TST_ADD.DAT",READ_MODE);

 loop

 if endfile(cmdfile) then -- Check EOF
 assert false
 report "End of file encountered; exiting."
 severity NOTE;
 exit;
 end if;

 readline(cmdfile,line_in); -- Read a line from the file
 next when line_in'length = 0; -- Skip empty lines

 read(line_in,CI,good); -- Read the CI input
 assert good
 report "Text I/O read error"
 severity ERROR;

 hread(line_in,A,good); -- Read the A argument as hex value
 assert good
 report "Text I/O read error"
 severity ERROR;

http://www.acc-eda.com/vhdlref/refguide/language_...nches/reading_and_writing_files_with_text_i_o.htm (9 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

 hread(line_in,B,good); -- Read the B argument
 assert good
 report "Text I/O read error"
 severity ERROR;

 hread(line_in,S,good); -- Read the Sum expected resulted
 assert good
 report "Text I/O read error"
 severity ERROR;

 read(line_in,CO,good); -- Read the CO expected resulted
 assert good
 report "Text I/O read error"
 severity ERROR;

 cin <= CI;
 x <= A;
 y <= B;

 wait for PERIOD; -- Give the circuit time to stabilize

 if (sum = S) then
 write(line_out,TEST_PASSED);
 else
 write(line_out,TEST_FAILED);
 end if;
 write(line_out,CI,RIGHT,2);
 hwrite(line_out,A,RIGHT,9);
 hwrite(line_out,B,RIGHT,9);
 hwrite(line_out,sum,RIGHT,9);
 write(line_out,cout,RIGHT,2);
 writeline(OUTPUT,line_out); -- write the message

 end loop;

 wait;

 end process;

http://www.acc-eda.com/vhdlref/refguide/language...ches/reading_and_writing_files_with_text_i_o.htm (10 of 11) [12/19/2004 12:08:56 PM]

Reading and Writing Files with Text I/O

end architecture readhex;

http://www.acc-eda.com/vhdlref/refguide/language...ches/reading_and_writing_files_with_text_i_o.htm (11 of 11) [12/19/2004 12:08:56 PM]

Keyword: ABS

Keyword: ABS

Abs is an absolute value operator which can be applied to any numeric type in an
expression.

Example
 Delta <= abs(A-B)

LRM
 7.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__abs.htm [12/19/2004 12:08:57 PM]

Keyword: ACCESS

Keyword: ACCESS

The access keyword declares an access subtype. Access subtypes are used like
pointers to refer to other objects. The objects which an access subtype can reference
are array objects, record objects, and scalar type objects.

An access declaration includes the reserved word access, followed by a subtype.

Example
 type AddressPtr is access RAM;

LRM
 3.3

See also

 Types and Subtypes
 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__access.htm [12/19/2004 12:08:57 PM]

Keyword: AFTER

Keyword: AFTER

The after keyword is used in signal assignment statements to indicate a delay value
before a signal assignment takes place

A signal assignment statement containing an after clause includes—in this order—the
name of the signal object, the reserved signal assignment symbol "<=", the optional
keyword "transport", an expression specifying the value to be assigned to the signal,
the reserved word "after", and the delay value (of type "time") after which the signal
assignment is to take place.

If no after clause is present in a signal assignment statement, an implicit "after 0ns"
clause is assumed.

Examples
 Clk <= not Clk after 50 ns;
 ...
 Waveform <= transport ‘1’ after 100 ps;

LRM
 8.4

See also

 Inertial Keyword
 Transport Keyword
 Signal and Variable Assignments

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__after.htm [12/19/2004 12:08:57 PM]

Keyword: ALIAS

Keyword: ALIAS

An alias is an alternate name for an object. An alias is primarily used to create a slice
(a one-dimensional array referring to all or part) of an existing array. An alias is not a
new object, but only an alternate name for all or part of an existing object.

Note: aliases cannot be used for multi-dimensional arrays.

Examples
 alias LOWBYTE :std_logic_vector(7 downto 0) is Data1(7 downto 0);
 ...
 alias HIGHBYTE :std_logic_vector(7 downto 0) is Data1(15 downto 8);

LRM
 4.3

See also

 Objects, Data Types and Operators
 Types and Subtypes

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__alias.htm [12/19/2004 12:08:58 PM]

Keyword: ALL

Keyword: ALL

The all keyword is used in the following ways:

(1) in a use statement, to make all the items in a package visible,
(2) in an attribute specification, to refer to all the names in a name class,
(3) in a configuration specification (for) statement, to refer to all instances of
a component, and
(4) in a signal disconnection specification, to refer to all signal drivers of the
same type.

Examples
 use ieee_std_logic_1164.all;
 ...
 for DUT: compare use entity work.compare(compare1);

LRM
 5.1, 5.2, 5.3

See also

 Attribute
 Disconnect
 For
 Use

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__all.htm [12/19/2004 12:08:58 PM]

Keyword: AND

Keyword: AND

And is a logical "and" operator which can be used in an expression. The expression
"A and B" returns true only if both A and B are true.

LRM
 7.2

See also

 Object, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__and.htm [12/19/2004 12:08:59 PM]

Keyword: ARCHITECTURE

Keyword: ARCHITECTURE

The architecture keyword defines the internal details of a design entity.

An architecture body defines the relationships between the input and output elements
of the entity. An architecture body consists of a series of concurrent statements. An
architecture body can also include processes, functions, and procedures, each of
which may include sequential statements. Although the statements inside a process,
for example, are executed sequentially, the process itself is treated within the
architecture body as a concurrent statement.

A given architecture can be associated with only one entity. However, a given entity
may have more than one architecture body.

An architecture statement includes—in this order—the following:

(1) the reserved word "architecture", followed by :
 (a) the name of the architecture,
 (b) the reserved word "of",
 (c) the entity name, and
 (d) the reserved word "is",
(2) a declarations section,
(3) the reserved word "begin",
(4) the architecture body (a series of concurrent statements as described
above), and
(5) the reserved word "end", followed optionally by the name of the
architecture from (1)(a) above.

Example
 architecture sample_architecture of compare is
 begin
 GT <= ‘1’ when A > B else ‘0’;
 LT <= ‘1’ when A < B else ‘0’;
 EQ <= ‘1’ when A = B else ‘0’;
 end sample_architecture;

LRM

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__architecture.htm (1 of 2) [12/19/2004 12:08:59 PM]

Keyword: ARCHITECTURE

 1.2

See also

 First Look: Entities and Architectures

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__architecture.htm (2 of 2) [12/19/2004 12:08:59 PM]

Keyword: ARRAY

Keyword: ARRAY

The array keyword is used to declare an array data type. An array is an object
containing a collection of elements that are all of the same type.

An array can be either constrained or unconstrained. A constrained array is defined
with an index defining the number of array elements. In an unconstrained array, the
number of elements in the array is specified in the array’s object declaration, or the
index definition for the array may be given in a subtype declaration. Arrays may be
one-dimensional (single index) or multi-dimensional (multiple indices).

An array definition includes—in this order—the following:

(1) the reserved word "array", followed by a definition(s) of the elements in
the array, and
(2) the reserved word "of", followed by the subtype of the array’s elements.

Examples
 type DataWord is array (15 downto 0) of DataBit;
 --Constrained
 ...
 type BigWord is array (integer range <>) of DataBit;
 -- Unconstrained

LRM
 3.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__array.htm [12/19/2004 12:08:59 PM]

Keyword: ASSERT

Keyword: ASSERT

The assert keyword indicates the beginning of an assert statement. An assert
statement checks to see if a given condition is true and, if the statement is not true,
performs some action.

An assert statement includes two options, either or both of which may be used:

(1) report—which displays a user-defined message if the given condition is
false, and
(2) severity—which allows the user to choose a severity level if the given
condition is false.

The four possible severity levels are: Note, Warning, Error, and Failure. The value
of severity is typically used to control the actions of a simulation in the event the given
condition is false. For example, a severity level of Failure may be used to stop the
simulation.

Example
 assert (S = S_expected)
 report "S does not match the expected value!"
 severity Error;

LRM
 8.2, 8.3

See also

 Using Assert Statements

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__assert.htm [12/19/2004 12:09:00 PM]

Keyword: ATTRIBUTE

Keyword: ATTRIBUTE

An attribute specification describes a characteristic of a given object. An attribute is
most often used to get additional information about an object. For example, an
attribute may be used to find the width of an array or to determine if a signal is in
transition (i.e., has an event occurring on it).

Examples
 if Clk’event then...
 ...
 W = Data’width;

An attribute can be a constant, function, range, signal, type, or value. User-defined
attributes are always constants, no matter what type. The other five
possibilities—function, range, signal, type, and value—are pre-defined attributes.

An attribute declaration is used to declare an attribute name and its type. It
includes—in this order—the reserved word "attribute", the name of the attribute, and
the attribute’s type.

Example
 attribute enum_encoding: string;

An attribute specification assigns a value to the attribute. It includes—in this
order—the reserved word "attribute", the attribute’s name, the reserved word "of", an
item name (which can be an architecture, component, configuration, constant, entity,
function, label, package, procedure, signal, subtype, type, or variable), the name class
of the item (e.g., architecture, component, configuration, etc.), the reserved word "is",
and an expression.

Example
 attribute enum_encoding of StateReg is
 "0001 0011 0010 0110 0100 1100 1000";

An attribute name must be declared in an attribute declaration before it can be used in
an attribute specification.

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__attribute.htm (1 of 2) [12/19/2004 12:09:00 PM]

Keyword: ATTRIBUTE

LRM
 4.4, 5.1, 6.6

See also

 Objects, Data Types and Operators
 Understanding VHDL Attributes

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__attribute.htm (2 of 2) [12/19/2004 12:09:00 PM]

Keyword: BEGIN

Keyword: BEGIN

See

 Block
 Architecture
 Entity
 If
 Process

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__begin.htm [12/19/2004 12:09:01 PM]

Keyword: BLOCK

Keyword: BLOCK

Block is a concurrent statement used to represent a portion of a design. Block
statements may also include an optional Guard feature which allows the user to
disable signal drivers within the block when a specified Guard condition is false.

A block statement includes—in this order—the following:

(1) block label,
(2) the reserved word "block",
(3) optionally, a Boolean guard expression (for example, TESTCOUNT<5),
(4) a block header, which specifies the interface of the block with its
environment,
(5) a block declarations section,
(6) the reserved word "begin",
(7) the block statements, and
(8) the reserved words "end block", optionally followed by the block label
(which, if used, must be the same as the block label in (1)).

When a guard expression is used, a signal driver can be disabled by inserting the
reserved word "guarded" at the beginning of the right side of the signal driver
statement. For example, based on the example in (3) above, the block statement:

 SAMPLE <= guarded D;

will cause the signal SAMPLE to take on the value of D only when
TESTCOUNT<5. Otherwise, no action on that assignment statement will be taken.

Example
 TESTPARITY: block
 signal Atmp,Btmp; -- Local signals
 begin
 Atmp <= gen_parity(A);
 Btmp <= gen_parity(B);
 ParityEQ <= ‘1’ when Atmp = Btmp else ‘0’;
 end block TESTPARITY;

LRM

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__block.htm (1 of 2) [12/19/2004 12:09:01 PM]

Keyword: BLOCK

 9.1

See also

 Guarded
 Blocks

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__block.htm (2 of 2) [12/19/2004 12:09:01 PM]

Keyword: BODY

Keyword: BODY

See

 Package Body

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__body.htm [12/19/2004 12:09:01 PM]

Keyword: BUFFER

Keyword: BUFFER

Buffer is one of five possible modes for an interface port. (The other four are in, out,
inout, and linkage.) The buffer mode indicates a port which can be used for both
input and output, and it can have only one source. A buffer port can only be
connected to another buffer port or to a signal that also has only one source.

LRM
 1.1

See also

 In
 Inout
 Linkage
 Out

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__buffer.htm [12/19/2004 12:09:02 PM]

Keyword: BUS

Keyword: BUS

Bus specifies one of two kinds of signals used in a signal declaration (the other is
register). A bus signal represents a hardware bus and defaults to a user-specified
value when all of the signal’s drivers are turned off.

LRM
 1.1

See also

 Register

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__bus.htm [12/19/2004 12:09:02 PM]

Keyword: CASE

Keyword: CASE

Case is a sequential statement used within a process, procedure or function that
selects and executes one statement sequence among a list of alternatives, based on
the value of a given expression. The expression must be of a discrete type or a one-
dimensional array type.

A case statement includes—in this order—the following:

(1) the reserved word "case",
(2) the expression to be evaluated,
(3) the reserved word "is",
(4) the reserved word "when" followed by a choice and the sequence of
statements to be executed if the expression evaluates to be that choice,
(5) optionally, subsequent "when" statements similar to (4),
(6) optionally, the reserved words "when others" followed by the sequence of
statements to be executed if the expression evaluates to be any value other
than those specified in the "when" statements above,
(7) the reserved words "end case".

Because the case statement chooses one and only one alternative for execution, all
possible values for the expression must be covered in "when" statements.

A case statement is distinguished from a chain of if-then-else statements in that no
priority is implied for the conditions specified.

Example
 case current_state is
 when IDLE =>
 if start_key = ‘1’ then
 current_state <= READ0;
 end if;
 when READ0 =>
 current_state <= READ1;
 when READ1 =>
 current_state <= READX;
 when READX =>
 current_state <= WRITE0;

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__case.htm (1 of 2) [12/19/2004 12:09:03 PM]

Keyword: CASE

 when WRITE0 =>
 current_state <= WRITEX;
 when WRITEX =>
 current_state <= IDLE;
 end case;

LRM
 8.8

See also

 Sequential Statements
 Case Statements

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__case.htm (2 of 2) [12/19/2004 12:09:03 PM]

Keyword: COMPONENT

Keyword: COMPONENT

A component declaration is used to define the interface to a lower-level design
entity. The component may then be included in a component instantiation statement
which itself is included in an architecture body, thus allowing one entity to be used as
part of another entity. The component declaration must be placed in the declaration
section of the architecture body, or in a package visible to the architecture.

Example
 component my_adder
 port(A,B,Cin: in std_ulogic;
 Sum,Cout: out std_ulogic);
 end component;

LRM
 4.5, 9.6

See also

 Architecture
 Entity
 Partitioning Features
 Components
 Component Instantiation

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__component.htm [12/19/2004 12:09:03 PM]

Keyword: CONFIGURATION

Keyword: CONFIGURATION

A declaration used to create a configuration for an entity. A configuration declaration
for a given entity binds one architecture body to the entity and can bind components of
architecture bodies within that entity to other entities. In a given configuration
declaration for an entity, only one architecture body can be bound to that
entity. However, one entity can have many configurations.

Example
 configuration this_build of adder is
 use work.all;
 for structure
 for A1,A2,A3: AddBlock
 use entity FullAdd(behavior);
 end for;
 end for;
 end this_build;

LRM
 1.3

See also

 Configuration Statements
 Design Partitioning Features

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__configuration.htm [12/19/2004 12:09:03 PM]

Keyword: CONSTANT

Keyword: CONSTANT

The constant keyword declares a constant of a type specified in the constant
declaration.

A constant declaration includes—in this order—the reserved word "constant", the
name of the constant, the optional reserved word "in", the type of the constant, and,
optionally, an expression for the value of the constant.

If an expression for the value of the constant is not included in the constant
declaration, then the constant is referred to as a deferred constant. A deferred
constant may only be included in a package declaration, while the complete constant
declaration, including the expression which defines its value, must be included in the
package body.

Examples
 constant RESET: std_ulogic_vector(7 downto 0) := "00000000";
 ...
 constant PERIOD: time := 80 ns;

LRM
 4.3

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__constant.htm [12/19/2004 12:09:04 PM]

Keyword: DISCONNENT

Keyword: DISCONNENT

The disconnect keyword specifies the time delay to disconnect the guarded feature
of a signal which is part of a guarded signal statement. (See guarded and block.)

A disconnect statement includes—in this order—the reserved word "disconnect", the
name of the guarded signal, the guarded signal’s type, the reserved word "after", and
a time expression specifying the time after which the guard feature should be
disconnected.

In place of the guarded signal’s name, the reserved words "others" or "all" may be
used. "Others" refers to all other signal statements in the immediately enclosing
declarative region which have not been specified in a separate disconnect
statement. "All" refers to all other signal statements in the declarative region.

A given signal driver can have only one disconnect statement.

LRM
 5.3

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__disconnent.htm [12/19/2004 12:09:04 PM]

Keyword: DOWNTO

Keyword: DOWNTO

The downto keyword is used to indicate a descending range in a range statement or
other statement which includes a range (for example, an array type declaration). (The
reserved word "to" is used to indicate an ascending range.)

Example
 signal A0,A1: std_logic_vector(15 downto 0);

LRM
 6.5

See also

 Range

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__downto.htm [12/19/2004 12:09:05 PM]

Keyword: ELSE

Keyword: ELSE

The else keyword is used to identify the final alternative in an if or when statement.

See also

 If
 When

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__else.htm [12/19/2004 12:09:05 PM]

Keyword: ELSIF

Keyword: ELSIF

The elsif keyword is used to identify an interim alternative in an if statement.

See also

 If

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__elsif.htm [12/19/2004 12:09:05 PM]

Keyword: END

Keyword: END

The end keyword specifies the end of an architecture, configuration, entity, package,
package body, or process statement.

See also

 Architecture
 Configuration
 Entity
 Package
 Package body
 Process
 End Loop
 End Generate
 End For

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end.htm [12/19/2004 12:09:06 PM]

Keyword: END BLOCK

Keyword: END BLOCK

The end block keyword is used to signify the end of a block statement.

See also

 Block

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_block.htm [12/19/2004 12:09:06 PM]

Keyword: END CASE

Keyword: END CASE

The end case keyword is used to signify the end of a case statement

See also

 Case

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_case.htm [12/19/2004 12:09:07 PM]

Keyword: END COMPONENT

Keyword: END COMPONENT

The end component keyword is used to signify the end of a component declaration.

See also

 Component

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_component.htm [12/19/2004 12:09:07 PM]

Keyword: END FOR

Keyword: END FOR

The end for keyword is used to signify the end of a for statement.

See also

 For

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_for.htm [12/19/2004 12:09:07 PM]

Keyword: END GENERATE

Keyword: END GENERATE

The end generate keyword is used to signify the end of a generate statement.

See also

 Generate

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_generate.htm [12/19/2004 12:09:08 PM]

Keyword: END IF

Keyword: END IF

The end if keyword is used to signify the end of an if statement.

See also

 If

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_if.htm [12/19/2004 12:09:08 PM]

Keyword: END LOOP

Keyword: END LOOP

The end loop keyword is used to signify the end of a loop statement.

See also

 Loop

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_loop.htm [12/19/2004 12:09:08 PM]

Keyword: END PROCESS

Keyword: END PROCESS

The end process keyword is used to signify the end of a process.

See

 Process.

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_process.htm [12/19/2004 12:09:09 PM]

Keyword: END RECORD

Keyword: END RECORD

The end record keyword is used to signify the end of a record statement.

See: Record.

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_record.htm [12/19/2004 12:09:09 PM]

Keyword: END UNITS

Keyword: END UNITS

The end units keyword is used to signify the end of a units statement.

See: Units.

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__end_units.htm [12/19/2004 12:09:09 PM]

Keyword: ENTITY

Keyword: ENTITY

An entity declaration used to describe the interface of a design entity.

A design entity is an abstract model of a digital system. A design entity includes:

(1) an entity declaration (which specifies the name of the entity and its
interface ports), and
(2) at least one architecture body (which models the internal workings of the
digital system).

An entity declaration includes—in this order—the reserved word "entity", the entity’s
name, the reserved word "is", the following optional statements:

(1) the reserved word "generic" followed by a list of generics and their types,
(2) the reserved word "port" followed by a list of interface port names and
their types,
(3) any declaration of entity items,
(4) the reserved word "begin" followed by appropriate entity declaration
statements, and
(5) non-optionally, the reserved word "end" followed (optionally) by the
entity’s name.

The ports of an entity are visible within the architecture(s) of the entity, and may be
referenced (have their values read, or have values assigned to them, depending on
their mode) as signals within the architecture(s).

Declarations made within an entity statement are visible within the corresponding
architecture(s).

Example
 entity Mux is
 generic(RISE, FALL: time := 0 ns);
 port(A,B: in std_ulogic;
 Sel: in std_ulogic;
 Y: out std_ulogic);
 end Mux;

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__entity.htm (1 of 2) [12/19/2004 12:09:10 PM]

Keyword: ENTITY

LRM
 1.1

See also

 Architecture
 Generic
 Port
 First Look: Entities and Architectures

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__entity.htm (2 of 2) [12/19/2004 12:09:10 PM]

Keyword: EXIT

Keyword: EXIT

The exit keyword is a sequential statement used in a loop to cause execution to jump
out of the loop.

An exit statement can only be used in a loop and can include an optional when
condition. An exit statement includes—in this order—the reserved word "exit", an
optional loop identifier (if no identifier is given, the exit statement is applied to the loop
in which the exit statement occurs), and, optionally, the reserved word "when"
followed by the condition under which the exit action is to be executed.

Example
 for idx in vectors’range loop
 apply_vector(vec(idx));
 wait for PERIOD;
 if done = ‘1’ then
 exit;
 end if;
 end loop;

LRM
 8.11

See also

 Loops
 Loop Termination

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__exit.htm [12/19/2004 12:09:10 PM]

Keyword: FILE

Keyword: FILE

The file keyword declares a file.

A file declaration includes—in this order—the reserved word "file", the name of the file
(as used by the program), the subtype indicator (which must define a file subtype), the
reserved word "is", on optional mode indicator (which must be either "in" or "out"), and
the file’s external name (which must be a string expression and is surrounded by
quote marks). If no mode is specified, the default is "in".

Example
 file vector_file: text is in "VECTOR.DAT";

LRM
 4.3

See also

 Objects, Data Types and Operators
 Test Benches
 Example Fib93

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__file.htm [12/19/2004 12:09:11 PM]

Keyword: FOR

Keyword: FOR

The for keyword is a statement used to identify:

(1) a block specification in a block configuration,
(2) a component specification in a component configuration,
(3) a parameter specification in a generate statement (see generate),
(4) a parameter specification in a loop statement (see loop), or
(5) a time expression in a wait statement (see wait).

See also
 Block
 Configuration
 Loop
 Generate
 Wait

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__for.htm [12/19/2004 12:09:11 PM]

Keyword: FUNCTION

Keyword: FUNCTION

A function statement defines a group of sequential statements that return a single
value.

A function specification includes—in this order—the reserved word "function", the
function’s name, a parameter list (which can only include constants and signal objects,
and must all be of mode in), the reserved word "return", and the type of the value to
be returned by the function.

Example
 function to_unsigned (a: std_ulogic_vector)
 return integer is
 alias av: std_ulogic_vector (1 to a'length) is a;
 variable ret,d: integer;
 begin
 d := 1;
 ret := 0;

 for i in a'length downto 1 loop
 if (av(i) = '1') then
 ret := ret + d;
 end if;
 d := d * 2;
 end loop;

 return ret;
 end to_unsigned;

LRM
 2.1

See also

 Return
 Pure
 Impure
 Functions and Procedures

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__function.htm (1 of 2) [12/19/2004 12:09:11 PM]

Keyword: FUNCTION

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__function.htm (2 of 2) [12/19/2004 12:09:11 PM]

Keyword: GENERATE

Keyword: GENERATE

The generate keyword is used to do one of the following:

(1) replicate a set of concurrent statements (a for-generation), or
(2) selectively execute a set of concurrent statements if a specified condition
is met (an if-generation).

A generate statement used to replicate a set of concurrent statements includes—in
this order—the following:

(a) a label for the generate, followed by the reserved word "for", followed by a
parameter specification for the "for",
(b) the reserved word "generate",
(c) the concurrent statements to be replicated,
(d) the reserved words "end generate".

A generate statement used to selectively execute a set of concurrent statements
includes—in this order—the following:

(a) a label for the generate, followed by the reserved word "if", followed by
the condition for the "if",
(b) the reserved word "generate",
(c) the concurrent statements to be selectively executed if the condition in (a)
is true,
(d) the reserved words "end generate".

Example
 G: for I in 0 to (WIDTH - 2) generate

 -- This generate statement creates the first
 -- XOR gate in the series...

 G0: if I = 0 generate
 X0: xor2 port map(A => D(0), B => D(1), Y => p(0));

 end generate G0;

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__generate.htm (1 of 2) [12/19/2004 12:09:12 PM]

Keyword: GENERATE

 -- This generate statement creates the middle
 -- XOR gates in the series...

 G1: if I > 0 and I < (WIDTH - 2) generate
 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i));
 end generate G1;

 -- This generate statement creates the last
 -- XOR gate in the series...

 G2: if I = (WIDTH - 2) generate
 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD);
 end generate G2;

 end generate G;

LRM
 9.7

See also

 Concurrent Statements
 Generate Statements
 Example Parity

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__generate.htm (2 of 2) [12/19/2004 12:09:12 PM]

Keyword: GENERIC

Keyword: GENERIC

The generic keyword used in a component or configuration to define constants whose
values may be controlled by the environment.

A generic statement includes—in this order—the reserved word "generic", followed by
a list of declarations for the generics being defined.

Example
 generic(RISE, FALL: time := 0 ns);

LRM
 1.1

See also

 Configuration
 Entity
 Port and Generic Mapping

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__generic.htm [12/19/2004 12:09:12 PM]

Keyword: GENERIC MAP

Keyword: GENERIC MAP

The generic map statement is used to associate values of constants within a block to
constants defined outside the block.

For example, suppose a given entity includes an architecture, and the architecture
includes a block. A generic map statement could be used to set the value of an entity
constant (which was defined by a "generic" statement in the entity declaration), equal
to the value of a block constant (which was defined by a "generic" statement in the
block).

A generic map statement includes—in this order—the reserved words "generic map"
followed by an association list (e.g., "LOCAL => GLOBAL").

Example
 U1: And2
 generic map (RISE_TIME => 2 ns, FALL_TIME => 2 ns);
 port map (A => IN1, B => IN2, Y => OUT1);

LRM
 5.2

See also

 Generic
 Port and Generic Mapping

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__generic_map.htm [12/19/2004 12:09:13 PM]

Keyword: GROUP

Keyword: GROUP

The group keyword is used to define a group template or specific group. Groups may
be used to give a name to a collection of named entities.

A group template declaration includes—in this order—the reserved word "group"
followed by a group name, the reserved word "is", and a list of classes enclosed in
parentheses.

Example
 group signal_pair is (signal1, signal2); -- group of two signals

A group declaration includes—in this order—the reserved word "group" followed by a
group name, the character ":", a group template name, and a list of named entities
enclosed in parentheses.

Example
 group G1: signal_pair(Clk1,Clk2);

LRM
 4.6

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__group.htm [12/19/2004 12:09:13 PM]

Keyword: GUARDED

Keyword: GUARDED

The guarded keyword is used to limit the execution of a signal statement within a
block when the block includes a guard statement.

See also

 Block

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__guarded.htm [12/19/2004 12:09:13 PM]

Keyword: IF

Keyword: IF

The if keyword is a sequential statement used for describing conditional logic.

Example
 if A > B then
 Compare <= GT;
 elsif A < B then
 Compare <= LT;
 else
 Compare <= EQ;
 end if;

The condition expression of an if statement must be a Boolean logic expression
(meaning that it must evaluate to a True or False value).
If statements are sequential, and may only be used in processes, procedures or
functions.

LRM
 8.7

See also

 Elsif
 Else
 Sequential Statements

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__if.htm [12/19/2004 12:09:14 PM]

Keyword: IMPURE

Keyword: IMPURE

The impure keyword is used to declare a function that may return a different value
given the same actual parameters, due to side effects.

Impure functions have access to a broader class of values than pure functions, and
can modify objects that are outside their own scope.

Example
 impure function HoldCheck (Clk, Data) return Boolean;

LRM
 2.1

See also

 Function

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__impure.htm [12/19/2004 12:09:14 PM]

Keyword: IN

Keyword: IN

The in keyword can be used in two different ways depending on the context:

(1) One of five possible modes for an interface port (the other four are inout,
out, buffer, and linkage); the in mode indicates a port which can be used only
for input; and
(2) An optional word in a constant declaration.

LRM
 1.1

See also

 Constant
 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__in.htm [12/19/2004 12:09:14 PM]

Keyword: INERTIAL

Keyword: INERTIAL

The inertial keyword is used to specify that a delay is inertial. In the absence of an
inertial or transport keyword, the delay is assumed to be inertial.

Example
 Qout <= A and B inertial after 12 ns;

LRM
 8.4

See also

 After
 Transport
 Delay Specifications

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__inertial.htm [12/19/2004 12:09:15 PM]

Keyword: INOUT

Keyword: INOUT

The inout keyword specifies one of five possible modes for an interface port. (The
other four are in, out, buffer, and linkage.) The inout mode indicates a port which
can be used for both input and output.

LRM
 1.1

See also

 In
 Out
 Buffer
 Linkage
 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__inout.htm [12/19/2004 12:09:15 PM]

Keyword: IS

Keyword: IS

See

 Architecture
 Case
 Configuration
 Entity
 File
 Package
 Package body
 Subtype
 Type

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__is.htm [12/19/2004 12:09:16 PM]

Keyword: LABEL

Keyword: LABEL

The label keyword is used to specify a label name in an attribute statement.

See

 Attribute

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__label.htm [12/19/2004 12:09:16 PM]

Keyword: LIBRARY

Keyword: LIBRARY

The library keyword identifies a library. The library statement is a context clause used
to identify libraries from which design units can be referenced.

A library statement includes—in this order—the reserved word "library" followed by a
list of library logical names.

Example
 library std_logic_1164; -- Use the IEEE 1164 standard library

Using a library clause makes a named library visible to the working
environment. However, to use a design unit from within that library, a "use" statement
must also be included specifying the design unit to be used.

All design units automatically include the following implicit library clause:

 library STD, WORK;

LRM
 11.2

See also

 Use
 Partitioning Features
 Design Libraries

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__library.htm [12/19/2004 12:09:17 PM]

Keyword: LINKAGE

Keyword: LINKAGE

The linkage keyword specifies one of five possible modes for an interface port. (The
other four are in, out, inout, and buffer.)

The linkage mode indicates a port which can be used for both input and output, and it
can only correspond to a signal.

LRM
 1.1

See also

 In
 Out
 Inout
 Buffer

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__linkage.htm [12/19/2004 12:09:17 PM]

Keyword: LITERAL

Keyword: LITERAL

The literal keyword is used in group template declarations.

See also

 Group.

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__literal.htm [12/19/2004 12:09:17 PM]

Keyword: LOOP

Keyword: LOOP

The loop keyword executes a series of sequential statements multiple times.

A loop statement can include either:

(1) a "while" iteration scheme,
(2) a "for" iteration scheme, or
(3) no iteration scheme.

A loop statement using a "while" iteration scheme includes—in this order—the
following:

(a) an optional loop label,
(b) the reserved word "while", followed by the condition which controls
whether the series of sequential statements within the loop is executed,
followed by the reserved word "loop",
(c) the series of sequential statements to be executed if the condition in (b)
evaluates to be True,
(d) the reserved words "end loop", followed by an optional loop label (which, if
used, must be the same as the loop label in (a).

Example
 while (I < DBUS’length) loop
 ...
 I := I + 1;
 end loop;

A loop statement using a "for" iteration scheme includes—in this order—the following:

(a) an optional loop label,
(b) the reserved word "for", followed by a parameter specification for the "for",
followed by the reserved word "loop",
(c) the series of sequential statements to be executed for the instances
defined in the parameter specification in (b),
(d) the reserved words "end loop", followed by an optional loop label, which, if
used, must be the same as the loop label in (a).

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__loop.htm (1 of 2) [12/19/2004 12:09:18 PM]

Keyword: LOOP

Example
 for I in 0 to DBUS’length - 1 loop
 ...
 end loop;

A loop statement with no iteration scheme includes—in this order—the following:

(a) an optional loop label,
(b) the reserved word "loop",
(c) the series of sequential statements to be executed,
(d) the reserved words "end loop", followed by an optional loop label, which, if
used, must be the same as the loop label in (a).

A loop statement with no iteration scheme continues to execute until some action
causes execution to cease. This could be done using an "exit" statement, a "next"
statement, or a "return" statement within the loop.

Example
 loop
 exit when I = DBUS’length;
 I := I + 1;
 end loop;

LRM
 8.9

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__loop.htm (2 of 2) [12/19/2004 12:09:18 PM]

Keyword: MAP

Keyword: MAP

See

 Generic map
 Port map

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__map.htm [12/19/2004 12:09:18 PM]

Keyword: MOD

Keyword: MOD

The mod keyword is a modulus operator that can be applied to integer types. The
result of the expression "A mod B" is an integer type and is defined to be the value
such that:

(1) the sign of (A mod B) is the same as the sign of B, and
(2) abs (A mod B) < abs (B), and
(3) (A mod B) = (A * (B - N)) for some integer N.

LRM
 7.2

See also

 Object, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__mod.htm [12/19/2004 12:09:19 PM]

Keyword: NAND

Keyword: NAND

Nand is a logical "not and" operator which can be used in an expression. It produces
the opposite of the logical negation of the "and" operator.

The expression "A nand B" returns True when (1) A is false, or (2) B is false, or (3)
both A and B are false.

LRM
 7.2

See also

 Object, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__nand.htm [12/19/2004 12:09:19 PM]

Keyword: NEW

Keyword: NEW

The new keyword is used to create an object of a specified type and return an access
value that refers to the created object.

A new statement includes—in this order—the allocator (which, when evaluated, refers
to the created object), followed by the reserved symbol ":=", followed by the reserved
word "new", followed by the type of the object being created, and optionally followed
by the reserved "new" and an expression for the initial value of the object being
created.

LRM
 7.3

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__new.htm [12/19/2004 12:09:19 PM]

Keyword: NEXT

Keyword: NEXT

Next is a statement allowed within a loop that causes the current iteration of the loop
to be terminated and cycles the loop to the beginning of its next iteration.

A next statement includes—in this order—the reserved word "next", an optional loop
label (which must be the same as the label of the loop in which the next statement
occurs), and, optionally, the reserved word "when" followed by a condition which,
when True, causes the "next" statement to be executed.

If a "when" clause is not included, a "next" statement is executed as soon as it is
encountered.

LRM
 8.9

See also

 Loop.

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__next.htm [12/19/2004 12:09:20 PM]

Keyword: NOR

Keyword: NOR

Nor is a logical "not or" operator which can be used in an expression. It produces the
logical negative of the "or" operator. The expression "A nor B" returns True only when
both A and B are false.

LRM
 7.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__nor.htm [12/19/2004 12:09:20 PM]

Keyword: NULL

Keyword: NULL

Null is a statement that performs no action.

The null statement can be used in situations where it is necessary to explicitly specify
that no action is needed. For example, a null statement may be useful in a case
statement where all alternatives must be specified but where no action may be
required for some alternatives.

Example
 D1 <= ‘0’; -- Default values...
 Strobe <= ‘0’;
 Rdy <= ‘0’;
 case current_state is
 when S0 =>
 D1 <= ‘1’;
 when S1 =>
 Strobe <= ‘1’;
 when S2 =>
 Rdy <= ‘1’;
 when others =>
 null;
 end case;

LRM
 8.13

See also

 Case statement

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__null.htm [12/19/2004 12:09:20 PM]

Keyword: OF

Keyword: OF

See

 Architecture
 Array
 Configuration
 File

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__of.htm [12/19/2004 12:09:21 PM]

Keyword: ON

Keyword: ON

See

 Wait

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__on.htm [12/19/2004 12:09:21 PM]

Keyword: OPEN

Keyword: OPEN

The open keyword is used in an association list (within a component instantiation
statement) to indicate a port that is not connected to any signal.

LRM
 4.3

See also

 Component
 Component Instantiation
 Port and Generic Mapping

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__open.htm [12/19/2004 12:09:22 PM]

Keyword: OR

Keyword: OR

Or is a logical "or" operator that can be used in an expression. The expression "A or
B" returns True if (1) A is true, or (2) B is true, or (3) both A and B are true.

LRM
 7.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__or.htm [12/19/2004 12:09:22 PM]

Keyword: OTHERS

Keyword: OTHERS

The others keyword is used to specify all remaining elements in:

(1) an element association (in an aggregate),
(2) an attribute specification,
(3) a configuration specification,
(4) a disconnection specification,
(5) case statement, or
(6) a selected assignment

Examples
 when others => null;
 ...
 constant ZERO: std_ulogic_vector (A'left to A'right) := (others=>0);

See also

 Configuration
 Select
 Case

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__others.htm [12/19/2004 12:09:22 PM]

Keyword: OUT

Keyword: OUT

The out keyword specifies one of five possible modes for an interface port. (The other
four are in, inout, buffer, and linkage.)

The out mode indicates a port which can be used only for output.

LRM
 1.1

See also

 In
 Inout
 Buffer
 Linkage

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__out.htm [12/19/2004 12:09:23 PM]

Keyword: PACKAGE

Keyword: PACKAGE

The package keyword specifies a set of declarations which can include the following
items: aliases, attributes, components, constants, files, functions, types, and subtypes.
A package declaration can also include attribute specifications, disconnection
specifications, and use clauses.

By grouping common declarations in a package declaration, the package declaration
can be imported and used in other design units.

Example
 package conversions is
 function to_unsigned (a: std_ulogic_vector) return
 integer;
 function to_vector (size: integer; num: integer) return
 std_ulogic_vector;
 end conversions;

LRM
 2.5

See also

 Package body
 Library
 Use

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__package.htm [12/19/2004 12:09:23 PM]

Keyword: PACKAGE BODY

Keyword: PACKAGE BODY

The package body keyword specifies the definitions of the various subprograms
(components, functions, etc.) that are declared by the package body’s associated
package declaration.

The package body must have the same name as the package declaration. Only one
package body can be associated with each package declaration.

Example
 package body conversions is
 function to_unsigned (a: std_ulogic_vector) return
 integer is
 ...
 begin
 ...
 end to_unsigned;
 function to_vector (size: integer; num: integer) return
 std_ulogic_vector is
 ...
 begin
 ...
 end to_vector;
 end conversions;

LRM
 2.6

See also

 Package
 Library
 Use

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__package_body.htm [12/19/2004 12:09:23 PM]

Keyword: PORT

Keyword: PORT

The port keyword is used in a configuration to define the input and output ports of an
entity. A port statement includes—in this order—the reserved word "port", followed by
a list of declarations for the port signals being defined.

Example
 entity Mux is
 port(A,B: in std_ulogic;
 Sel: in std_ulogic;
 Y: out std_ulogic);
 end Mux;

LRM
 1.1

See also

 Entity
 Port and Generic Mapping
 Components

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__port.htm [12/19/2004 12:09:24 PM]

Keyword: PORT MAP

Keyword: PORT MAP

The port map statement is used to associate signals of ports within a block to ports
defined outside the block.

For example, suppose a given entity includes an architecture, and the architecture
includes a block. A port map statement could be used to set the value of an entity
port (which was defined by a "port" statement in the entity declaration), equal to the
value of a block port (which was defined by a "port" statement in the block).

A port map statement includes—in this order—the reserved words "port map"
followed by an association list (e.g., "LOCAL_PORT => GLOBAL_PORT"). The
association list may use positional or named association, as shown in the following
examples. Ports may be left unconnected through the use of the open keyword.

Examples
 U1: And2 port map (IN1, IN2, OUT1);
 U1: And2 port map (A => IN1, B => IN2, Y => OUT1);
 A18: AddBlk port map (A => A1, B => A1, S => Sum, Cout =>open);

See also

 Component
 Port
 Port and Generic Mapping

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__port_map.htm [12/19/2004 12:09:24 PM]

Keyword: POSTPONED

Keyword: POSTPONED

The postponed keyword is used to declare a process as a postponed process.

Postponed processes do not execute until the final simulation cycle at the currently
modeled time.

Example
 P1: postponed process (D,Snd,Int)
 begin
 -- Statements are postponed to end of simulation cycle
 end postponed process;

See also

 Process

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__postponed.htm [12/19/2004 12:09:25 PM]

Keyword: PROCEDURE

Keyword: PROCEDURE

A procedure is a group of sequential statements that are to be executed when the
procedure is called.

A procedure does not have a return value, but instead can return any number of
values (or no values) via its parameter list. Parameters of a procedure must have a
mode associated with them (eg. in, out, inout). Values are returned by using mode out
or mode inout.

A procedure specification includes—in this order—the reserved word "procedure", the
procedure name, and a list of the procedure’s parameters (which may be constants,
signals, or variables, each of whose modes may be in, out, or inout).

Example
 procedure dff (signal Clk,Rst,D; in std_ulogic;
 signal Q: out std_ulogic) is
 begin
 if Rst <= ‘1’ then
 Q <= ‘0’;
 elsif rising_edge(Clk) then
 Q <= D;
 end if;
 end procedure;

LRM
 2.1, 9.3

See also

 Function
 Functions and Procedures

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__procedure.htm [12/19/2004 12:09:25 PM]

Keyword: PROCESS

Keyword: PROCESS

The process keyword defines a sequential process intended to model all or part of a
design entity.

A process statement includes—in this order—an optional sensitivity list, a
declarations section, a "begin" statement, the sequential statements describing the
operation of the process, and an "end" statement.

The sensitivity list identifies signals to which the process is sensitive. Whenever an
event occurs on an item in the sensitivity list, the sequential instructions in the process
are executed. If no sensitivity list is provided, the process executes until suspended
by a wait statement.

In addition to signal and variable assignments, the sequential statements in the body
of the process can include the following: assertion, case, exit, if, loop, next, null,
procedure, return, and wait.

Example
 reg: process(Rst,Clk)
 variable Qreg: std_ulogic_vector(0 to 7);
 begin
 if Rst = '1' then -- Async reset
 Qreg := "00000000";
 elsif rising_edge(Clk) then
 if Load = '1' then
 Qreg := Data;
 else
 Qreg := Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 Q <= Qreg;
 end process;

LRM
 9.2

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__process.htm (1 of 2) [12/19/2004 12:09:25 PM]

Keyword: PROCESS

See also
 Architecture
 Assert
 Case
 Loop
 Procedure
 Wait
 Process Statement
 Sequential Statements

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__process.htm (2 of 2) [12/19/2004 12:09:25 PM]

Keyword: PURE

Keyword: PURE

The pure keyword is used to declare a pure function. Pure functions always return the
same value for a given set of input actual parameters, and have no side effects.

Pure is assumed if there is no pure or impure keyword.

Example
 pure function HoldCheck (Clk, Data) return Boolean;

LRM
 2.1

See also

 Function

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__pure.htm [12/19/2004 12:09:26 PM]

Keyword: RANGE

Keyword: RANGE

The range keyword is used to define a range constraint for a scalar type.

A range statement includes—in this order—the reserved word "range", the name of
the range, and, optionally, two simple expressions for the outer bounds of the range
separated by either the reserved word "to" (the ascending direction indicator) or the
reserved word "downto" (the descending direction indicator).

Example
 variable Q: integer range 0 to 15;

LRM
 3.1

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__range.htm [12/19/2004 12:09:26 PM]

Keyword: RECORD

Keyword: RECORD

The record keyword is used to declare a record type its corresponding element types.

A record statement includes—in this order—the following:

(1) the reserved word "record",
(2) an element declaration which includes—in this order—one or more
identifiers which share a common subtype, followed by identification of that
subtype,
(3) optionally, additional element declarations of the form specified in (2), and
(4) the reserved words "end record".

An element declaration that includes more than one identifier (for example, "COUNT,
SUM, TOTAL: INTEGER") is equivalent to a series of single element declarations.

Example
 type test_record is record
 CE: std_ulogic; -- Clock enable
 Set: std_ulogic;
 Din: std_ulogic;
 CRC_Sum: std_ulogic_vector (15 downto 0);
 end record;

 type test_array is array(positive range <>) of test_record;

LRM
 3.2

See also

 Type
 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__record.htm [12/19/2004 12:09:27 PM]

Keyword: REGISTER

Keyword: REGISTER

Register is one of two kinds of signals used in a signal declaration (the other is bus).

A register signal represents a hardware storage register and defaults to its last driven
value when all of the signal’s drivers are turned off.

LRM: 1.1

See also

 Bus

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__register.htm [12/19/2004 12:09:27 PM]

Keyword: REJECT

Keyword: REJECT

The reject keyword is used to specify the minimum pulse width to propogate as a
result of an after clause.

If no reject time is specified, the specified delay time is assumed for the reject time.

Example
 Q <= Data reject 2 ns after 7 ns; -- Delay is 7 ns, reject time is 2 ns

LRM
 8.4

See also

 After

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__reject.htm [12/19/2004 12:09:28 PM]

Keyword: REM

Keyword: REM

The rem operator is a remainder operator that can be applied to integer types. The
result of the expression "A rem B" is an integer type and is defined to be the value
such that:

(1) the sign of (A rem B) is the same as the sign of A, and
(2) abs (A rem B) < abs (B), and
(3) (A rem B) = (A - (A / B) * B).

LRM
 7.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__rem.htm [12/19/2004 12:09:28 PM]

Keyword: REPORT

Keyword: REPORT

See

 Assert

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__report.htm [12/19/2004 12:09:29 PM]

Keyword: RETURN

Keyword: RETURN

Return is a sequential statement used at the end of a subprogram (a function or
procedure) to terminate the subprogram and return control to the calling object.

When used in a procedure, the reserved word "return" appears alone.

When used in a function, the reserved word "return" must be followed by an
expression which defines the result to be returned by the function. The expression’s
type must be the same type as specified by the return statement in the function’s
specification.

A return statement must be the last statement executed in a function.

LRM
 2.1

See also

 Function
 Procedure

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__return.htm [12/19/2004 12:09:29 PM]

Keyword: ROL

Keyword: ROL

Rol is the rotate left operator. Each bit in the left operand is shifted left by the number
of bits specified in the right operand. Bits in the left-most positions of the operand are
shifted to the right-most bits of the operand.

Example
 Sreg <= Sreg rol 2;

LRM
 7.2.3

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__rol.htm [12/19/2004 12:09:29 PM]

Keyword: ROR

Keyword: ROR

Ror is the rotate right operator. Each bit in the left operand is shifted right by the
number of bits specified in the right operand. Bits in the right-most positions of the
operand are rotated to the left-most bits of the operand.

Example
 Sreg <= Sreg ror 2;

LRM
 7.2.3

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__ror.htm [12/19/2004 12:09:30 PM]

Keyword: SELECT

Keyword: SELECT

Select is a concurrent signal assignment statement that selects and assigns a value
to a target signal from among a list of alternatives, based on the value of a given
expression.

A select statement includes—in this order—the following:

(1) the reserved word "with", followed by the expression to be evaluated,
followed by the reserved word "select",
(2) the target signal, followed by the reserved symbol "<=", followed by:
(a) the first value which could be assigned to the target signal, followed by the
reserved word "when", followed by a choice which, if the expression
evaluates to be that choice, will cause the first value to be assigned to the
target signal, and
(b) second and subsequent values which could be assigned to the target
signal, each followed by the reserved word "when", and each followed by a
choice which, if the expression evaluates to be that choice, will cause the
value to be assigned to the target signal.

Since the select statement chooses one and only one alternative for execution at a
given time, all possible values for the expression must be covered in "when"
statements. An "others" clause may be used to cover values not explicitly named.

Example
 architecture concurrent of mux is
 begin
 with Sel select
 Y <= A when "00",
 B when "01",
 C when "10",
 ‘X’ when others;
 end concurrent;

LRM
 9.5

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__select.htm (1 of 2) [12/19/2004 12:09:30 PM]

Keyword: SELECT

See also
 With
 Concurrent Statements

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__select.htm (2 of 2) [12/19/2004 12:09:30 PM]

Keyword: SEVERITY

Keyword: SEVERITY

See

 Assert

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__severity.htm [12/19/2004 12:09:30 PM]

Keyword: SIGNAL

Keyword: SIGNAL

Signal declares a signal of a specified type.

A signal declaration includes—in this order—the reserved word "signal", the name of
the signal, the subtype of the signal, an optional indication of the signal’s kind (which
must be either "register" or "bus"), and optionally, an expression specifying the initial
value of the signal.

Signals declared within an entity are visible in the corresponding architecture(s).

Note: A signal cannot be declared within a process, procedure or function.

Example
 architecture behavior of fsm is
 signal current_state: state;
 signal DataBuf: std_logic_vector(15 downto 0);
 begin
 ...
 end behavior;

LRM
 4.3

See also

 Guarded
 Block
 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__signal.htm [12/19/2004 12:09:31 PM]

Keyword: SLA

Keyword: SLA

The sla keyword is the shift left arithmetic operator.

Example
 Addr <= Addr sla 8;

LRM
 7.2.3

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__sla.htm [12/19/2004 12:09:31 PM]

Keyword: SLL

Keyword: SLL

The sll keyword is the shift left logical operator.

Example
 Addr <= Addr sll 8;

LRM
 7.2.3

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__sll.htm [12/19/2004 12:09:32 PM]

Keyword: SRA

Keyword: SRA

The sra keyword is the shift right arithmetic operator.

Example
 Addr <= Addr sra 8;

LRM
 7.2.3

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__sra.htm [12/19/2004 12:09:32 PM]

Keyword: SRL

Keyword: SRL

The srl keyword is the shift right logical operator.

Example
 Addr <= Addr srl 8;

LRM
 7.2.3

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__srl.htm [12/19/2004 12:09:33 PM]

Keyword: SUBTYPE

Keyword: SUBTYPE

The subtype keyword declares a subtype (a type with a constraint that is based on an
existing parent type).

A subtype declaration includes—in this order—the reserved word "subtype", the
subtype’s identifier, the reserved word "is", an optional resolution function, the base
type of the subtype, and an optional constraint. If no constraint is included, the
subtype is the same as the specified base type.

Examples
 subtype short is integer range 0 to 255;
 ...
 subtype X01Z is std_ulogic range ‘X’ to ‘Z’;

LRM
 4.2

See also

 Type
 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__subtype.htm [12/19/2004 12:09:33 PM]

Keyword: THEN

Keyword: THEN

The then keyword is part of the syntax of an if statement.

See

 If.

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__then.htm [12/19/2004 12:09:34 PM]

Keyword: TO

Keyword: TO

The to keyword is used to indicate an ascending range in a range statement or other
statement which includes a range (for example, a variable statement). (The reserved
word "downto" is used to indicate a descending range.)

Example
 signal A0,A1: std_ulogic_vector(0 to 15);

LRM
 6.5

See also

 Signal
 Range

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__to.htm [12/19/2004 12:09:34 PM]

Keyword: TRANSPORT

Keyword: TRANSPORT

The transport keyword is used to specify non-inertial delay in a signal assignment
statement.

Examples
 Waveform <= transport ‘1’ after 10 ns;

LRM
 8.4

See also

 After
 Inertial

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__transport.htm [12/19/2004 12:09:34 PM]

Keyword: TYPE

Keyword: TYPE

The type keyword declares a type.

There are two kinds of type declarations: a full type declaration and an incomplete
type declaration.

A full type declaration includes—in this order—the reserved word "type", the type
identifier, the reserved word "is", and the type definition. A type definition can be an
access type, a composite type, a file type, or a scalar type.

An incomplete type declaration includes only the reserved word "type" followed by the
type’s identifier. If an incomplete type declaration exists, a full type declaration with
the same identifier must also exist. The full type declaration must occur after the
incomplete type declaration and within the same declarations section as the
incomplete type declaration.

Note that two type declarations define two different types, even if the definitions are
the same and they differ only by their respective identifiers.

Examples
 type StateMachine is (RESET, IDLE, READ, WRITE,
 ERROR);
 ...
 type RAD16 is range 0 to 15;
 ...
 type test_record is record
 CE: std_ulogic; -- Clock enable
 Set: std_ulogic;
 Din: std_ulogic;
 CRC_Sum: std_ulogic_vector (15 downto 0);
 end record;

LRM
 4.1

See also

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__type.htm (1 of 2) [12/19/2004 12:09:35 PM]

Keyword: TYPE

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__type.htm (2 of 2) [12/19/2004 12:09:35 PM]

Keyword: UNAFFECTED

Keyword: UNAFFECTED

The unaffected keyword is used to indicate in a conditional or selected signal
assignment when the signal is not to be given a new value.

Example
 Mux <= A when Sel = "00" else
 B when Sel = "01" else
 C when Sel = "10" else
 unaffected;

LRM
 8.4

See also

 Signal and Variable Assignments

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__unaffected.htm [12/19/2004 12:09:36 PM]

Keyword: UNITS

Keyword: UNITS

The units keyword is used in a type declaration to declare physical types.

A units statement includes—in this order:

(1) the reserved word "units",
(2) the base unit,
(3) optionally, one or more secondary units, and
(4) the reserved words "end units".

Example
 type time is range -2_147_483_647 to 2_147_483_647
 units
 fs;
 ps = 1000 fs;
 ns = 1000 ps;
 us = 1000 ns;
 ms = 1000 us;
 sec = 1000 ms;
 min = 60 sec;
 hr = 60 min;
 end units;

LRM
 3.1

See also

 Type

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__units.htm [12/19/2004 12:09:36 PM]

Keyword: UNTIL

Keyword: UNTIL

See

 Wait

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__until.htm [12/19/2004 12:09:37 PM]

Keyword: USE

Keyword: USE

The use statement identifies items in other design units so those items can be
referenced.

A use clause includes—in this order—the reserved word "use", followed by a list of
design units (or design unit items) to be referenced.

A use clause makes the referenced design units visible to the working environment. If
a design unit (or design unit item) belongs to a library different from the current library,
a library statement must be included before the use statement. The library statement
must specify the library holding the referenced design unit.

Examples
 use mylib.mypackage.dff;
 ...
 use mylib.mypackage.all;
 ...
 use mylib.all;
 ...
 use work.all;

All design units automatically include the following two implicit clauses:

 library STD, WORK;
 use STD.STANDARD.all;

LRM
 10.4

See also

 Library
 Design Libraries

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__use.htm [12/19/2004 12:09:37 PM]

Keyword: VARIABLE

Keyword: VARIABLE

The variable keyword declares a variable of a specified type.

A variable declaration includes—in this order—the reserved word "variable", the
variable’s name, the variable’s subtype, and, optionally, an expression specifying the
initial value of the variable.

A variable can only be declared within a process, procedure or function. Also, a
variable cannot be of a file type. Variables declared within a process have their values
preserved during subsequent executions of the process. Variables declared within a
function or procedure have their values initialized each time the function or procedure
is called.

Example
 process(Rst,Clk)
 variable Q: integer range 0 to 15;
 begin
 if Rst = '1' then -- Asynchronous reset
 Q := 0;
 elsif rising_edge(Clk) then
 if Load = '1' then
 Q := to_unsigned(Data); -- Convert vector to
 -- integer
 elsif Q = 15 then
 Q := 0;
 else
 Q := Q + 1;
 end if;
 end if;
 Count <= to_vector(4,Q); -- Convert integer to
 -- vector
 end process;

LRM
 4.3

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__variable.htm (1 of 2) [12/19/2004 12:09:38 PM]

Keyword: VARIABLE

See also
 Signal
 Sequential Statements
 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__variable.htm (2 of 2) [12/19/2004 12:09:38 PM]

Keyword: WAIT

Keyword: WAIT

The wait statement is used to temporarily suspend a process until:

(1) a specified time has passed ("wait for", followed by a time expression), or
(2) a specified condition is met ("wait until", followed by a Boolean
expression), or
(3) an event occurs which affects one or more signals ("wait on", followed by
a sensitivity list which specifies signals on each of which an event must occur
before processing continues).

When a wait statement is used within a process, the process must not include a
sensitivity list.

Example
 CLOCK: process
 variable c: std_ulogic := '0';
 constant PERIOD: time := 50 ns;
 begin
 wait for PERIOD / 2;
 c := not c;
 clk <= c;
 end process;

LRM
 8.1

See also

 Delay Specifications

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__wait.htm [12/19/2004 12:09:38 PM]

Keyword: WHEN

Keyword: WHEN

The when keyword is used to specify a condition during which an exit or next
statement will be executed.

Also used to specify a choice (or choices) within a case statement.

See also

 Exit
 Case
 Next
 Case Statements
 Sequential Statements

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__when.htm [12/19/2004 12:09:39 PM]

Keyword: WHILE

Keyword: WHILE

The while keyword is used to specify a condition during which a loop will be executed.

See also

 Loop

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__while.htm [12/19/2004 12:09:39 PM]

Keyword: WITH

Keyword: WITH

The with keyword is used in the syntax of a selected signal assignment.

See also

 Select
 Selected Signal Assignment

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__with.htm [12/19/2004 12:09:39 PM]

Keyword: XNOR

Keyword: XNOR

Xnor the logical "both or neither" (equality) operator which can be used in an
expression.

The expression "A xnor B" returns True only when (1) A is true and B is true, or (2) A
is false and B is false.

LRM
 7.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__xnor.htm [12/19/2004 12:09:40 PM]

Keyword: XOR

Keyword: XOR

Xor is the logical "one or the other but not both" (inequality) operator which can be
used in an expression. The expression "A xor B" returns True only when (1) A is true
and B is false, or (2) A is false and B is true.

LRM
 7.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__xor.htm [12/19/2004 12:09:40 PM]

Example: Shifter

Example: Shifter

Shifter.VHD

-- 8-bit barrel shifter
--
-- This example circuit demonstrates the behavior level
-- of abstraction. The operation of the barrel shifter
-- is described as the circuit's response to stimulus
-- (such as clock and reset events) over time.
--
-- This circuit is synthesizable. To test the circuit with
-- the supplied test bench (testshif.vhd), be sure to
-- compile this source file into library 'work'.
--
-- Copyright 1995, Accolade Design Automation, Inc.
--

library ieee;
use ieee.std_logic_1164.all;

entity shifter is
 port(Clk, Rst, Load: in std_ulogic;
 Data: std_ulogic_vector(0 to 7);
 Q: out std_ulogic_vector(0 to 7));
end shifter;

architecture behavior of shifter is
begin
 -- We use a process to describe the operation of
 -- the shifter over time, in response to its inputs...
 reg: process(Rst,Clk)
 -- Using a variable simplifies register feedback...
 variable Qreg: std_ulogic_vector(0 to 7);
 begin
 if Rst = '1' then -- Async reset
 Qreg := "00000000";
 elsif rising_edge(Clk) then
 if Load = '1' then
 Qreg := Data;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__shifter.htm (1 of 4) [12/19/2004 12:09:41 PM]

Example: Shifter

 else
 Qreg := Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 Q <= Qreg;
 end process;
end behavior;

Testshif.VHD

-- Test bench for 8-bit barrel shifter
--
-- Copyright 1995, Accolade Design Automation, Inc.
--
library ieee; use ieee.std_logic_1164.all;
use work.all; -- Get the shifter out of library 'work'

entity testrot is
end testrot;

architecture stimulus of testrot is
 component shifter
 port(Clk, Rst, Load: in std_ulogic;
 Data: std_ulogic_vector(0 to 7);
 Q: out std_ulogic_vector(0 to 7));
 end component;
--
 constant PERIOD: time := 40 ns;
--
 signal Clk,Rst,Load: std_ulogic;
 signal Data: std_ulogic_vector(0 to 7);
 signal Q: std_ulogic_vector(0 to 7);
--
begin
 DUT: shifter port map(Clk,Rst,Load,Data,Q);

 -- This test bench uses two processes to describe
 -- the stimulus. This first process describes a
 -- constantly running clock of 40 ns cycle time...
 CLOCK: process
 begin

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__shifter.htm (2 of 4) [12/19/2004 12:09:41 PM]

Example: Shifter

 Clk <= '1';
 wait for PERIOD / 2;
 Clk <= '0';
 wait for PERIOD / 2;
 end process;
 -- This process applies a sequence of inputs to the
 -- circuit to exercise this shift and load features...
 INPUTS: process
 begin
 wait for PERIOD / 2;
 Rst <= '1';
 Data <= "00000000";
 Load <= '0';
 wait for PERIOD;
 Rst <= '0';
 wait for PERIOD;
 Data <= "00001111";
 Load <= '1';
 wait for PERIOD;
 Load <= '0';
 wait for PERIOD * 4;
 Rst <= '1';
 Data <= "00000000";
 Load <= '0';
 wait for PERIOD;
 Rst <= '0';
 wait for PERIOD;
 Data <= "10101010";
 Load <= '1';
 wait for PERIOD;
 Load <= '0';
 wait for PERIOD * 4;
 Rst <= '1';
 Data <= "00000000";
 Load <= '0';
 wait for PERIOD;
 Rst <= '0';
 wait for PERIOD;
 Data <= "10000001";
 Load <= '1';
 wait for PERIOD;
 Load <= '0';
 wait for PERIOD * 4;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__shifter.htm (3 of 4) [12/19/2004 12:09:41 PM]

Example: Shifter

 wait;
 end process;
end stimulus;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__shifter.htm (4 of 4) [12/19/2004 12:09:41 PM]

Example: Tcount

Example: Tcount

Tcount.VHD

-- Structural description of a fast and efficient T
-- flip-flop counter.
--
-- This example demonstrates the use of component port
-- maps and default interfaces.
--
-- Copyright 1997, Accolade Design Automation, Inc.
--
library ieee;
use ieee.std_logic_1164.all;

entity andgate is
 port(A,B,C,D: in std_ulogic := '1';
 Y: out std_ulogic);
end andgate;

architecture gate of andgate is
begin
 Y <= A and B and C and D;
end gate;

use ieee.std_logic_1164.all;
entity tff is
 port(Rst,Clk,T: in std_ulogic;
 Q: out std_ulogic);
end tff;

architecture behavior of tff is
begin
 process(Rst,Clk)
 variable Qtmp: std_ulogic;
 begin
 if (Rst = '1') then
 Qtmp := '0';
 elsif rising_edge(Clk) then
 if T = '1' then

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__tcount.htm (1 of 4) [12/19/2004 12:09:41 PM]

Example: Tcount

 Qtmp := not Qtmp;
 end if;
 end if;
 Q <= Qtmp;
 end process;
end behavior;

use ieee.std_logic_1164.all;
entity TCOUNT is
 port (Rst: in std_ulogic;
 Clk: in std_ulogic;
 Count: out std_ulogic_vector(4 downto 0)
);
end TCOUNT;

architecture STRUCTURE of TCOUNT is
 component tff
 port(Rst,Clk,T: in std_ulogic;
 Q: out std_ulogic);
 end component;
 component andgate
 port(A,B,C,D: in std_ulogic := '1';
 Y: out std_ulogic);
 end component;
 constant VCC: std_ulogic := '1';
 signal T,Q: std_ulogic_vector(4 downto 0);
begin
 T(0) <= VCC;
 T0: tff port map (Rst=>Rst, Clk=>Clk, T=>T(0), Q=>Q(0));
 T(1) <= Q(0);
 T1: tff port map (Rst=>Rst, Clk=>Clk, T=>T(1), Q=>Q(1));
 A1: andgate port map(A=>Q(0), B=>Q(1), Y=>T(2));
 T2: tff port map (Rst=>Rst, Clk=>Clk, T=>T(2), Q=>Q(2));
 A2: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), Y=>T(3));
 T3: tff port map (Rst=>Rst, Clk=>Clk, T=>T(3), Q=>Q(3));
 A3: andgate port map(A=>Q(0), B=>Q(1), C=>Q(2), D=>Q(3), Y=>T(4));
 T4: tff port map (Rst=>Rst, Clk=>Clk, T=>T(4), Q=>Q(4));

 Count <= Q;

end STRUCTURE;

T_tcount.VHD

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__tcount.htm (2 of 4) [12/19/2004 12:09:41 PM]

Example: Tcount

-- Auto-generated test bench for TCOUNT
--
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.all;

entity TESTBNCH is
end TESTBNCH;

architecture stimulus of TESTBNCH is
component TCOUNT
 port (
 Rst: in std_ulogic;
 Clk: in std_ulogic;
 Count: out std_ulogic_vector(4 downto 0)
);
end component;
constant PERIOD: time := 100 ns;
-- Top level signals go here...
signal Rst: std_ulogic;
signal Clk: std_ulogic;
signal Count: std_ulogic_vector(4 downto 0);
signal done: boolean := false;

for DUT: TCOUNT use entity work.TCOUNT(STRUCTURE);

begin
 DUT: TCOUNT port map (
 Rst => Rst,
 Clk => Clk,
 Count => Count
);

 CLOCK1: process
 variable clktmp: std_ulogic := '0';
 begin
 wait for PERIOD/2;
 clktmp := not clktmp;
 Clk <= clktmp; -- Attach your clock here
 if done = true then
 wait;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__tcount.htm (3 of 4) [12/19/2004 12:09:41 PM]

Example: Tcount

 end if;
 end process;

 STIMULUS1: process
 begin

 -- Sequential stimulus goes here...

 Rst <= '1';
 wait for PERIOD;

 Rst <= '0';

 wait for PERIOD * 36;

 done <= true;
 wait;
 end process;

end stimulus;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__tcount.htm (4 of 4) [12/19/2004 12:09:41 PM]

Example: Video

Example: Video

Video.VHD

-- A Video Frame Grabber.
--
-- This circuit was first described in "Practical Design
-- Using Programmable Logic" by David Pellerin and Michael
-- Holley (Prentice Hall, 1990). A slightly modified form
-- of the circuit also appears in the ATMEL Configurable
-- Logic Design and Application Book, 1993-1994 edition.
--
-- The circuit described is a simple freeze-frame unit that
-- 'grabs' and holds a single frame of NTSC color video
-- image. This design description includes the frame detection
-- and capture logic. The complete circuit requires an 8-bit
-- D-A/A-D converter and a 256K X 8 static RAM.
--
Library ieee;
Use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;

Entity CONTROL Is
 Port (
 Reset: in std_logic;
 Clk: in std_logic;
 Mode: in std_logic;
 Data: in std_logic_vector(7 downto 0);
 TestLoad: in std_logic;
 Addr: out std_logic_vector(17 downto 0);
 RAMWE: out std_logic;
 RAMOE: out std_logic;
 ADOE: out std_logic
);
End CONTROL;

Architecture CONTROL_A of CONTROL Is
 constant FRAMESIZE: integer := 253243;
 constant TESTADDR: integer := 253000;

 signal ENDFR: std_logic;
 signal INCAD: std_logic;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__video.htm (1 of 6) [12/19/2004 12:09:42 PM]

Example: Video

 signal VS: std_logic;
 signal Sync: unsigned (7 downto 0);
 type states is (StateLive,StateWait,StateSample,StateDisplay);
 signal current_state, next_state: states;
Begin

 -- Address counter. This counter increments until we reach the end of
 -- the frame (address 253243), or until the input INCAD goes low.

 ADDRCTR: process(Clk)
 variable cnt: unsigned (17 downto 0);
 begin
 if rising_edge(Clk) then
 if TestLoad = '1' then
 cnt := to_unsigned(TESTADDR,18);
 ENDFR <= '0';
 else
 if INCAD = '0' or cnt = to_unsigned(FRAMESIZE,18) then
 cnt := (others => '0');
 else
 cnt := cnt + 1;
 end if;
 if cnt = FRAMESIZE then
 ENDFR <= '1';
 else
 ENDFR <= '0';
 end if;
 end if;
 end if;
 Addr <= std_logic_vector(cnt);
 end process;

 -- Vertical sync detector. Here we look for 128 bits of zero, which
 -- indicates the vertical sync blanking interval.

 SYNCCTR: process(Reset,Clk)
 begin
 if Reset = '1' then
 Sync <= (others => '0');
 elsif rising_edge(Clk) then
 if Data /= "00000000" or Sync = to_unsigned(127,7) then
 Sync <= (others => '0');
 else
 Sync <= Sync + 1;
 end if;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__video.htm (2 of 6) [12/19/2004 12:09:42 PM]

Example: Video

 end if;
 end process;

 VS <= '1' when Sync = to_unsigned(127,7) else '0';

 -- State register process:

 STREG: process(Reset,Clk)
 begin
 if Reset = '1' then
 current_state <= StateLive;
 elsif rising_edge(Clk) then
 current_state <= next_state;
 end if;
 end process;

 -- State transitions:

 STTRANS: process(current_state,Mode,VS,ENDFR)
 begin
 case current_state is
 when StateLive => -- Display live video on the output
 RAMWE <= '1';
 RAMOE <= '1';
 ADOE <= '0';
 INCAD <= '0';
 if Mode = '1' then
 next_state <= StateWait;
 end if;
 when StateWait => -- Wait for vertical sync
 RAMWE <= '1';
 RAMOE <= '1';
 ADOE <= '0';
 INCAD <= '0';
 if VS = '1' then
 next_state <= StateSample;
 end if;
 when StateSample => -- Sample one frame of video
 RAMWE <= '0';
 RAMOE <= '1';
 ADOE <= '0';
 INCAD <= '1';
 if ENDFR = '1' then
 next_state <= StateDisplay;
 end if;
 when StateDisplay => -- Display the stored frame

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__video.htm (3 of 6) [12/19/2004 12:09:42 PM]

Example: Video

 RAMWE <= '1';
 RAMOE <= '0';
 ADOE <= '1';
 INCAD <= '1';
 if Mode = '1' then
 next_state <= StateLive;
 end if;
 end case;
 end process;

End CONTROL_A;

Vtest.VHD

-- Video frame grabber test bench
--
library ieee;
Use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;
Use std.textio.all;

use work.all;

Entity T_CONTROL Is
End Entity T_CONTROL;

Architecture stimulus of T_CONTROL Is
Component CONTROL is
 Port (
 Reset: in std_logic;
 Clk: in std_logic;
 Mode: in std_logic;
 Data: in std_logic_vector(7 downto 0);
 TestLoad: in std_logic;
 Addr: out std_logic_vector(17 downto 0);
 RAMWE: out std_logic;
 RAMOE: out std_logic;
 ADOE: out std_logic
);
End Component CONTROL;
Constant PERIOD: time := 100 ns;
-- Top level signals go here...
Signal Reset: std_logic;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__video.htm (4 of 6) [12/19/2004 12:09:42 PM]

Example: Video

Signal Clk: std_logic;
Signal Mode: std_logic;
Signal Data: std_logic_vector(7 downto 0);
Signal TestLoad: std_logic;
Signal Addr: std_logic_vector(17 downto 0);
Signal RAMWE: std_logic;
Signal RAMOE: std_logic;
Signal ADOE: std_logic;
Signal done: boolean := false;

Begin
 DUT: CONTROL Port Map (
 Reset => Reset,
 Clk => Clk,
 Mode => Mode,
 Data => Data,
 TestLoad => TestLoad,
 Addr => Addr,
 RAMWE => RAMWE,
 RAMOE => RAMOE,
 ADOE => ADOE
);

 Clock1: process
 variable clktmp: std_logic := '0';
 begin
 wait for PERIOD/2;
 clktmp := not clktmp;
 Clk <= clktmp; -- Attach your clock here
 if done = true then
 wait;
 end if;
 end process Clock1;

 Stimulus1: Process
 Begin
 -- Sequential stimulus goes here...
 Reset <= '1';
 Mode <= '0';
 Data <= "00000000";
 TestLoad <= '0';
 wait for PERIOD;
 Reset <= '0';
 wait for PERIOD;
 Data <= "00000001";

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__video.htm (5 of 6) [12/19/2004 12:09:42 PM]

Example: Video

 wait for PERIOD;
 Mode <= '1';

 -- Check to make sure we detect the vertical sync...
 Data <= "00000000";
 for i in 0 to 127 loop
 wait for PERIOD;
 end loop;

 -- Now sample data to make sure the frame counter works...
 Data <= "01010101";
 for i in 0 to 100000 loop
 wait for PERIOD;
 end loop;

 -- Load in the test value to check the end of frame detection...
 TestLoad <= '1';
 wait for PERIOD;
 TestLoad <= '0';
 for i in 0 to 300 loop
 wait for PERIOD;
 end loop;
 done <= true;

 End Process Stimulus1;

End architecture stimulus;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__video.htm (6 of 6) [12/19/2004 12:09:42 PM]

Example: Parity

Example: Parity

Xor.VHD

-- Entity: XOR
--
Library ieee;
Use ieee.std_logic_1164.all;

Entity XOR2 Is
 Port (
 A: in std_ulogic;
 B: in std_ulogic;
 Y: out std_ulogic
);
End XOR2;

Architecture XOR_A of XOR2 Is
Begin

 Y <= A xor B;

End XOR_A;

Parity.VHD

--
-- Parity generator.
--
-- This example demonstrates the use of generate
-- statements. The parity generation circuit is built
-- from a chain of exclusive-OR gates, which have been
-- defined separately. (A tree of XOR gates is, of
-- course, a more efficient/faster solution for parity
-- generation.)
--
-- Copyright 1995, Accolade Design Automation, Inc.
--
library ieee;
use ieee.std_logic_1164.all;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__parity.htm (1 of 4) [12/19/2004 12:09:42 PM]

Example: Parity

entity parity10 is
 port(D: in std_ulogic_vector(0 to 9);
 ODD: out std_ulogic);
 constant WIDTH: integer := 10;
end parity10;

library work;
use work.xor2;

architecture structure of parity10 is
 component xor2
 port(A,B: in std_ulogic;
 Y: out std_ulogic);
 end component;

 signal p: std_ulogic_vector(0 to WIDTH - 2);

 for all: xor2 use entity work.xor2(xor_a);

begin
 -- The outermost generate loop is a for-generate loop
 -- that repeats once for each of the XOR gates required
 -- for the circuit...

 G: for I in 0 to (WIDTH - 2) generate

 -- This generate statement creates the first XOR gate
 -- in the series...

 G0: if I = 0 generate
 X0: xor2 port map(A => D(0), B => D(1), Y => p(0));
 end generate G0;

 -- This generate statement creates the middle XOR gates
 -- in the series...

 G1: if I > 0 and I < (WIDTH - 2) generate
 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i));
 end generate G1;

 -- This generate statement creates the last XOR gate
 -- in the series...

 G2: if I = (WIDTH - 2) generate

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__parity.htm (2 of 4) [12/19/2004 12:09:42 PM]

Example: Parity

 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD);
 end generate G2;

 end generate G;

end structure;

Testpar.VHD

library ieee;
use ieee.std_logic_1164.all;

entity testbnch is
end testbnch;

use work.all;

architecture behavior of testbnch is
 component parity10
 port(D: in std_ulogic_vector(0 to 9);
 ODD: out std_ulogic);
 end component;
 signal D: std_ulogic_vector(0 to 9);
 signal ODD: std_ulogic;

begin

 DUT: parity10 port map (D,ODD);

 process
 begin
 D <= "0000000001";
 wait for 50 ns;
 D <= "1000000001";
 wait for 50 ns;
 D <= "0100100001";
 wait for 50 ns;
 D <= "0000000011";
 wait for 50 ns;
 D <= "0100000000";
 wait for 50 ns;
 D <= "1010100010";

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__parity.htm (3 of 4) [12/19/2004 12:09:42 PM]

Example: Parity

 wait for 50 ns;
 D <= "1111111101";
 wait for 50 ns;
 D <= "0111000001";
 wait for 50 ns;
 D <= "1000000000";
 wait for 50 ns;
 end process;
end behavior;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__parity.htm (4 of 4) [12/19/2004 12:09:42 PM]

Example: Fib93

Example: Fib93

Fib93.VHD

-- Fibonacci sequence generator.
--
-- Copyright 1995, Accolade Design Automation, Inc.
--
library ieee;
use ieee.std_logic_1164.all;

entity fib is
 port (Clk,Clr: in std_ulogic;
 Load: in std_ulogic;
 Data_in: in std_ulogic_vector(15 downto 0);
 S: out std_ulogic_vector(15 downto 0));
end entity fib;

architecture behavior of fib is
 signal Restart,Cout: std_ulogic;
 signal Stmp: std_ulogic_vector(15 downto 0);
 signal A, B, C: std_ulogic_vector(15 downto 0);
 signal Zero: std_ulogic;
 signal CarryIn, CarryOut: std_ulogic_vector(15 downto 0);

begin
 P1: process(Clk)
 begin
 if rising_edge(Clk) then
 Restart <= Cout;
 end if;
 end process P1;

 Stmp <= A xor B xor CarryIn;
 Zero <= '1' when Stmp = "0000000000000000" else '0';

 CarryIn <= C(15 downto 1) & '0';
 CarryOut <= (B and A) or ((B or A) and CarryIn);
 C(15 downto 1) <= CarryOut(14 downto 0);
 Cout <= CarryOut(15);

 P2: process(Clk,Clr,Restart)
 begin

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__fib93.htm (1 of 6) [12/19/2004 12:09:43 PM]

Example: Fib93

 if Clr = '1' or Restart = '1' then
 A <= "0000000000000000";
 B <= "0000000000000000";
 elsif rising_edge(Clk) then
 if Load = '1' then
 A <= Data_in;
 elsif Zero = '1' then
 A <= "0000000000000001";
 else
 A <= B;
 end if;
 B <= Stmp;
 end if;
 end process P2;

 S <= Stmp;

end behavior;

Tfib93.VHD

-- Test bench
--
-- Copyright 1995, Accolade Design Automation, Inc.
--

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.fib; -- Get the design out of library 'work'

entity testfib is
end entity testfib;

architecture stimulus of testfib is
 component fib
 port (Clk,Clr: in std_ulogic;
 Load: in std_ulogic;
 Data_in: in std_ulogic_vector(15 downto 0);
 S: out std_ulogic_vector(15 downto 0));
 end component;

 function str_to_stdvec(inp: string) return std_ulogic_vector is
 variable temp: std_ulogic_vector(inp'range) := (others => 'X');
 begin

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__fib93.htm (2 of 6) [12/19/2004 12:09:43 PM]

Example: Fib93

 for i in inp'range loop
 if (inp(i) = '1') then
 temp(i) := '1';
 elsif (inp(i) = '0') then
 temp(i) := '0';
 end if;
 end loop;
 return temp;
 end;

 function stdvec_to_str(inp: std_ulogic_vector) return string is
 variable temp: string(inp'left+1 downto 1) := (others => 'X');
 begin
 for i in inp'reverse_range loop
 if (inp(i) = '1') then
 temp(i+1) := '1';
 elsif (inp(i) = '0') then
 temp(i+1) := '0';
 end if;
 end loop;
 return temp;
 end;

 signal Clk,Clr: std_ulogic;
 signal Load: std_ulogic;
 signal Data_in: std_ulogic_vector(15 downto 0);
 signal S: std_ulogic_vector(15 downto 0);
 signal done: std_ulogic := '0';

 constant PERIOD: time := 50 ns;

-- for DUT: fib use entity work.fib(behavior);

begin
 DUT: fib port map(Clk=>Clk,Clr=>Clr,Load=>Load,
 Data_in=>Data_in,S=>S);

 Clock: process
 variable c: std_ulogic := '0';
 begin
 while (done = '0') loop
 wait for PERIOD/2;
 c := not c;
 Clk <= c;
 end loop;
 end process Clock;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__fib93.htm (3 of 6) [12/19/2004 12:09:43 PM]

Example: Fib93

STIMBLOCK: block
begin
 Read_input: process
 file vector_file: text;

 variable stimulus_in: std_ulogic_vector(33 downto 0);
 variable S_expected: std_ulogic_vector(15 downto 0);
 variable str_stimulus_in: string(34 downto 1);
 variable err_cnt: integer := 0;
 variable file_line: line;

 begin

 FILE_OPEN(vector_file,"tfib93.vec",READ_MODE);

 wait until rising_edge(Clk);

 while not endfile(vector_file) loop
 readline (vector_file,file_line);
 read (file_line,str_stimulus_in) ;
 assert (false)
 report "Vector: " & str_stimulus_in
 severity note;
 stimulus_in := str_to_stdvec (str_stimulus_in);

 wait for 1 ns;

 --Get input side of vector...
 Clr <= stimulus_in(33);
 Load <= stimulus_in(32);
 Data_in <= stimulus_in(31 downto 16);

 --Put output side (expected values) into a variable...
 S_expected := stimulus_in(15 downto 0);

 wait until falling_edge(Clk);

 --Check the expected value against the results...
 if (S /= S_expected) then
 err_cnt := err_cnt + 1;
 assert false
 report "Vector failure!" & lf &
 "Expected S to be " & stdvec_to_str(S_expected) & lf &
 "but its value was " & stdvec_to_str(S) & lf
 severity note;
 end if;
 end loop;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__fib93.htm (4 of 6) [12/19/2004 12:09:43 PM]

Example: Fib93

 FILE_CLOSE(vector_file);

 done <= '1';

 if (err_cnt = 0) then
 assert false
 report "No errors." & lf & lf
 severity note;
 else
 assert false
 report "There were errors in the test." & lf
 severity note;
 end if;
 wait;

 end process;

end block STIMBLOCK;

end architecture stimulus;

Tfib93.VEC

1000000000000000000000000000000000
0000000000000000000000000000000001
0000000000000000000000000000000001
0000000000000000000000000000000010
0000000000000000000000000000000011
0000000000000000000000000000000101
0000000000000000000000000000001000
0000000000000000000000000000001101
0000000000000000000000000000010101
0000000000000000000000000000100010
0000000000000000000000000000110111
0000000000000000000000000001011001
0000000000000000000000000010010000
0000000000000000000000000011101001
0000000000000000000000000101111001
0000000000000000000000001001100010
0000000000000000000000001111011011
0000000000000000000000011000111101
0000000000000000000000101000011000
0000000000000000000001000001010101
0000000000000000000001101001101101
0000000000000000000010101011000010
0000000000000000000100010100101111

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__fib93.htm (5 of 6) [12/19/2004 12:09:43 PM]

Example: Fib93

0000000000000000000110111111110001
0000000000000000001011010100100000
0000000000000000000010010100010001
0000000000000000000000000000000001
0000000000000000000000000000000001
0000000000000000000000000000000010
0000000000000000000000000000000011
0000000000000000000000000000000101
0000000000000000000000000000001000

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__fib93.htm (6 of 6) [12/19/2004 12:09:43 PM]

Example: Crc8s

Example: Crc8s

Crc8s.VHD

-- 8-bit Serial CRC Generator.
--
-- This CRC generator implements the CRC-CCITT standard
-- for serial data transmission. This VHDL description
-- is based in an ABEL design appearing in "Digital Design
-- Using ABEL" by David Pellerin and Michael Holley
-- (Prentice Hall, 1994).
--
-- This design description demonstrates the important
-- distinction between signals and variables in VHDL. Note
-- that the chain of registers and XOR operations has been
-- written using signals within a process. It would be
-- possible to describe the same circuit using variables,
-- but great care would have to be taken to ensure that
-- the desired circuit is produced. This is because variable
-- assignments are immediate: writing variable assignments
-- such as
-- X(0) := Din xor X(15);
-- X(1) := X(0);
-- X(2) := X(1);
-- X(3) := X(2);
-- X(4) := X(3);
-- ...
--
-- would *not* result in a single XOR function and a simple
-- chain of registers. Instead, the expression 'Din xor X(15)'
-- would be assumed as the input to all registers, rather than
-- just X(15).
--
-- Copyright 1995, Accolade Design Automation, Inc.
--
--
library ieee;
use ieee.std_logic_1164.all;

entity crc8s is
 port (Clk,Set, Din: in std_ulogic;
 CRC_Sum: out std_ulogic_vector(15 downto 0));
end crc8s;

architecture behavior of crc8s is
 signal X: std_ulogic_vector(15 downto 0);
begin

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__crc8s.htm (1 of 4) [12/19/2004 12:09:44 PM]

Example: Crc8s

 process(Clk,Set)
 begin
 if Set = '1' then
 X <= (others=> '1');
 elsif rising_edge(Clk) then
 X(0) <= Din xor X(15);
 X(1) <= X(0);
 X(2) <= X(1);
 X(3) <= X(2);
 X(4) <= X(3);
 X(5) <= X(4) xor Din xor X(15);
 X(6) <= X(5);
 X(7) <= X(6);
 X(8) <= X(7);
 X(9) <= X(8);
 X(10) <= X(9);
 X(11) <= X(10);
 X(12) <= X(11) xor Din xor X(15);
 X(13) <= X(12);
 X(14) <= X(13);
 X(15) <= X(14);
 end if;

 end process;

 CRC_Sum <= X;

end behavior;

Testcrc.VHD

-- Test bench for CRC generator
--
-- See comments in CRC8S.VHD.
--
-- Copyright 1995, Accolade Design Automation, Inc.
--
library ieee; use ieee.std_logic_1164.all;
use work.all; -- Get the design out of library 'work'
--
entity testcrc is
end testcrc;
--
architecture stimulus of testcrc is
 component crc8s
 port (Clk,Set,Din: in std_ulogic;
 CRC_Sum: out std_ulogic_vector(15 downto 0));
 end component;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__crc8s.htm (2 of 4) [12/19/2004 12:09:44 PM]

Example: Crc8s

 signal CE, Clk, Set, Din: std_ulogic;
 signal CRC_Sum: std_ulogic_vector(15 downto 0);
 signal vector_cnt: integer := 1;
 signal error_flag: std_ulogic := '0';
 type test_record is record
 CE : std_ulogic; -- Clock enable
 Set,Din : std_ulogic;
 CRC_Sum : std_ulogic_vector (15 downto 0);
 end record;
 type test_array is array(positive range <>) of test_record;
 signal svector: test_record;
 constant test_vectors : test_array := (
 -- CE, Set, Din, CRC_Sum
 ('0', '1', '0', "----------------"), -- Reset
--
 ('1', '0', '0', "----------------"), -- 'H'
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "0010100000111100"), -- 0x283C
--
 ('1', '0', '0', "----------------"), -- 'e'
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "1010010101101001"), -- 0xA569
--
 ('1', '0', '0', "----------------"), -- 'l'
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "0010000101100101"), -- 0x2165
--
-- Commented out to fit in demo limitations...
--
-- ('1', '0', '0', "----------------"), -- 'l'
-- ('1', '0', '1', "----------------"),
-- ('1', '0', '1', "----------------"),
-- ('1', '0', '0', "----------------"),
-- ('1', '0', '1', "----------------"),
-- ('1', '0', '1', "----------------"),

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__crc8s.htm (3 of 4) [12/19/2004 12:09:44 PM]

Example: Crc8s

-- ('1', '0', '0', "----------------"),
-- ('1', '0', '0', "1111110001101001"), -- 0xFC69
--
 ('1', '0', '0', "----------------"), -- 'o'
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "1101101011011010"));-- 0xDADA
 --
begin
 -- instantiate the component
 DUT: crc8s port map(Clk,Set,Din,CRC_Sum);
 --
 -- provide Stimulus and check the result
 --
 testrun: process
 variable vector : test_record;
 begin
 for index in test_vectors'range loop
 vector_cnt <= index;
 vector := test_vectors(index);
 svector <= vector; -- so we can see it in simulation
 --
 -- Apply the input stimulus...
 CE <= vector.CE; Set <= vector.Set; Din <= vector.Din;
 --
 -- Clock (low-high-low) with a 100 ns cycle...
 Clk <= '0'; wait for 25 ns;
 if CE = '1' then
 Clk <= '1';
 end if;
 wait for 50 ns; Clk <= '0'; wait for 25 ns;
 --
 -- Check the results...
 if (vector.CRC_Sum /= "----------------" and CRC_Sum /= vector.CRC_Sum)
then
 error_flag <= '1';
 assert false report "Output did not match!" severity WARNING;
 else
 error_flag <= '0';
 end if;
 end loop;
 end process;
end stimulus;

http://www.acc-eda.com/vhdlref/refguide/vhdl_examples_gallery/example__crc8s.htm (4 of 4) [12/19/2004 12:09:44 PM]

Conditional Signal Assignment

Conditional Signal Assignment

A conditional signal assignment is a special form of signal assignment, similar to the if-
then-else statements found in software programming languages, that allows you to
describe a sequence of related conditions under which one or more signals are
assigned values. The following example (a simple multiplexer) demonstrates the basic
form of a conditional assignment:

entity my_mux is
 port (Sel: in std_logic_vector (0 to 1);
 A, B, C, D: in std_logic_vector (0 to 3);
 Y: out std_logic_vector (0 to 3));
end my_mux;

architecture mux1 of my_mux is
begin

 Y <= A when Sel = "00" else
 B when Sel = "01" else
 C when Sel = "10" else
 D when others;

end mux1;

A conditional signal assignment consists of an assignment to one output (or a
collection of outputs, such as an array of any type) and a series of conditional when
statements, as shown. To ensure that all conditions are covered, you can use a
terminating when others clause, as was done for the multiplexer description above.

Note: It is very important that all conditions in a conditional assignment are covered,
as unwanted latches can be easily generated from synthesis for those conditions that
are not covered. In the preceding multiplexer example, you might be tempted to
replace the clause D when others with D when Sel = "11" (to improve readability).
This would not be correct, however, because the data type being used in the design
(std_logic_vector) has nine possible values for each bit. This means that there are
actually 81 possible unique values that the input Sel could have at any given time,
rather than four.

http://www.acc-eda.com/vhdlref/refguide/language_...rent_statements/conditional_signal_assignment.htm (1 of 2) [12/19/2004 12:09:44 PM]

Conditional Signal Assignment

The conditional signal assignment also provides a concise method of describing a list
of conditions that have some priority. In the case of the multiplexer just described,
there is no priority required or specified, since the four conditions (the possible values
of the 2-bit input Sel) are all mutually exclusive. In some design descriptions, however,
the priority implied by a series of when-else statements can cause some confusion
(and additional logic being generated). For this reason, you might want to use a
selected signal assignment (described in the next section) as an alternative.

See also

 Conditional vs. Selected Assignments

http://www.acc-eda.com/vhdlref/refguide/language_...rent_statements/conditional_signal_assignment.htm (2 of 2) [12/19/2004 12:09:44 PM]

VHDL Operators

VHDL Operators

Operator: abs
An absolute value operator which can be applied to any numeric type in an
expression.

Example: Delta <= abs(A-B)

LRM: 7.2

Operator: xnor
The logical "both or neither" (equality) operator which can be used in an
expression. The expression "A xnor B" returns True only when (1) A is true and B is
true, or (2) A is false and B is false.

LRM: 7.2

Operator: and

The logical "and" operator which can be used in an expression. The expression "A
and B" returns true only if both A and B are true.

LRM: 7.2

Operator: mod
The modulus operator which can be applied to integer types. The result of the
expression "A mod B" is an integer type and is defined to be the value such that:

(1) the sign of (A mod B) is the same as the sign of B, and
(2) abs (A mod B) < abs (B), and
(3) (A mod B) = (A * (B - N)) for some integer N.

LRM: 7.2

Operator: nand
The logical "not and" operator which can be used in an expression. It produces the

http://www.acc-eda.com/vhdlref/refguide/language...cts__data_types_and_operators/vhdl_operators.htm (1 of 6) [12/19/2004 12:09:45 PM]

VHDL Operators

opposite of the logical "and" operator. The expression "A nand B" returns True only
when (1) A is false, or (2) B is false, or (3) both A and B are false.

LRM: 7.2

Operator: nor
The logical "not or" operator which can be used in an expression. It produces the
opposite of the logical "or" operator. The expression "A nor B" returns True only when
both A and B are false.

LRM: 7.2

Operator: not
The logical "not" operator which can be used in an expression. The expression "not
A" returns True if A is false and returns False if A is true.

LRM: 7.2

Operator: or
The logical "or" operator which can be used in an expression. The expression "A or
B" returns True if (1) A is true, or (2) B is true, or (3) both A and B are true.

LRM: 7.2

Operator: rem
The remainder operator which can be applied to integer types. The result of the
expression "A rem B" is an integer type and is defined to be the value such that:

(1) the sign of (A rem B) is the same as the sign of A, and
(2) abs (A rem B) < abs (B), and
(3) (A rem B) = (A - (A / B) * B).

LRM: 7.2

Operator: rol
Rotate left operator.

Example: Sreg <= Sreg rol 2;

http://www.acc-eda.com/vhdlref/refguide/language...cts__data_types_and_operators/vhdl_operators.htm (2 of 6) [12/19/2004 12:09:45 PM]

VHDL Operators

LRM: 7.2.3

Operator: ror
Rotate right operator.

Example: Sreg <= Sreg ror 2;

LRM: 7.2.3

Operator: sla
Shift left arithmetic operator.

Example: Addr <= Addr sla 8;

LRM: 7.2.3

Operator: sll
Shift left logical operator.

Example: Addr <= Addr sll 8;

LRM: 7.2.3

Operator: sra
Shift right arithmetic operator.

Example: Addr <= Addr sra 8;

LRM: 7.2.3

Operator: srl
Shift right logical operator.

Example: Addr <= Addr srl 8;

LRM: 7.2.3

http://www.acc-eda.com/vhdlref/refguide/language...cts__data_types_and_operators/vhdl_operators.htm (3 of 6) [12/19/2004 12:09:45 PM]

VHDL Operators

Operator: xor
The logical "one or the other but not both" (inequality) operator which can be used in
an expression. The expression "A xor B" returns True only when (1) A is true and B is
false, or (2) A is false and B is true.

LRM: 7.2

Operator: =
The equality operator which can be used in an expression on any type except file
types. The resulting type of an expression using this operator is Boolean (that is, True
or False). The expression "A = B" returns True only if A and B are equal.

LRM: 7.2

Operator: /=
The inequality operator which can be used in an expression on any type except file
types. The resulting type of an expression using this operator is Boolean (that is, True
or False). The expression "A /= B" returns True only if A and B are not equal.

LRM: 7.2

Operator: :=
The assignment operator for a variable. The expression "TEST_VAR := 1" means that
the variable TEST_VAR is assigned the value 1.

LRM: 8.5

Operator: <

The "less than" operator which can be used in an expression on scalar types and
discrete array types. The resulting type of an expression using this operator is
Boolean (that is, True or False). The expression "A < B" returns True only if A is less
than B.

LRM: 7.2

Operator: <=
This symbol has two purposes. When used in an expression on scalar types and
discrete array types, it is the "less than or equal to" operator. The resulting type of an

http://www.acc-eda.com/vhdlref/refguide/language...cts__data_types_and_operators/vhdl_operators.htm (4 of 6) [12/19/2004 12:09:45 PM]

VHDL Operators

expression using this operator in this context is Boolean (that is, True or False). In
this context, the expression "A <= B" returns True only if A is less than or equal to B.

Example: LE := ‘1’ when A <= B else ‘0’;

In a signal assignment statement, the symbol "<=" is the assignment operator. Thus,
the expression "TEST_SIGNAL <= 5" means that the signal TEST_SIGNAL is
assigned the value 5.

Example: DataBUS <= 0x"E800";

LRM: 7.2, 8.4

Operator: >
The "greater than" operator which can be used in an expression on scalar types and
discrete array types. The resulting type of an expression using this operator is
Boolean (that is, True or False). The expression "A > B" returns True only if A is
greater than B.

LRM: 7.2

Operator: >=
The "greater than or equal to" operator which can be used in an expression on scalar
types and discrete array types. The resulting type of an expression using this operator
is Boolean (that is, True or False). The expression "A >= B" returns True only if A is
greater than or equal to B.

LRM: 7.2

Operator: +
The addition operator. Both operands must be numeric and of the same type. The
result is also of the same numeric type. Thus, if A = 2 and B = 3, the result of the
expression "A + B" is 5.
This operator may also be used as a unary operator representing the identity
function. Thus, the expression "+A" would be equal to A.

LRM: 7.2

Operator: -

http://www.acc-eda.com/vhdlref/refguide/language...cts__data_types_and_operators/vhdl_operators.htm (5 of 6) [12/19/2004 12:09:45 PM]

VHDL Operators

The subtraction operator. Both operands must be numeric and of the same type. The
result is also of the same numeric type. Thus, if A = 5 and B = 3, the result of the
expression "A - B" is 2.
This operator may also be used as a unary operator representing the negative
function. Thus, the expression "-A" would be equal to the negative of A.

LRM: 7.2

Operator: &
The concatenation operator. Each operand must be either an element type or a 1-
dimensional array type. The result is a 1-dimensional array type.

LRM: 7.2

Operator: *
The multiplication operator. Both operands must be of the same integer or floating
point type.
The multiplication operator can also be used where one operand is of a physical type
and the other is of an integer or real type. In these cases, the result is of a physical
type.

LRM: 7.2

Operator: /
The division operator. Both operands must be of the same integer or floating point
type.
The division operator can also be used where a physical type is being divided by
either an integer type or a real type. In these cases, the result is of a physical
type. Also, a physical type can be divided by another physical type, in which case the
result is an integer.

LRM: 7.2

Operator: **
The exponentiation operator. The left operand must be of an integer type or a floating
point type, and the right operand (the exponent) must be of an integer type. The
result is of the same type as the left operand.

LRM: 7.2

http://www.acc-eda.com/vhdlref/refguide/language...cts__data_types_and_operators/vhdl_operators.htm (6 of 6) [12/19/2004 12:09:45 PM]

Using Signals

Using Signals

Signals are objects that are used to connect concurrent elements (such as
components, processes and concurrent assignments), similar to the way that wires
are used to connect components on a circuit board or in a schematic. Signals can be
declared globally in an external package or locally within an architecture, block or
other declarative region.

To declare a signal, you write a signal statement such as the following:

 architecture arch1 of my_design is
 signal Q: std_logic;
 begin
 . . .
 end arch1;

In this simple example, the signal Q is declared within the declaration section of the
arch1 architecture. At a minimum, a signal declaration must include the name of the
signal (in this case Q) and its type (in this case the standard type std_logic). If more
than one signal of the same type is required, multiple signal names can be specified in
a single declaration:

 architecture arch2 of my_design is
 signal Bus1, Bus2: std_logic_vector(7 downto 0);
 begin
 . . .
 end declare;

In the first example above, the declaration of Q was entered in the declaration area of
architecture arch1. Thus, the signal Q will be visible anywhere within the arch1 design
unit, but it will not be visible within other design units. To make the signal Q visible to
the entire design (a global signal), you would have to move the declaration into an
external package, as shown below:

package my_package is
 signal Q: std_logic; -- Global signal
end my_package;
. . .

http://www.acc-eda.com/vhdlref/refguide/language_...jects__data_types_and_operators/using_signals.htm (1 of 4) [12/19/2004 12:09:45 PM]

Using Signals

use work.my_package.Q; -- Make Q visible to the architecture
architecture arch1 of my_design is
begin
 . . .
end arch1;

In this example, the declaration for Q has been moved to an external package, and a
use statement has been specified, making the contents of that package visible to the
subsequent architecture.

Signal initialization
In addition to creating one or more signals and assigning them a type, the signal
declaration can also be used to assign an initial value to the signal, as shown below:

signal BusA: std_logic_vector(15 downto 0) := (others => 'Z');

This particular initialization uses a special kind of assignment, called an aggregate
assignment, to assign all signals of the array BusA to an initial value of 'Z'. (The 'Z'
value is defined in the IEEE 1164 standard as a high-impedence state.)

Initialization values are useful for simulation modeling, but they are not recommended
for design descriptions that will be processed by synthesis tools. Synthesis tools
typically ignore initialization values because they cannot assume that the target
hardware will power up in a known state.

Using signals
You will use signals in VHDL in two primary ways. First, if you want signals to carry
information between different functional parts of your design, such as between two
components, you will probably use them in a way similar to the following:

library ieee;
use ieee.std_logic_1164.all;
entity shiftcomp is port(Clk, Rst, Load: in std_logic;
 Init: in std_logic_vector(0 to 7);
 Test: in std_logic_vector(0 to 7);
 Limit: out std_logic);
end shiftcomp;

architecture structure of shiftcomp is

http://www.acc-eda.com/vhdlref/refguide/language_...jects__data_types_and_operators/using_signals.htm (2 of 4) [12/19/2004 12:09:45 PM]

Using Signals

 component compare
 port(A, B: in std_logic_vector(0 to 7); EQ: out bit);
 end component;

 component shift
 port(Clk, Rst, Load: in std_logic;
 Data: in std_logic_vector(0 to 7);
 Q: out std_logic_vector(0 to 7));
 end component;

 signal Q: std_logic_vector(0 to 7);

begin

 COMP1: compare port map (Q, Test, Limit);
 SHIFT1: shift port map (Clk, Rst, Load, Init, Q);

end structure;

This example (described in Chapter 2, A First Look At VHDL) declares the signal Q
within the architecture, then uses Q to connect the two components COMP1 and
SHIFT1 together.

A second way of using signals is demonstrated by the following example in which
signals are used within logic expressions and are assigned values directly (in this case
within a process):

library ieee;
use ieee.std_logic_1164.all;
entity synch is
 port (Rst, Clk, Grant, nSelect: in std_logic;
 Request: out std_logic);
end synch;

architecture dataflow of synch is
 signal Q1, Q2, Q3, D3: std_logic;
begin

 dff: process (Rst, Clk)

http://www.acc-eda.com/vhdlref/refguide/language_...jects__data_types_and_operators/using_signals.htm (3 of 4) [12/19/2004 12:09:45 PM]

Using Signals

 begin
 if Rst = ‘1’ then
 Q1 <= '0';
 Q2 <= '0';
 Q3 <= '0';
 elsif Clk = ‘1’ and Clk’event then
 Q1 <= Grant;
 Q2 <= Select;
 Q3 <= D3;
 end if;
 end process;

 D3 <= Q1 and Q3 or Q2;
 Request <= Q3;

end dataflow;

This example (which is a simplified synchronizer circuit) uses three signals, Q1, Q2
and Q3, to represent register elements, with the signal D3 being used as an
intermediate signal representing a combinational logic function connecting the outputs
of registers Q1, Q2 and Q3 to the input of Q3. The final assignment assigns the Q3
register output to the Request output port. The register behavior is encapsulated into
a process, dff, simplifying the concurrent statements that follow.

It is important to note that there is no significance to the order in which these
concurrent statements occur. Like wires drawn between symbols on a schematic,
signals assigned and used within a VHDL architecture are independent of each other
and are not position dependent.

http://www.acc-eda.com/vhdlref/refguide/language_...jects__data_types_and_operators/using_signals.htm (4 of 4) [12/19/2004 12:09:45 PM]

Using Variables

Using Variables

Variables
Variables are objects used to store intermediate values between sequential VHDL
statements. Variables are only allowed in processes, procedures and functions, and
they are always local to those functions.

Note: The 1076-1993 language standard adds a new type of global variable that has
visibility between different processes and subprograms. Global variables are not
generally supported in synthesis tools and are not discussed in this book.

Variables in VHDL are much like variables in a conventional software programming
language. They immediately take on and store the value assigned to them (this is not
true of signals, as described in Chapter 6, Understanding Sequential Statements), and
they can be used to simplify a complex calculation or sequence of logical operations.

The following example is a modified version of the synchronizer circuit presented in
the previous section:

library ieee;
use ieee.std_logic_1164.all;
entity synch is
 port (Rst, Clk, Grant, nSelect: std_ulogic;
 Request: std_ulogic);
end synch;

architecture behavior of synch is
begin
 process(Rst, Clk)
 variable Q1, Q2, Q3: std_ulogic;
 begin
 if Rst = ‘1’ then -- Async reset
 Q1 := '0'; Q2 := '0'; Q3 := '0';
 elsif (Clk = ‘1’ and Clk’event) then
 Q1 := Grant;
 Q2 := Select;
 Q3 := Q1 and Q3 or Q2;
 end if;

http://www.acc-eda.com/vhdlref/refguide/language_...cts__data_types_and_operators/using_variables.htm (1 of 2) [12/19/2004 12:09:46 PM]

Using Variables

 Request <= Q3;
 end process;
end behavior;

In this version of the synchronizer, a single process is again used to describe the
behavior of the three commonly-clocked register elements. But in this case, the
connections between the three registers are represented by variables that are local to
the process, and the result (the output of register Q3) is then assigned to the output
port Request. This version of the design will probably not work as intended, because
the registered behavior of Q1 and Q2 will be "short circuited" by the fact that variables
were used.

Because variables do not always result in registers being generated within otherwise
clocked processes, you must be very careful when using them. The important
distinctions between signals and variables are covered in more detail in a later
chapter.

http://www.acc-eda.com/vhdlref/refguide/language_...cts__data_types_and_operators/using_variables.htm (2 of 2) [12/19/2004 12:09:46 PM]

Using Constants and Literals

Using Constants and Literals

Constants
Constants are objects that are assigned a value once, when declared, and do not
change their value during simulation. Constants are useful for creating more readable
design descriptions, and they make it easier to change the design at a later time. The
following code fragment provides a few examples of constant declarations:

architecture sample1 of consts is
 constant SRAM: bit_vector(15 downto 0) := X"F0F0";
 constant PORT: string := "This is a string";
 constant error_flag: boolean := True;
begin
 . . .
 process(. . .)
 constant CountLimit: integer := 205;
 begin
 . . .
 end process;

end arch1;

Constant declarations can be located in any declaration area in your design
description. If you want to create constants that are global to your design description,
then you will place the constant declarations into external packages. If a constant will
be used only within one segment of your design, you can place the constant
declaration within the architecture, block, process or subprogram that requires it.

Literals
Explicit data values that are assigned to objects or used within expressions are called
literals. Literals represent specific values, but they do not always have an explicit type.
(For example, the literal '1' could represent either a bit data type or a character.)
Literals do, however, fall into a few general categories.

Character literals
Character literals are 1-character ASCII values that are enclosed in single-quotes,
such as the values '1', 'Z', '$' and ':'. The data type of the object being assigned one

http://www.acc-eda.com/vhdlref/refguide/language_...es_and_operators/using_constants_and_literals.htm (1 of 4) [12/19/2004 12:09:46 PM]

Using Constants and Literals

of these values (or the type implied by the expression in which the value is being
used) will dictate whether a given character literal is valid. The literal value '$', for
example, is a valid literal when assigned to a character type object, but it is not valid
when assigned to a std_logic or bit data type.

String literals
String literals are collections of one or more ASCII characters enclosed in double-
quote characters. String literals may contain any combination of ASCII characters, and
they may be assigned to appropriately sized arrays of single-character data types
(such as bit_vector or std_logic_vector) or to objects of the built-in type string.

Bit string literals
Bit string literals are special forms of string literals that are used to represent binary,
octal, or hexadecimal numeric data values.
When representing a binary number, a bit string literal must be preceded by the
special character 'B', and it may contain only the characters '0' and '1'. For example, to
represent a decimal value of 36 using a binary format bit string literal, you would write
B"100100".

When representing an octal number, the bit string literal must include only the
characters '0' through '7', and it must be preceded by the special character 'O', as in
O"446".

When representing a hexadecimal value, the bit string literal must be preceded by the
special character 'X', and it may include only the characters '0' through '9' and the
characters 'A' through 'F', as in X"B295". (Lower-case characters are also allowed, so
'a' through 'f' are also valid.)

The underscore character '_' may also be used in bit string literals as needed to
improve readability. The following are some examples of bit string literals representing
a variety of numeric values:

B"0111_1101" (decimal value 253)
O"654" (decimal value 428)
O"146_231" (decimal value 52,377)
X"C300" (decimal value 49,920)

Note: In VHDL standard 1076-1987, bit string literals are only valid for the built-in type
bit_vector. In 1076-193, bit string literals can be applied to any string type, including

http://www.acc-eda.com/vhdlref/refguide/language_...es_and_operators/using_constants_and_literals.htm (2 of 4) [12/19/2004 12:09:46 PM]

Using Constants and Literals

std_logic_vector.

Numeric literals
There are two basic forms of numeric literals in VHDL, integer literals and real literals.

Integer literals are entered as you would expect, as decimal numbers preceded by an
optional negation character ('-'). The range of integers supported is dependent on your
particular simulator or synthesis tool, but the VHDL standard does specify a minimum
range of -2,147,483,647 to +2,147,483,647 (32 bits of precision, including the sign bit).

Real literals are entered using an extended form that requires a decimal point. For
large numbers, scientific notation is also allowed using the character 'E', where the
number to the left of the 'E' represents the mantissa of the real number, while the
number to the right of the 'E' represents the exponent. The following are some
examples of real literals:

5.0
-12.9
1.6E10
1.2E-20

The minimum and maximum values of real numbers are defined by the simulation tool
vendor, but they must be at least in the range of -1.0E38 to +1.0E38 (as defined by
the standard). Numeric literals may not include commas, but they may include
underscore characters ("_") to improve readability, as in:

1_276_801 -- integer value 1,276,801

Type checking is strict in VHDL, and this includes the use of numeric literals. It is not
possible, for example, to assign an integer literal of 9 to an object of type real. (You
must instead enter the value as 9.0.)

Based literals
Based literals are another form of integer or real values, but they are written in non-
decimal form. To specify a based literal, you precede the literal with a base
specification (such as 2, 8, or 16) and enclose the non-decimal value with a pair of '#'
characters as shown in the examples below:

2#10010001# (integer value 145)

http://www.acc-eda.com/vhdlref/refguide/language_...es_and_operators/using_constants_and_literals.htm (3 of 4) [12/19/2004 12:09:46 PM]

Using Constants and Literals

16#FFCC# (integer value 65,484)
2#101.0#E10 (real value 5,120.0)

Physical literals
Physical literals are special types of literals used to represent physical quantities such
as time, voltage, current, distance, etc. Physical literals include both a numeric part
(expressed as an integer) and a unit specification. Physical types will be described in
more detail later in this chapter. The following examples show how physical literals
can be expressed:

300 ns (300 nanoseconds)
900 ps (900 picoseconds)
40 ma (40 milliamps)

http://www.acc-eda.com/vhdlref/refguide/language_...es_and_operators/using_constants_and_literals.htm (4 of 4) [12/19/2004 12:09:46 PM]

Understanding VHDL Operators

Understanding VHDL Operators

The following charts summarize the operators available in VHDL. As indicated, not all operators can be used
for all data types, and the data type that results from an operation may differ from the type of the object on
which the operation is performed.

Note: Operations defined for types Bit are also valid for type std_ulogic and std_logic.

Logical operators
The logical operators and, or, nand, nor, xor and xnor are used to describe Boolean logic operations, or
perform bit-wise operations, on bits or arrays of bits.

Operator Description Operand Types Result Types
and And Any Bit or Boolean type Same Type
or Or Any Bit or Boolean type Same Type
nand Not And Any Bit or Boolean type Same Type
nor Not Or Any Bit or Boolean type Same Type
xor Exclusive OR Any Bit or Boolean type Same Type
xnor Exclusive NOR Any Bit or Boolean type Same Type

Relational operators
Relational operators are used to test the relative values of two scalar types. The result of a relational operation
is always a Boolean true or false value.

Operator Description Operand Types Result Type
= Equality Any type Boolean
/= Inequality Any type Boolean
< Less than Any scalar type or discrete array Boolean
<= Less than or equal Any scalar type or discrete array Boolean
> Greater than Any scalar type or discrete array Boolean
>= Greater than or equal Any scalar type or discrete array Boolean

Adding operators
The adding operators can be used to describe arithmetic functions or, in the case of array types, concatenation
operations.

Operator Description Operand Types Result Type
+ Addition Any numeric type Same type
- Subtraction Any numeric type Same type
& Concatenation Any numeric type Same type
& Concatenation Any array or element type Same array type

Multiplying operators
The multiplying operators can be used to describe mathematical functions on numeric types.

Note: Synthesis tools vary in their support for multiplying operators.

http://www.acc-eda.com/vhdlref/refguide/language...s_and_operators/understanding_vhdl_operators.htm (1 of 3) [12/19/2004 12:09:47 PM]

Understanding VHDL Operators

Operator Description Operand Types Result Type
* Multiplication Left: any integer or floating point type.

Right: same type
Same as left

* Multiplication Left: any physical type.
Right: integer or real type.

Same as left

* Multiplication Left: integer or real type.
Right: any physical type.

Same as right

/ Division Left: any integer or floating point type.
Right: same type

Same as left

/ Division Left: any integer or floating point type.
Right: same type

Same as left

/ Division Left: integer or real type.
Right: any physical type.

Same as right

mod Modulus Any integer type Same type
rem Remainder Any integer type Same type

Sign operators
Sign operators can be used to specify the sign (either postive or negative) of a numeric object or literal.

Operator Description Operand Types Result Type
+ Identity Any numeric type Same type
- Negation Any numeric type Same type

Miscellaneous operators
The exponentiation and absolute value operators can be applied to numeric types, in which case they result in
the same numeric type. The logical negation operator results in the same type (bit or Boolean), but with the
reverse logical polarity. The shift operators provide bit-wise shift and rotate operatons for arrays of type bit or
Boolean.

Operator Description Operand Types Result Type
** Exponentiation Left: any integer type

Right: integer type
Same as left

** Exponentiation Left: any floating point type
Right: integer type

Same as left

abs Absolute value Any numeric type Same as left type
not Logical negation Any Bit or Boolean type Same as left type
sll Shift left logical Left: Any one-dimensinal arrayof Bit or

Boolean
Right: integer type

Same as left type

srl Shift right logical Left: Any one-dimensinal arrayof Bit or
Boolean
Right: integer type

Same as left type

sla Shift left arithmetic Left: Any one-dimensinal arrayof Bit or
Boolean
Right: integer type

Same as left type

http://www.acc-eda.com/vhdlref/refguide/language...s_and_operators/understanding_vhdl_operators.htm (2 of 3) [12/19/2004 12:09:47 PM]

Understanding VHDL Operators

sra Shift right arithmetic Left: Any one-dimensinal arrayof Bit or
Boolean
Right: integer type

Same as left type

rol Rotate left Left: Any one-dimensinal arrayof Bit or
Boolean
Right: integer type

Same as left type

ror Rotate right Left: Any one-dimensinal arrayof Bit or
Boolean
Right: integer type

Same as left type

See also

 Objects, Data Types and Operators
 Using Standard Logic

http://www.acc-eda.com/vhdlref/refguide/language...s_and_operators/understanding_vhdl_operators.htm (3 of 3) [12/19/2004 12:09:47 PM]

Understanding VHDL Attributes

Understanding VHDL Attributes

Attributes are a feature of VHDL that allow you to extract additional information about
an object (such as a signal, variable or type) that may not be directly related to the
value that the object carries. Attributes also allow you to assign additional information
(such as data related to synthesis) to objects in your design description.

There are two classes of attributes: those that are predefined as a part of the 1076
standard, and those that have been introduced outside of the standard, either by you
or by your design tool supplier.

Predefined attributes
The VHDL specification describes five fundamental kinds of attributes. These five
kinds of attributes are categorized by the results that are returned when they are used.
The possible results returned from these attributes are: a value, a function, a signal, a
type or a range.
Predefined attributes are always applied to a prefix (such as a signal or variable name,
or a type or subtype name), as in the statement:

 wait until Clk = ‘1’ and Clk’event and Clk’last_value = ‘0’;

In this statement, the attributes ‘event and ‘last_value have been applied to the prefix
Clk, which is a signal.
Some attributes also include parameters, so they are written in much the same way
you would write a call to a function:

 variable V: state_type := state_type’val(2); -- V has the value of
 -- Strobe

In this case, the attribute ‘val has been applied to the prefix state_type (which is a
type name) and has been given an attribute parameter, the integer value 2.

Value kind attributes: ‘Left, ‘Right, ‘High, ‘Low, ‘Length,
‘Ascending
The value kind attributes that return an explicit value and are applied to a type or
subtype include the following:

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (1 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

‘Left—This attribute returns the left-most element index (the bound) of a given type or
subtype.

Example: type bit_array is array (1 to 5) of bit;
 variable L: integer := bit_array’left; -- L has a value of 1

‘Right—Returns the right-most bound of a given type or subtype.

Example: type bit_array is array (1 to 5) of bit;
 variable R: integer := bit_array’right; -- R has a value of 5

‘High—returns the upper bound of a given scalar type or subtype.

Example: type bit_array is array(-15 to +15) of bit;
 variable H: integer := bit_array’high; -- H has a value of 15

‘Low—returns the upper bound of a given scalar type or subtype.

Example: type bit_array is array(15 downto 0) of bit;
 variable L: integer := bit_array’low;
 -- L has a value of 0

‘Length—returns the length (number of elements) of an array.

Example: type bit_array is array (0 to 31) of bit;
 variable LEN: integer := bit_array’length -- LEN has a value of 32

‘Ascending—(VHDL ’93 attribute) returns a boolean true value of the type or subtype
is declared with an ascending range.

Example: type asc_array is array (0 to 31) of bit;
 type desc_array is array (36 downto 4) of bit;
 variable A1: boolean := asc_array’ascending; -- A1 has a value of true
 variable A2: boolean := desc_array’ascending; -- A2 has a value of false

As you can see from the examples, value kind attributes (and all other predefined
attributes) are identified by the ‘ (single quote) character. They are applied to type
names, signals names and other identifiers, depending on the nature of the attribute.
The value type attributes are used to determine the upper and lower (or left and right)
bounds of a given type.

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (2 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

The following sample architecture uses the ‘right and ‘left attibutes to determine the
left- and right-most element indices of an array in order to describe a width-
independent shift operation:

architecture behavior of shifter is
begin
 reg: process(Rst,Clk)
 begin
 if Rst = ‘1’ then -- Async reset
 Qreg := (others => ‘0’);
 elsif rising_edge(Clk) then
 Qreg := Data(Data’left+1 to Data’right) & Data(Data’left);
 end if;
 end process;
end behavior;

The ‘right, ‘left, ‘high and ‘low attributes can be used to return non-numeric values.
The following example demonstrates how you can use the ‘left and ‘right attributes to
identify the first and last items in an enumerated type:

architecture example of enums is
 type state_type is (Init, Hold, Strobe, Read, Idle);
 signal L, R: state_type;
begin
 L <= state_type’left; -- L has the value of Init
 R <= state_type’right; -- R has the value of Idle
end example;

Value kind attributes: ‘Structure, ‘Behavior
There are two additional value kind attributes that can be used to determine
information about blocks or attributes in a design. These attributes, ‘structure and
‘behavior, return true or false values depending on whether the block or architecture
being referenced includes references to lower-level components. The ‘structure
attribute returns true if there are references to lower-level components, and false if
there are no references to lower-level components. The ‘behavior attribute returns
false if there are references to lower-level components, and true if there are no
references to lower-level components.

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (3 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

‘Structure—returns a true value if the prefix (which must be an architecture name)
includes references to lower-level components.

‘Behavior—returns a true value if the prefix (which must be an architecture name)
does not include references to lower-level components.

Value kind attributes: ‘Simple_name, ‘Instance_name, ‘Path_name
VHDL 1076-1993 added three attributes that can be used to determine the precise
configuration of entities in a design description. These attributes return information
about named entities, which are various items that become associated with identifiers,
character literals or operator symbols as the result of a declaration. For more
information about these attributes, refer to the IEEE VHDL Language Reference
Manual.

‘Simple_name—returns a string value corresponding to the prefix, which must be a
named entity.

‘Instance_name—returns a string value corresponding to the complete path (from the
design hierarchy root) to the named entity specified in the prefix, including the names
of all instantiated design entities. The string returned by this attribute has a fixed
format that is defined in the IEEE VHDL Language Reference Manual.

‘Path_name—returns a string value corresponding to the complete path (from the
design hierarchy root) to the named entity specified in the prefix. The string returned
by this attribute has a fixed format that is defined in the IEEE VHDL Language
Reference Manual.

Function kind attributes: ‘Pos, ‘Val, ‘Succ, ‘Pred, ‘Leftof, ‘Rightof
Attributes that return information about a given type, signal, or array value are called
function kind attributes. VHDL defines the following function kind attributes that can be
applied to types:

‘Pos(value)—returns the position number of a type value.

Example: type state_type is (Init, Hold, Strobe, Read, Idle);
 variable P: integer := state_type’pos(Read); -- P has the value of 3

‘Val(value)—returns the value corresponding to a position number of a type value.

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (4 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

Example: type state_type is (Init, Hold, Strobe, Read, Idle);
 variable V: state_type := state_type’val(2); -- V has the value of Strobe

‘Succ(value)—returns the value corresponding to position number after a given type
value.

Example: type state_type is (Init, Hold, Strobe, Read, Idle);
 variable V: state_type := state_type’succ(Init); -- V has the value of Hold

‘Pred(value)—returns the value corresponding to position number preceding a given
type value.

Example: type state_type is (Init, Hold, Strobe, Read, Idle);
 variable V: state_type := state_type’pred(Hold); -- V has the value of Init

‘Leftof(value)—returns the value corresponding to position number to the left of a
given type value.

Example: type state_type is (Init, Hold, Strobe, Read, Idle);
 variable V: state_type := state_type’leftof(Idle); -- V has the value of Read

‘Rightof(value)—returns the value corresponding to position number to the right of a
given type value.

Example: type state_type is (Init, Hold, Strobe, Read, Idle);
 variable V: state_type := state_type’rightof(Read); -- V has the value of Idle

From the above descriptions, it might appear that the ‘val and ‘succ attributes are
equivalent to the attributes ‘leftof and ‘rightof. One case where they would be
different is the case where a subtype is defined that changes the ordering of the base
type:

 type state_type is (Init, Hold, Strobe, Read, Idle);
 subtype reverse_state_type is state_type range Idle downto Init;

 variable V1: reverse_state_type := reverse_state_type’leftof(Hold);
 -- V1 has the value of Strobe
 variable V2: reverse_state_type := reverse_state_type’pred(Hold);
 -- V2 has the value of Init

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (5 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

Function kind array attributes: ‘Left, ‘Right, ‘High, ‘Low
The function kind attributes that can be applied to array objects include:

‘Left(value)—returns the index value corresponding to the left bound of a given array
range.

Example: type bit_array is array (15 downto 0) of bit;
 variable I: integer :=
 bit_array’left(bit_array’range);
 -- I has the value of 15

‘Right(value)—returns the index value corresponding to the right bound of a given
array range.

Example: type bit_array is array (15 downto 0) of bit;
 variable I: integer :=
 bit_array’right(bit_array’range);
 -- I has the value of 0

‘High(value)—returns the index value corresponding to the upper-most bound of a
given array range.

Example: type bit_array is array (15 downto 0) of bit;
 variable I: integer :=
 bit_array’high(bit_array’range);
 -- I has the value of 15

‘Low(value)—returns the index value corresponding to the lower bound of a given
array range.

Example: type bit_array is array (15 downto 0) of bit;
 variable I: integer :=
 bit_array’low(bit_array’range);
 -- I has the value of 0

Function kind attributes: ‘Event, ‘Active, ‘Last_event, ‘Last_value,
‘Last_active

Function kind attributes that return information about signals (such as whether that

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (6 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

signal has changed its value or its previous value) include:

‘Event—returns a true value of the signal had an event (changed its value) in the
current simulation delta cycle.

Example: process(Rst,Clk)
 begin
 if Rst = ‘1’ then
 Q <= ‘0’;
 elsif Clk = ‘1’ and Clk’event then
 -- Look for clock edge
 Q <= D;
 end if;
 end process;

‘Active—returns true if any transaction (scheduled event) occurred on this signal in
the current simulation delta cycle.

Example: process
 variable A,E: boolean;
 begin
 Q <= D after 10 ns;
 A := Q’active; -- A gets a value of True
 E := Q’event; -- E gets a value of False
 . . .
 end process;

‘Last_event—returns the time elapsed since the previous event occurring on this
signal.

Example: process
 variable T: time;
 begin
 Q <= D after 5 ns;
 wait 10 ns;
 T := Q’last_event; -- T gets a value of 5 ns
 . . .
 end process;

‘Last_value—returns the value of the signal prior to the last event.

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (7 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

Example: process
 variable V: bit;
 begin
 Q <= ‘1’;
 wait 10 ns;
 Q <= ‘0’;
 wait 10 ns;
 V := Q’last_value; -- V gets a value of ‘1’
 . . .
 end process;

‘Last_active—returns the time elapsed since the last transaction (scheduled event) of
the signal.

Example: process
 variable T: time;
 begin
 Q <= D after 30 ns;
 wait 10 ns;
 T := Q’last_active; -- T gets a value of 10 ns
 . . .
 end process;

Note: the ‘active, ‘last_event, ‘last_value and ‘last_active attributes are not
generally supported in synthesis tools. Of the preceding five attributes, only ‘event
should be used when describing synthesizable registered circuits. The ‘active,
‘last_event, ‘last_value and ‘last_active attributes should only be used to describe
circuits for test purposes (such as for setup and hold checking). If they are
encountered by a synthesis program, they will either be ignored, or the program will
return an error and halt operation.

Function kind attributes: ‘Image, ‘Value
The ‘image and ‘value attributes were added in the 1993 specification to simplify the
reporting of information through Text I/O. These attributes both return string results
corresponding to their parameter values.

‘Image(expression)—(VHDL ’93 attribute) returns a string representation of the
expression parameter, which must be of a type corresponding to the attribute prefix.

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (8 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

Example: assert (Data.Q = ‘1’)
 report "Test failed on vector " &
 integer’image(vector_idx)
 severity WARNING;

‘Value(string)—(VHDL ’93 attribute) returns a value, of a type specified by the prefix,
corresponding to the parameter string.

Example: write(a_outbuf,string’("Enter desired state (example: S1)"));
 writeline(OUTPUT,a_outbuf);
 readline(INPUT,a_inbuf);
 read(a_inbuf,instate); -- instate is a string type

 next_state <= state_type’value(instate);
 -- convert string to type state_type

 write(a_outbuf,string’("Enter duration (example: 15)"));
 writeline(OUTPUT,a_outbuf);
 readline(INPUT,a_inbuf);
 read(a_inbuf,induration); -- induration is a string type

 duration <= integer’value(induration);
 -- convert string to type integer

Signal kind attributes: ‘Delayed, ‘Stable, ‘Quiet, ‘Transaction
The signal kind attributes are attributes that, when invoked, create special signals that
have values and types based on other signals. These special signals can then be
used anywhere in the design description that a normally declared signal could be
used. One example of where you might use such an attribute is to create a series of
delayed clock signals that are all based on the waveform of a base clock signal.

Signal kind attributes include the following:

‘Delayed(time)—creates a delayed signal that is identical in waveform to the signal
the attribute is applied to. (The time parameter is optional, and may be omitted.)

Example: process(Clk’delayed(hold))
 -- Hold time check for input Data

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (9 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

 begin
 if Clk = ‘1’ and Clk’stable(hold) then
 assert(Data’stable(hold))
 report "Data input failed hold time check!"
 severity warning;
 end if;
 end process;

‘Stable (time)—creates a signal of type boolean that becomes true when the signal
is stable (has no event) for some given period of time.

Example: process
 variable A: Boolean;
 begin
 wait for 30 ns;
 Q <= D after 30 ns;
 wait 10 ns;
 A := Q’stable(20 ns);
 -- A gets a value of true (event has not
 -- yet occurred)
 wait 30 ns;
 A := Q’stable(20 ns);
 -- A gets a value of false (only 10 ns
 -- since event)
 . . .
 end process;

‘Quiet (time)—creates a signal of type boolean that becomes true when the signal
has no transactions (scheduled events) or actual events for some given period of time.

Example: process
 variable A: Boolean;
 begin
 wait for 30 ns;
 Q <= D after 30 ns;
 wait 10 ns;
 A := Q’quiet(20 ns);
 -- A gets a value of false (10 ns since
 -- transaction)
 wait 40 ns;

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (10 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

 A := Q’quiet(20 ns);
 -- A finally gets a value of true (20 ns
 -- since event)
 . . .
 end process;

‘Transaction—creates a signal of type bit that toggles its value whenever a
transaction or actual event occurs on the signal the attribute is applied to.

Type kind attribute: ‘Base
‘Base—returns the base type for a given type or subtype.

Example: type mlv7 is (‘0’,’1',’X’,’Z’,’H’,’L’,’W’);
 subtype mlv4 is mlv7 range ‘0’ to ‘Z’;
 variable V1: mlv4 := mlv4’right;
 -- V1 has the value of ‘Z’
 variable V2: mlv7 := mlv4’base’right;
 -- V2 has the value of ‘W’
 variable I1: integer := mlv4’width;
 -- I1 has the value of 4
 variable I2: integer := mlv4’base’width;
 -- I2 has the value of 7

Range Kind Attributes: ‘Range, ‘Reverse_range
The range kind attributes return a special value that is a range, such as you might use
in a declaration or looping scheme.

‘Range—returns the range value for a constrained array.

Example: function parity(D: std_logic_vector) return
 std_logic is
 variable result: std_logic := ‘0’;
 begin
 for i in D’range loop
 result := result xor D(i);
 end loop;
 return result;
 end parity;

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (11 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

‘Reverse_range—returns the reverse of the range value for a constrained array.

Example: STRIPX: for i in D’reverse_range loop
 if D(i) = ‘X’ then
 D(i) = ‘0’;
 else
 exit; -- only strip the terminating Xs
 end if;
 end loop;

Custom attributes
Custom attributes are those attributes that are not defined in the IEEE specifications,
but that you (or your simulation or synthesis tool vendor) define for your own use. A
good example is the attribute enum_encoding, which is provided by a number of
synthesis tool vendors (most notably Synopsys) to allow specific binary encodings to
be attached to objects of enumerated types.

An attribute such as enum_encoding is declared (again, either by you or by your
design tool vendor) using the following method:

 attribute enum_encoding: string;

This attribute could be written directly in your VHDL design description, or it could
have been provided to you by the tool vendor in the form of a package. Once the
attribute has been declared and given a name, it can be referenced as needed in the
design description:

 type statevalue is (INIT, IDLE, READ, WRITE, ERROR);
 attribute enum_encoding of statevalue: type is "000 001 011 010 110";

When these declarations are processed by a synthesis tool that supports the
enum_encoding attribute, information about the encoding of the type statevalue will
be used by that tool. When the design is processed by design tools (such as
simulators) that do not recongnize the enum_encoding attribute, it will simply be
ignored.

Custom attributes are a convenient "back door" feature of VHDL, and design tool
vendors have created many such attributes to give you more control over the
synthesis and simulation process. For detailed information about custom attributes,
refer to your design tool documentation.

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (12 of 13) [12/19/2004 12:09:49 PM]

Understanding VHDL Attributes

http://www.acc-eda.com/vhdlref/refguide/language..._and_operators/understanding_vhdl_attributes.htm (13 of 13) [12/19/2004 12:09:49 PM]

The Concurrent Area

The Concurrent Area

In VHDL, there is only one place where you will normally enter concurrent statements.
This place, the concurrent area, is found between the begin and end statements of an
architecture declaration. The following VHDL diagram shows where the concurrent
area of a VHDL architecture is located:

architecture arch1 of my_circuit is
 signal Reset, DivClk: std_logic;
 constant MaxCount: std_logic_vector(15 downto 0) := "10001111";
 component count port (Clk, Rst: in std_logic;
 Q: out std_logic_vector(15 downto 0));
begin

 Reset <= '1' when Qout = MaxCount else '0';

 CNT1: count port map(GClk, Reset, DivClk);

 Control: process(DivClk)
 begin
 . . .
 end process;
 . . .
end arch1;

All statements within the concurrent area are considered to be parallel in their
execution and of equal priority and importance. Processes (described in more detail in
Chapter 6, Understanding Sequential Statements) also obey this rule, executing in
parallel with other assignments and processes appearing in the concurrent area.

There is no order dependency to statements in the concurrent area, so the following
architecture declaration:

architecture arch1 of my_circuit is
 signal A, B, C: std_logic_vector(7 downto 0);
 constant Init: std_logic_vector(7 downto 0) := "01010101";
begin
 A <= B and C;

http://www.acc-eda.com/vhdlref/refguide/language_...iew/concurrent_statements/the_concurrent_area.htm (1 of 2) [12/19/2004 12:09:49 PM]

The Concurrent Area

 B <= Init when Select = '1' else C;
 C <= A and B;
end arch1;

is exactly equivalent to:

architecture arch2 of my_circuit is
 signal A, B, C: std_logic_vector(7 downto 0);
 constant Init: std_logic_vector(7 downto 0) := "01010101";
begin
 C <= A and B;
 A <= B and C;
 B <= Init when Select = '1' else C;
end arch2;

The easiest way to understand this concept of concurrency is to think of concurrent
VHDL statements as a kind of netlist, in which the various assignments being made
are nothing more than connections between different types of objects.

If you think of the signals, constants, components, literals—and even
processes—available in concurrent VHDL statements as distinct objects (such as you
might find on a schematic or block diagram), and think of operations (such as and,
not, and when-else) and assignments as logic gates and wiring specifications,
respectively, then you will have no trouble understanding how VHDL's concurrent
statements can be mapped to actual digital logic.

See also

 Process Statements
 Concurrent Signal Assignments
 Sequential Statements
 Component Instantiations
 Blocks

http://www.acc-eda.com/vhdlref/refguide/language_...iew/concurrent_statements/the_concurrent_area.htm (2 of 2) [12/19/2004 12:09:49 PM]

Concurrent Signal Assignments

Concurrent Signal Assignments

The most common and simple concurrent statements you will write in VHDL are
concurrent signal assignments. Concurrent signal assignments such as those shown
in the previous section specify the logical relationships between different signals in a
digital system.

If you have used PLD-oriented design languages (such as PALASM, ABEL, CUPL or
Altera’s AHDL), then concurrent signal assignments will be quite familiar to you. Just
like the Boolean equations that you write using a PLD language, concurrent signal
assignments in VHDL describe logic that is inherently parallel.

Because all signal assignments in your design description are concurrent (including
those described within processes, as we will see in the next chapter), there is no
relevance to the order in which the assignments are made within the concurrent area
of the architecture.

In most cases, you will use concurrent signal assignments to describe either
combinational logic (using logic expressions of arbitrary complexity), or you will use
them to describe the connections between lower-level components. In some cases
(though not typically for designs that will be synthesized) you will use concurrent
signal assignments to describe registered logic as well.

The following example includes two simple concurrent signal assignments that
represent NAND and NOR operations:

architecture arch3 of nand_circuit is
 signal A, B: std_logic;
 signal Y1, Y2: std_logic;
begin
 Y1 <= not (A and B);
 Y2 <= not (A or B);
end arch3;

In this example (as in the example presented earlier), there is no significance to the
order in which the two assignments have been made. Also, keep in mind that the two
signals being assigned (Y1 and Y2) could just as easily have been ports of the entity
rather than signals declared in the architecture. In all cases, signals declared locally

http://www.acc-eda.com/vhdlref/refguide/language_...rent_statements/concurrent_signal_assignments.htm (1 of 2) [12/19/2004 12:09:50 PM]

Concurrent Signal Assignments

(within an architecture, for example) can be used in exactly the same ways as can
ports of the corresponding entity. The only difference between ports and locally-
declared signals is that ports have a direction, or mode (in, out or inout), limiting
whether they can have values assigned to them (in the case of in), or whether they
can be read as inputs (in the case of out). If a port is declared as mode out, its value
cannot be read. It can only be assigned a value. A port of mode in is the opposite; it
can be read, but it cannot be assigned a value. A port of mode inout has both
capabilities.

See also

 Selected Signal Assignment
 Delay Specifications

http://www.acc-eda.com/vhdlref/refguide/language_...rent_statements/concurrent_signal_assignments.htm (2 of 2) [12/19/2004 12:09:50 PM]

Component Instantiations

Component Instantiations

Component instantiations are statements that reference lower-level components in
your design, in essence creating unique copies (or instances) of those components. A
component instantiation statement is a concurrent statement, so there is no
significance to the order in which components are referenced. You must, however,
declare any components that you reference in either the declarative area of the
architecture (before the begin statement) or in an external package that is visible to
the architecture.

The following example demonstrates how component instantiations can be written. In
this example, there are two lower-level components (half_adder and full_adder) that
are referenced in component instantiations to create a total of four component
instances. When simulated or synthesized, the four component instances (A0, A1, A2
and A3) will be processed as four independent circuit elements. In this example, we
have declared the two lower-level components half_adder and full_adder right in the
architecture. To make your design descriptions more concise, you may choose to
place component declarations in separate packages instead.

 library ieee;
 use ieee.std_logic_1164.all;
 entity adder4 is
 port(A,B: in std_logic_vector(3 downto 0);
 S: out std_logic_vector(3 downto 0);
 Cout: out std_logic);
 end adder4;

 architecture structure of adder4 is
 component half_adder
 port (A, B: in std_logic; Sum, Carry: out std_logic);
 end component;
 component full_adder
 port (A, B, Cin: in std_logic; Sum, Carry: out std_logic);
 end component;
 signal C: std_logic_vector(0 to 2);
 begin

 A0: half_adder port map(A(0), B(0), S(0), C(0));

http://www.acc-eda.com/vhdlref/refguide/language_...oncurrent_statements/component_instantiations.htm (1 of 2) [12/19/2004 12:09:50 PM]

Component Instantiations

 A1: full_adder port map(A(1), B(1), C(0), S(1), C(1));
 A2: full_adder port map(A(2), B(2), C(1), S(2), C(2));
 A3: full_adder port map(A(3), B(3), C(2), S(3), Cout);

 end structure;

See also

 Port and Generic Mapping

http://www.acc-eda.com/vhdlref/refguide/language_...oncurrent_statements/component_instantiations.htm (2 of 2) [12/19/2004 12:09:50 PM]

Blocks

Blocks

Blocks are the simplest form of design partitioning. They provide an easy way to
segment a large VHDL architecture into multiple self-contained parts. Blocks allow the
logical grouping of statements within an architecture, and provide a place to declare
locally-used signals, constants, and other objects as needed.

VHDL blocks are analogous to sheets in a multi-sheet schematic. They do not
represent re-usable components (unless you re-use them by copying them with your
text editor or by using configurations), but do enhance readability by allowing
declarations of objects to be kept close to where those objects are actually used.

The general form of the block statement is shown below:

architecture my_arch of my_entity is
begin

 BLOCK1: block
 signal a,b: std_logic;
 begin
 -- some local statements here
 end block BLOCK1;

 BLOCK2: block
 signal a,b std_logic;
 begin
 -- some other local statements here
 -- Note that ‘a’ and ‘b’ are unique to this block!
 end block BLOCK2;

end my_arch;

This simple example includes two blocks, named BLOCK1 and BLOCK2, that each
include declarations for local signals. In the first block, BLOCK1, the signals a and b
are declared prior to the begin statement of the block. These signals are therefore
local to block BLOCK1 and are not visible outside of it. The second block, BLOCK2,
also has declarations for local signals named a and b, but these are not the same
signals as those declared in block BLOCK1.

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/blocks.htm (1 of 4) [12/19/2004 12:09:51 PM]

Blocks

This concept of local declarations is important to understand and is probably familiar
to you if you have used high-level programming languages. One of the most important
techniques of structured programming (whether you are describing software or
hardware) is to minimize the overall complexity of your design description by localizing
the declarations as much as is practical. Keeping signals local will make the design
description easier to read, allow it to be modified more easily in the future, and also
enhance design re-use, since it will be easier to copy one portion of the design to
another project or source file.

Nested Blocks
Blocks can be nested, as shown in the following example:

architecture my_arch of my_entity is
begin

 BLOCK1: block
 signal a,b: std_logic;
 begin

 BLOCK2: block
 signal c,d std_logic;
 begin
 -- This block is now local to block BLOCK1 and has
 -- access to ‘a’ and ‘b’
 end block BLOCK2;

 end block BLOCK1;

end my_arch;

In this example, block BLOCK2 has been placed within block BLOCK1. This means
that all declarations made within BLOCK1 (signals a and b, in this example) are
visible both within block BLOCK1 and block BLOCK2. The reverse is not true,
however. The declarations
for c and d within block BLOCK2 are local only to BLOCK2 and are not visible outside
that block.

What happens when the same signals are declared in two blocks that are nested?
Consider the following:

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/blocks.htm (2 of 4) [12/19/2004 12:09:51 PM]

Blocks

architecture my_arch of my_entity is
begin

 BLOCK1: block
 signal a,b: std_logic;
 begin

 BLOCK2: block
 signal a,b std_logic;
 begin
 -- This a and b overrides previous
 end block BLOCK2;

 end block BLOCK1;

end my_arch;

In this example, the signals a and b are declared both in the outer block (BLOCK1)
and in the inner block (BLOCK2). The result is that the signals a and b in the outer
block are hidden (but not replaced or overwritten) by the declarations of a and b in the
inner block.

Note: If you need to access a signal that has been effectively hidden by a declaration
of the same name, you can qualify the signal name with a block name prefix, as in
BLOCK1.a or BLOCK1.b.

Guarded Blocks
Guarded blocks are special forms of block declarations that include an additional
expression known as a guard expression. The guard expression enables or disables
drivers within the block, allowing circuits such as latches and output enables to be
easily described using a dataflow style of VHDL.

The following example shows how a guarded block can be used to described the
operation of a latch:

use ieee.std_logic_1164.all;
entity latch is
 port(D, LE: in std_logic;

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/blocks.htm (3 of 4) [12/19/2004 12:09:51 PM]

Blocks

 Q, QBar: out std_logic);
end latch;

architecture mylatch of latch is
begin

 L1: block (LE = ‘1’)
 begin
 Q <= guarded D after 5 ns;
 QBar <= guarded not(D) after 7 ns;
 end block L1;

end mylatch;

In this example, the guard expression LE = '1' applies to all signal assignments that
include the guarded keyword. (Guard expressions are placed in parentheses after the
block keyword.) The signal assignments for Q and QBar therefore depend on the
value of LE being '1'. When LE is not '1', the guarded signals hold their values.

Note: Guarded blocks are not supported by all synthesis tools, so it is not
recommended that you use them for designs intended for synthesis. Instead, you
should use a process or subprogram to describe the behavior of registered or latched
circuits. The section Sequential Statements discusses a number of ways of describing
register and latch behavior.

See also

 Architecture Keyword
 Partitioning Features

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/blocks.htm (4 of 4) [12/19/2004 12:09:51 PM]

Selected Signal Assignment

Selected Signal Assignment

A selected signal assignment is similar to a conditional signal assignment but differs in
that the input conditions specified have no implied priority. The following is an example
of a selected signal assignment:

entity my_mux is
 port (Sel: in std_logic_vector (0 to 1);
 A, B, C, D: in std_logic_vector (0 to 3);
 Y: out std_logic_vector (0 to 3));
end my_mux;

architecture mux1 of my_mux is
begin

 with Sel select
 Y <= A when "00",
 B when "01",
 C when "10",
 D when others;

end mux1;

In this simple multiplexer example, the selected signal assignment has exactly the
same function as the conditional signal assignment presented earlier. This is not
always the case, however, and you should carefully evaluate which type of
assignment is most appropriate for a given application.

See also

 Conditional Signal Assignment
 Conditional vs. Selected Assignments

http://www.acc-eda.com/vhdlref/refguide/language_ove...concurrent_statements/selected_signal_assignment.htm [12/19/2004 12:09:51 PM]

Delay Specifications

Delay Specifications

VHDL allows signal assignments to include delay specifications, in the form of an after
clause. The after clause allows you to model the behavior of gate and wire delays in a
circuit. This is very useful if you are developing simulation models or if you want to
include estimated delays in your synthesizable design description. The following are
two examples of delay specifications associated with signal assignments:

Y1 <= not (A and B) after 7 ns;

Y2 <= not (A and B) transport after 7 ns;

These two assignments demonstrate the two fundamental types of delay
specifications available in VHDL: inertial and transport.

Inertial delay is intended to model the delay through a gate, in which there is some
minimum pulse length that must be maintained before an event is propogated.

Transport delay, on the other hand, models the delay on a wire, so pulses of any width
are propogated.

For design descriptions intended for synthesis, you will probably not bother to use
delay specifications such as these. A circuit produced as a result of synthesis is
unlikely to have timing characteristics that can be accurately predicted (or specified)
up front. In fact, all synthesis tools in use as of this writing ignore the after clause
completely. (If you have a general idea of the timing characteristics of your synthesis
target—be it an FPGA chip or a high-complexity ASIC—you can use delay
specifications to improve the accuracy of your initial simulation. Just be aware that
anything you annotate prior to synthesis will be little more than a guess.)

When you are writing test benches, you will also probably not use after clauses to
specify timing of input events. Instead, you will likely rely on a series of wait
statements entered within a process to accurately specify your test stimulus.

The IEEE 1076-1993 standard added an additional feature called a reject time. For
inertial delays (the default delay type if transport is not specified), a minimum inertial
pulse time can be specified as follows:

http://www.acc-eda.com/vhdlref/refguide/language_...ew/concurrent_statements/delay_specifications.htm (1 of 2) [12/19/2004 12:09:52 PM]

Delay Specifications

 Y1 <= reject 3 ns not (A and B) after 7 ns;

In this example, any event greater than 3 ns in width will be propagated to the output.
In the absence of a specified reject time, the specified delay time (in this case 7 ns) is
used as the default reject time.

See also

 Signal and Variable Assignments

http://www.acc-eda.com/vhdlref/refguide/language_...ew/concurrent_statements/delay_specifications.htm (2 of 2) [12/19/2004 12:09:52 PM]

Conditional vs. Selected Assignment

Conditional vs. Selected Assignment

How to choose between a conditional assignment and a selected
assignment? Consider this: a conditional assignment always enforces a priority on the
conditions. For example, the conditional expression:

Q1 <= "01" when A = '1' else
 "10" when B = '1' else
 "11" when C = '1' else
 "00";

is identical to the selected assignment:

 with std_logic_vector'(A,B,C) select
 Q2 <= "01" when "100",
 "01" when "101",
 "01" when "110",
 "01" when "111",
 "10" when "010",
 "10" when "011",
 "11" when "001",
 "00" when others;

Notice that input A takes priority. In the conditional assignment, that priority is implied
by the ordering of the expressions. In the selected assignment, you must specify all
possible conditions, so there can be no priority implied.

Why is this important for synthesis? Consider a circuit in which we know in advance
that only one of the three inputs (A, B, or C) could ever be active at the same time. Or
perhaps we don't care what the output of our circuit is under the condition where more
than one input is active. In such cases, we can reduce the amount of logic required for
our design by eliminating the priority implied by the conditional expression. We could
instead write our description as:

with std_logic_vector'(A,B,C) select
 Q2 <= "01" when "100",
 "10" when "010",
 "11" when "001",

http://www.acc-eda.com/vhdlref/refguide/language_...tatements/conditional_vs__selected_assignment.htm (1 of 2) [12/19/2004 12:09:52 PM]

Conditional vs. Selected Assignment

 "00" when others;

This version of the description will, in all likelihood, require less logic to implement
than the earlier version. This kind of optimization can save dramatic amounts of logic
in larger designs.

In summary, while a conditional assignment may be more natural to write, a selected
signal assignment may be preferable to avoid introducing additional, unwanted logic in
your circuit.

Other notes

• You must include all possible conditions in a selected assignment. If not all
conditions are easily specified, you can use the others clause as shown
above to provide a default assignment.
• The selection expressions may include ranges and multiple values. For
example, you could specify ranges for a bit_vector selection expression as
follows:

 with Address select
 CS <= SRAM when 0x"0000" to 0x"7FFF", PORT when
0x"8000" to 0x"81FF",
 UART when 0x"8200" to 0x"83FF",
 PROM when others;

• VHDL `93 adds the following feature to the selected signal assignment:
You can use the keyword unaffected to specify that the output does not
change under one or more conditions. For example, a multiplexer with two
selector inputs could be described as:

 with Sel select
 Y <= A when "00",
 B when "01",
 C when "10",
 unaffected when others;

Synthesis Note: The preceding multiplexer description may result in a latch being
generated from synthesis. This is because the synthesized circuit will have to maintain
the value of the output Y when the value of input Sel is "11".

http://www.acc-eda.com/vhdlref/refguide/language_...tatements/conditional_vs__selected_assignment.htm (2 of 2) [12/19/2004 12:09:52 PM]

Procedure Calls

Procedure Calls

Procedures may be called concurrently within an architecture. When procedures are
called concurrently, they must appear as independent statements within the
concurrent area of the architecture.

You can think of procedures in the same way you think of processes within an
architecture: as independent sequential programs that execute whenever there is a
change (an event) on any of their inputs. The advantage of a procedure over a
process is that the body of the procedure (its sequential statements) can be kept
elsewhere (in a package, for example) and used repeatedly throughout the design.

In the following example, the procedure dff is called within the concurrent area of the
architecture:

architecture shift2 of shift is
 signal D,Qreg: std_logic_vector(0 to 7);
begin

 D <= Data when (Load = ‘1’) else
 Qreg(1 to 7) & Qreg(0);

 dff(Rst, Clk, D, Qreg);

 Q <= Qreg;

end shift2;

http://www.acc-eda.com/vhdlref/refguide/language_overview/concurrent_statements/procedure_calls.htm [12/19/2004 12:09:52 PM]

Generate Statements

Generate Statements

Generate statements are provided as a convenient way to create multiple instances of
concurrent statements, most typically component instantiation statements. There are
two basic varieties of generate statements.

The for-generate statement
The following example shows how you might use a for-generate statement to create
four instances of a lower-level component (in this case a RAM block):
architecture generate_example of my_entity is
 component RAM16X1
 port(A0, A1, A2, A3, WE, D: in std_logic;
 O: out std_logic);
 end component;
begin
 . . .
 RAMGEN: for i in 0 to 3 generate
 RAM: RAM16X1 port map (. . .);
 end generate;
 . . .
end generate_example;

When this generate statement is evaluated, the VHDL compiler will generate four
unique instances of component RAM16X1. Each instance will have a unique name
that is based on the instance label provided (in this case RAM) and the index value.

For-generate statements can be nested, so it is possible to generate multi-
dimensional arrays of component instances or other concurrent statements.

The if-generate statement
The if-generate statement is most useful when you need to conditionally generate a
concurrent statement. A typical example of this occurs when you are generating a
series of repetitive statements or components and need to supply different
parameters, or generate different components, at the beginning or end of the series.
The following example shows how a combination of a for-generate statement and two
if-generate statements can be used to describe a 10-bit parity generator constructed
of cascaded exclusive-OR gates:

http://www.acc-eda.com/vhdlref/refguide/language_...iew/concurrent_statements/generate_statements.htm (1 of 2) [12/19/2004 12:09:53 PM]

Generate Statements

library ieee;
use ieee.std_logic_1164.all;
entity parity10 is
 port(D: in std_logic_vector(0 to 9);
 ODD: out std_logic);
 constant width: integer := 10;
end parity10;

library gates;
use gates.all;

architecture structure of parity10 is
 component xor2
 port(A,B: in std_logic;
 Y: out std_logic);
 end component;
 signal p: std_logic_vector(0 to width - 2);
begin
 G: for I in 0 to (width - 2) generate
 G0: if I = 0 generate
 X0: xor2 port map(A => D(0), B => D(1), Y => p(0));
 end generate G0;
 G1: if I > 0 and I < (width - 2) generate
 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => p(i));
 end generate G1;
 G2: if I = (width - 2) generate
 X0: xor2 port map(A => p(i-1), B => D(i+1), Y => ODD);
 end generate G2;
 end generate G;
end structure;

http://www.acc-eda.com/vhdlref/refguide/language_...iew/concurrent_statements/generate_statements.htm (2 of 2) [12/19/2004 12:09:53 PM]

Concurrent Processes

Concurrent Processes

Process statements contain sequential statements but are themselves concurrent
statements within an architecture. In most VHDL design descriptions, there are
multiple processes that execute concurrently during simulation and describe hardware
that is inherently concurrent in its operation.

In the following example, two processes are used to describe a background clock
(process CLOCK) and a sequence of stimulus inputs in a test bench:

architecture Stim1 of TEST_COUNT4EN is

component COUNT4EN
 port (CLK,RESET,EN : in std_logic;
 COUNT : out std_logic_vector(3 downto 0)
);
end component;

constant CLK_CYCLE : Time := 20 ns;

signal CLK,INIT_RESET,EN : std_logic;
signal COUNT_OUT : std_logic_vector(3 downto 0);

begin
 U0: COUNT4EN port map (CLK=>CLK,RESET=>INIT_RESET,
 EN=>EN, COUNT=>COUNT_OUT);
 process begin
 CLK <= ‘1’;
 wait for CLK_CYCLE/2;
 CLK <= ‘0’;
 wait for CLK_CYCLE/2;
 end process;

 process begin
 INIT_RESET <= ‘0’; EN <= ‘1’;
 wait for CLK_CYCLE/3;
 INIT_RESET <= ‘1’;
 wait for CLK_CYCLE;

http://www.acc-eda.com/vhdlref/refguide/language...w/concurrent_statements/concurrent_processes.htm (1 of 2) [12/19/2004 12:09:53 PM]

Concurrent Processes

 INIT_RESET <= ‘0’;
 wait for CLK_CYCLE*10;
 EN <= ‘0’;
 wait for CLK_CYCLE*3;
 EN <= ‘1’;

 wait;
 end process;
end Stim1;

The interrelationships between multiple processes in a design description can be
complex. They are discussed in the section Sequential Statements. For the purpose of
understanding concurrency, however, you must never assume that any process you
write will be executed in simulation prior to any other process. This means that you
cannot count on signals or shared variables being updated between two processes.

See also

 Process Statement
 Sequential Statements
 Test Benches

http://www.acc-eda.com/vhdlref/refguide/language...w/concurrent_statements/concurrent_processes.htm (2 of 2) [12/19/2004 12:09:53 PM]

The Process Statement

The Process Statement

VHDL's process statement is the primary way you will enter sequential statements. A
process statement, including all declarations and sequential statements within it, is
actually considered to be a single concurrent statement within a VHDL architecture.
This means that you can write as many processes and other concurrent statements as
are necessary to describe your design, without worrying about the order in which the
simulator will process each concurrent statement.

Anatomy of a Process

The general form of a process statement is:

process_name: process (sensitivity_list)
 declarations
begin
 sequential_statements
end process;

The easiest way to think of a VHDL process is to relate it to event-
driven software—like a program that executes (in simulation) any
time there is an event on one of its inputs (as specified in the
sensitivity list). A process describes the sequential execution of
statements that are dependent on one or more events having occurred.
A flip-flop is a perfect example of such a situation. It remains idle,
not changing state, until there is a significant event (either a rising
edge on the clock input or an asynchronous reset event) that causes it
to operate and potentially change its state.

Although there is a definite order of operations within a process
(from top to bottom), you can think of a process as executing in zero
time. This means that a process can be used to describe circuits
functionally, without regard to their actual timing, and multiple
processes can be "executed" in parallel with little or no concern for
which processes complete their operations first.

A process can be thought of as a single concurrent statement written
within a VHDL architecture, extending from the process keyword (or
from the optional process name that precedes it) to the terminating
end process keyword pair and semicolon.

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (1 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

The process name (process_name) appearing before the process
keyword is optional and can be used to: (1) identify specific
processes that are executing during simulation, and (2) more clearly
distinguish elements such as local variables that may have common
names in different processes.

Immediately following the process statement is an optional list of
signals enclosed by parentheses. This list of signals, called the
sensitivity list, specifies the conditions under which the process is to
begin executing. When a sensitivity list is associated with a process,
any change in the value of any input in the list will result in
immediate execution of the process.

In the absence of a sensitivity list, the process will execute
continuously, but must be provided with at least one wait statement
to cause the process to suspend periodically. Examples of processes
that are written with and without sensitivity lists are presented in the
subsections below.

The order in which statements are written in a process is significant.
You can think of a process as a kind of software program that is
executed sequentially, from top to bottom, each time it is invoked
during simulation. Consider, for example, the following process
describing the operation of a counter:

 process(Clk)
 begin
 if Clk = '1' and Clk’event then
 if Load = '1' then
 Q <= Data_in;
 else
 Q <= Q + 1;
 end if;
 end if;
 end process;

When this process is executed, the statements appearing between the
begin and end process statements are executed in sequence. In this
example, the first statement is an if test that will determine if there
was a rising edge on the Clk clock input. A second, nested if test
determines if the counter should be loaded with Data_in or
incremented, depending on the value of the Load input.

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (2 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

When is a process invoked? That depends on the type of process it is.
There are two fundamental types of processes that you can write:
those that have sensitivity lists and those that do not.

Processes With Sensitivity Lists

A process with a sensitivity list is executed during simulation
whenever an event occurs on any of the signals in the sensitivity list.
An event is defined as any change in value of a signal, such as when
a signal of type Boolean changes from True to False, or when the
value of an integer type signal is incremented or otherwise modified.

Processes that include sensitivity lists are most often used to describe
the behavior of circuits that respond to external stimuli. These
circuits, which may be either combinational, sequential (registered),
or a combination of the two, are normally connected with other sub-
circuits or interfaces, via signals, to form a larger system. In a typical
circuit application, such a process will include in its sensitivity list all
inputs that have asynchronous behavior. These inputs may include
clocks, reset signals, or inputs to blocks of combinational logic.

The following is an example of a process that includes a sensitivity
list. This process describes the operation of a clocked shift register
with an asynchronous reset; note the use of the `event signal attribute
to determine which of the two signals (Clk and Rst) had an event:

 process(Rst, Clk)
 begin
 if Rst = '1' then
 Q <= "00000000";
 elsif Clk = '1' and Clk'event then
 if Load = '1' then
 Q <= Data_in;
 else
 Q <= Q(1 to 7) & Q(0);
 end if;
 end if;
 end process;

During simulation, whenever there is an event on either Rst or Clk,
this process statement will execute from the begin statement to the
end process statement pair. If the Rst input is '1' (regardless of
whether the event that triggered the process execution was Rst or

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (3 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

Clk), then the output Q is set to a reset value of "00000000". If the
value of Rst is not '1', then the Clk input is checked to determine if it
has a value of '1' and had an event. This checking for both a value
and an event is a common (and synthesizable) way of detecting
transitions, or edges, on signals such as clocks.

After all of the statements in the process have been analyzed and
executed, the process is suspended until a new event occurs on one of
the process’ sensitivity list entries.

For design descriptions intended for input to synthesis software, you
should follow the above example and write process statements that
include sensitivity lists, as this is the most widely used synthesis
convention for registers.

Processes Without Sensitivity Lists

A process that does not include a sensitivity list executes somewhat
differently than a process with a sensitivity list. Rather than executing
from the begin statement at the top of the process to the end process
statement, a process with no sensitivity list executes from the
beginning of the process to the first occurrence of a wait statement,
then suspends until the condition specified in the wait statement is
satisfied. If the process only includes a single wait statement, the
process re-activates when the condition is satisfied and continues to
the end process statement, then begins executing again from the
beginning. If there are multiple wait statements in the process, the
process executes only until the next wait statement is encountered.

The following example demonstrates how this works, using a
simplified manchester encoder as an example:

 process
 begin
 wait until Clk = '1' and Clk'event;
 M_out <= data_in;
 wait until Clk = '1' and Clk'event;
 M_out <= not data_in;
 end process;

This process will suspend its execution at two points. The first wait
until statement suspends the process until there is a rising edge on the
clock (a transition to a value of '1'). When this rising edge condition

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (4 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

has been met, the process continues execution by assigning the value
of data_in to M_out. Next, the second wait until statement suspends
the process until another rising edge has been detected on Clk. When
this condition has been met, the process continues and assigns the
inverted value of data_in to M_out. The process does not suspend at
the end process statement, but instead loops back to the beginning
and immediately starts processing over again.

The use of multiple wait statements within a process makes it
possible to describe very complex multiple-clock circuits and
systems. Unfortunately, such design descriptions usually fall outside
of the scope of today's synthesis tools. Rather than use multiple wait
statements to describe such logic, you will probably use wait
statements only when describing test stimulus, as discussed later in
this chapter.

Using Processes for Combinational Logic
In the previous chapter, we saw how concurrent signal assignments
can be used to create combinational logic. When you write a
sequence of concurrent signal assignments, each statement that you
write is independent of all other statements and results in a unique
combinational function (unless a guarded block or some other special
feature is used to imply memory).

If you wish, you can use sequential VHDL statements (in the form of
a process or subprogram) to create combinational logic as well.
Sequential VHDL statements can actually be more clear and concise
for many types of combinational functions, as they allow the priority
of operations to be clearly expressed within a combinational logic
function.

The following is an example of a simple combinational logic function
(a 4-into-1 multiplexer) described using a process:

entity simple_mux is
 port (Sel: in bit_vector (0 to 1);
 A, B, C, D: in bit;
 Y: out bit);
end simple_mux;

architecture behavior of simple_mux is

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (5 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

begin
 process(Sel, A, B, C, D)
 begin
 if Sel = "00" then
 Y <= A;
 elsif Sel = "01" then
 Y <= B;
 elsif Sel = "10" then
 Y <= C;
 elsif Sel = "11" then
 Y <= D;
 end if;
 end process;
end simple_mux;

This simple process describes combinational logic because it
conforms to the following rules:

1. The sensitivity list of the process includes all signals that are being read (i.e., used
as inputs) within the process.
2. Assignment statements written for the process outputs (in this case only output Y)
cover all possible combinations of the process inputs (in this case Sel, A, B, C and D).

These two rules dictate whether the signal assignment logic generated
from a process is strictly combinational or will require some form of
memory element (such as a flip-flop or latch).

For processes that include variable declarations, there is an additional
rule that comes into play:

3. All variables used in the process must have a value assigned to them before they
are read (i.e., used as inputs).

An example of when an apparently combinational logic description
actually describes registered logic is demonstrated by the modified (6-
into-1) multiplexer description shown below:

entity simple_mux is
 port (Sel: in bit_vector (0 to 2);
 A, B, C, D, E, F: in bit;
 Y: out bit);
end simple_mux;

architecture behavior of simple_mux is
begin
 process(Sel, A, B, C, D, E, F)

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (6 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

 begin
 if Sel = "000" then
 Y <= A;
 elsif Sel = "001" then
 Y <= B;
 elsif Sel = "010" then
 Y <= C;
 elsif Sel = "011" then
 Y <= D;
 elsif Sel = "100" then
 Y <= E;
 elsif Sel = "101" then
 Y <= F;
 end if;
 end process;
end simple_mux;

This modified version of the multiplexer has only six of the eight
possible values for Sel described in the if-then-elsif statement chain.
What happens when Sel has a value of "110" or "111"? Unlike
many simpler hardware description languages (most notably
languages such as ABEL or CUPL that are intended for
programmable logic use), the default behavior in VHDL is to hold the
values of unspecified signals. For output Y to hold its value when Sel
has a value of "110" or "111", a memory element (such as a latch)
will be required. The result is that the circuit as described is no longer
a simple combinational logic function.

Understanding what types of design descriptions will result in
combinational logic and what types will result in latches and flip-
flops is very important when writing VHDL for synthesis. For more
information, see Appendix A, Getting The Most Out Of Synthesis.

Using Processes for Registered Logic
Perhaps the most common use of VHDL processes is to describe the
behavior of circuits that have memory and must save their state over
time. The sequential nature of VHDL processes (and subprograms)
make them ideal for the description of such circuits.

In the previous section we listed three rules that must be obeyed in
order to ensure that the circuitry described by a process is
combinational. If your goal is to create registered logic (using either

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (7 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

flip-flop or latch elements), then you will describe your design using
one or more of the following methods:

1. Write a process that does not include all of its inputs in the sensitivity list.
2. Use incompletely specified if-then-elsif logic to imply that one or more signals
must hold their values under certain conditions.
3. Use one or more variables in such a way that they must hold a value between
iterations of the process. (For example, specify a variable as an input to an
assignment before that variable has been assigned a value itself.)

To ensure the highest level of compatibility with synthesis tools, you
should use a combination of methods 1 and 2. The following example
demonstrates how registered logic (the shift register presented in
Chapter 2, A First Look At VHDL) can be described using a process:

-- Eight-bit shifter
--
library ieee;
use ieee.std_logic_1164.all;
entity rotate is
 port(Clk, Rst, Load: in std_logic;
 Data: in std_logic_vector(0 to 7);
 Q: out std_logic_vector(0 to 7));
end rotate;

architecture rotate1 of rotate is
 signal Qreg: std_logic_vector(0 to 7);
begin
 reg: process(Rst,Clk)
 begin
 if Rst = ‘1’ then -- Async reset
 Qreg <= "00000000";
 elsif (Clk = ‘1’ and Clk’event) then
 if (Load = ‘1’) then
 Qreg <= Data;
 else
 Qreg <= Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 end process;
 Q <= Qreg;
end rotate1;

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (8 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

In this example, the incomplete if-then statement implies that signal
Qreg will hold its value when the two conditions (a reset or clock
event) are false.

For a detailed explanation of this example, see Chapter 2, A First
Look At VHDL.

Using Processes for State Machines
State machines are a common form of sequential logic circuits that
are used for generating or detecting sequences of events. To describe
a synthesizable state machine in VHDL, you should follow a well-
established coding convention that makes use of enumerated types
and processes. The following example demonstrates how to write a
synthesizable state machine description using this coding convention.

The circuit, a video frame grabber controller, was first described (in
the form of an ABEL language description) in Practical Design
Using Programmable Logic by David Pellerin and Michael Holley
(Prentice Hall, 1990).

The circuit described is a simple freeze-frame unit that grabs and
holds a single frame of NTSC color video image. This design
description includes the frame detection and capture logic. The
complete circuit requires an 8-bit D-A/A-D converter and a 256K X 8
static RAM.

The design description makes use of a number of independent
processes. The first process (which has been given the name of
ADDRCTR), describes a large counter corresponding to the frame
address counter in the circuit. This counter description makes use of
the IEEE Standard 1076.3 numeric data type unsigned.

The second process, SYNCCTR, also describes a counter using the
unsigned data type. This counter is used to detect the vertical
blanking interval, which indicates the start of one frame of video.

The third and fourth processes (STREG and STTRANS) describe
the operation of the video frame grabber controller logic, using the
most common (and most easily synthesized) form for state machines.
First, an enumerated type called states is declared that consists of the
values StateLive, StateWait, StateSample, and StateDisplay. Two

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (9 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

intermediate signals (current_state and next_state) are then
introduced to represent the current state and calculated next state of
the machine. In the processes that follow, signal current_state
represents a set of state registers, while next_state represents a
combinational logic function.

The diagram of Figure 6-1 illustrates the operation of the video frame
grabber controller:

Process STREG describes the operation of the state registers, and
simply loads the value of the calculated next state (signal next_state)
into the state registers (current_state) whenever there is a
synchronous clock event. This process also includes asynchronous
reset logic that will set the machine to its initial state (StateLive)
when the Rst input is asserted.

The actual transition logic for the state machine is described in
process STTRANS. In this process, a case statement is used to
decode the current state of the machine (as represented by signal
current_state) and define the transitions between states. This is an
example where sequential VHDL statements are used to describe non-
sequential (combinational) logic.

-- A Video Frame Grabber.
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity video is
 port (Reset, Clk: in std_logic;
 Mode: in std_logic;
 Data: in std_logic_vector(7 downto 0);
 TestLoad: in std_logic;
 Addr: out std_logic_vector(17 downto 0);
 RAMWE: out std_logic;
 RAMOE: out std_logic;
 ADOE: out std_logic);
end video;

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (10 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

architecture control1 of video is
 constant FRAMESIZE: integer := 253243;
 constant TESTADDR: integer := 253000;

 signal ENDFR: std_logic;
 signal INCAD: std_logic;
 signal VS: std_logic;
 signal Sync: unsigned (6 downto 0);
begin

 -- Address counter. This counter increments until we reach the end
of
 -- the frame (address 253243), or until the input INCAD goes low.

 ADDRCTR: process(Clk)
 variable cnt: unsigned (17 downto 0);
 begin
 if rising_edge(Clk) then
 if TestLoad = ‘1’ then
 cnt := to_unsigned(TESTADDR,18);
 ENDFR <= ‘0’;
 else
 if INCAD = ‘0’ or cnt = FRAMESIZE then
 cnt := to_unsigned(0,18);
 else
 cnt := cnt + to_unsigned(1,18);
 end if;
 if cnt = FRAMESIZE then
 ENDFR <= ‘1’;
 else
 ENDFR <= ‘0’;
 end if;
 end if;
 end if;
 Addr <= std_logic_vector(cnt);
 end process;

 -- Vertical sync detector. Here we look for 128 bits of zero, which
 -- indicates the vertical sync blanking interval.
 SYNCCTR: process(Reset,Clk)
 begin
 if Reset = ‘1’ then
 Sync <= to_unsigned(0,7);
 elsif rising_edge(Clk) then

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (11 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

 if Data /= "00000000" or Sync = 127 then
 Sync <= to_unsigned(0,7);
 else
 Sync <= Sync + to_unsigned(1,7);
 end if;
 end if;
 end process;

 VS <= ‘1’ when Sync = 127 else ‘0’;

 STATEMACHINE: block
 type states is (StateLive,StateWait,StateSample,StateDisplay);
 signal current_state, next_state: states;
 begin
 -- State register process:
 STREG: process(Reset,Clk)
 begin
 if Reset = ‘1’ then
 current_state <= StateLive;
 elsif rising_edge(Clk) then
 current_state <= next_state;
 end if;
 end process;

 -- State transitions:
 STTRANS: process(current_state,Mode,VS,ENDFR)
 begin
 case current_state is
 when StateLive => -- Display live video on the output
 RAMWE <= ‘1’;
 RAMOE <= ‘1’;
 ADOE <= ‘0’;
 INCAD <= ‘0’;
 if Mode = ‘1’ then
 next_state <= StateWait;
 else
 next_state <= StateLive
 end if;
 when StateWait => -- Wait for vertical sync
 RAMWE <= ‘1’;
 RAMOE <= ‘1’;
 ADOE <= ‘0’;
 INCAD <= ‘0’;
 if VS = ‘1’ then
 next_state <= StateSample;

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (12 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

 else
 next_state <= StateWait
 end if;
 when StateSample => -- Sample one frame of video
 RAMWE <= ‘0’;
 RAMOE <= ‘1’;
 ADOE <= ‘0’;
 INCAD <= ‘1’;
 if ENDFR = ‘1’ then
 next_state <= StateDisplay;
 else
 next_state <= StateSample
 end if;
 when StateDisplay => -- Display the stored frame
 RAMWE <= ‘1’;
 RAMOE <= ‘0’;
 ADOE <= ‘1’;
 INCAD <= ‘1’;
 if Mode = ‘1’ then
 next_state <= StateLive;
 else
 next_state <= StateDisplay
 end if;
 end case;
 end process;
 end block;
end control1;

Specifying State Machine Encodings
We have described the preceding video frame grabber in an
implementation-independent fashion, with the assumption that
whatever synthesis tool we use to process this design will come up
with an optimal solution, in terms of the state encodings selected.
For small designs such as this, or when you are not tightly
constrained for space, it is probably fine to let the synthesis tool
encode your states for you. In many cases, however, you will have to
roll up your sleeves and work on improving the synthesis results
yourself, by creating your own optimizal state encodings.
Determining an optimal encoding for a large state machine can be a
long and tedious process, the methods for which are beyond the scope
of this book. It is important to understand the various coding styles
for manually-encoded machines, however, to get the most out of

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (13 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

synthesis.

Using Constants for State Encodings

The easiest way to specify an explicit encoding for a state machine is
to replace the declaration and use of an enumerated type with a series
of constant declarations. For the video frame grabber, for example,
we could replace the declarations:

 type states is (StateLive,StateWait,StateSample,StateDisplay);
 signal current_state, next_state: states;

with:

 type states is std_logic_vector(1 downto 0);
 constant StateLive: states := "00";
 constant StateWait: states := "01";
 constant StateSample: states := "11";
 constant StateDisplay: states := "10";
 signal current_state, next_state: states;

Using these declarations will result in the precise encodings that we
have specified in the synthesized circuit. There is one additional
modification we will have to make to our frame grabber state
machine if we specify the states using declarations based on
std_logic_vector, however. Because the base type of
std_logic_vector (std_logic) has nine unique values, the four
constants that we have declared (StateLive, StateWait, StateSample
and StateDisplay) do not represent all possible values for the state
type. For this reason, we will have to add an others clause to the case
statement describing the transitions of our machine, as in:

 when others =>
 null;

Using the Enum_encoding Synthesis Attribute

An alternate method of specifying state machine encodings is
provided in some synthesis tools, inluding Synopsys, Exemplar, and
Metamor. This method makes use of a non-standard (but widely
supported) attribute called enum_encoding. The following modified
declarations (again, using the video frame grabber state machine as
an example) uses the enum_encoding attribute to specify the same

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (14 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

state encoding used in the previous example:

 type states is (StateLive,StateWait,StateSample,StateDisplay);
 attribute enum_encoding of states: type is "00 01 11 10";
 signal current_state, next_state: states;

The enum_encoding attribute used in this example has been defined
elsewhere (most probably in a special library package provided by
the synthesis vendor) as a string:

 attribute enum_encoding: string;

This attribute is recognized by the synthesis tool, which encodes the
generated state machine circuitry accordingly. During simulation, the
enum_encoding attribute is ignored, and we will instead see the
enumerated values displayed.

Specifying a One-hot Encoding

One common technique for optimizing state machine logic is to use
what is called a one-hot encoding, in which there is one register
dedicated to each state in the machine. One-hot machines require
more register resources than more typical, maximally-encoded
machines, but can result in tremendous savings in the combinational
logic required for next-state and output decoding. This trade-off can
be particularly effective in device technologies that have an
abundance of built-in registers, but that suffer from limited (or
relatively slow) routing resources.

When you first try to use a one-hot approach to state encoding, it is
tempting to describe the machine using the same methods that you
might have used for your other state machines. The following
declarations represent an attempt to encode our video frame grabber
state machine one-hot using constant declarations:

 type states is std_logic_vector(3 downto 0);
 constant StateLive: states := "0001";
 constant StateWait: states := "0010";
 constant StateSample: states := "0100";
 constant StateDisplay: states := "1000";
 signal current_state, next_state: states;

At first glance this looks correct; each state is represented by a single
bit being asserted, and when simulated and synthesized, the machine

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (15 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

will indeed transition to the appropriate encoded state for each
transition described in the case statement shown earlier. In terms of
the logic required for state decoding, however, we have not achieved
a genuine one-hot machine. This is because the case statement we
have written describing the state transitions implicitly refers to all
four state registers when decoding the current state of the machine. A
true, optimal one-hot machine only requires that one register be
observed to determine if the machine is in a given state.

To generate the correct logic, optimized as a one-hot encoded
machine, we have to modify the description somewhat, so that only
one state register is examined for each possible transition. The easiest
way to do this is to replace the case statement with a series of if
statements, as follows:.

 -- State transitions for one-hot encoding:
 STTRANS: process(current_state,Mode,VS,ENDFR)
 begin
 if current_state(0) = ‘1’ then -- StateLive
 RAMWE <= ‘1’;
 RAMOE <= ‘1’;
 ADOE <= ‘0’;
 INCAD <= ‘0’;
 if Mode = ‘1’ then
 next_state <= StateWait;
 else
 next_state <= StateLive
 end if;
 end if;
 if current_state(1) = ‘1’ then -- StateWait
 RAMWE <= ‘1’;
 RAMOE <= ‘1’;
 ADOE <= ‘0’;
 INCAD <= ‘0’;
 if VS = ‘1’ then
 next_state <= StateSample;
 else
 next_state <= StateWait
 end if;
 end if;
 if current_state(2) = ‘1’ then -- StateSample
 RAMWE <= ‘0’;
 RAMOE <= ‘1’;
 ADOE <= ‘0’;

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (16 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

 INCAD <= ‘1’;
 if ENDFR = ‘1’ then
 next_state <= StateDisplay;
 else
 next_state <= StateSample
 end if;
 end if;
 if current_state(3) = ‘1’ then -- StateDisplay
 RAMWE <= ‘1’;
 RAMOE <= ‘0’;
 ADOE <= ‘1’;
 INCAD <= ‘1’;
 if Mode = ‘1’ then
 next_state <= StateLive;
 else
 next_state <= StateDisplay
 end if;
 end if;
 end process;

We could, of course, make this description more readable by
introducing constants for the index values for each state register.

Using Processes for Test Stimulus
In addition to their use for describing combinational and registered
circuits to be synthesized or modeled for simulation, VHDL
processes are also important for describing the test environment in
the form of sequential application of stimulus and (if desired)
checking of resulting circuit outputs.

A process that is intended for testing (as part of a test bench) will
normally have no sensitivity list. Instead, it will have a series of wait
statements that provide time for the unit under test to stabilize
between the assignment of test inputs. Because a process intended for
use as a test bench does not describe hardware to be synthesized, you
are free to use any legal features and style of VHDL without regard
to the limitations of synthesis.

The following is a simplistic test bench example written with a single
process statement. This process statement might be used to apply a
sequence of input values to a lower-level circuit and check the state
of that circuit's outputs at various points in time.

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (17 of 18) [12/19/2004 12:09:56 PM]

The Process Statement

 -- A simple process to apply various stimulus over time...
 process
 constant PERIOD: time := 40 ns;
 begin
 Rst <= '1';
 A <= "00000000";
 B <= "00000000";
 wait for PERIOD;
 CheckState(Q, "00000000");
 Rst <= '0';
 A <= "10101010";
 B <= "01010101";
 wait for PERIOD * 4;
 CheckState(Q, "11111111");
 A <= "11111010";
 B <= "01011111";
 wait for PERIOD * 2;
 CheckState(Q, "00110101");
 wait;
 end process;

In this example, the process executes just once before suspending
indefinitely (as indicated by the final wait statement). The stimulus is
described by a sequence of assignments to signals A and B, and by
calls to a procedure (defined elsewhere) named CheckState. Wait
statements are used to describe a delay between each test sequence.

More comprehensive examples of using processes for test stimulus
can be found in Chapter 9, Writing Test Benches.

http://www.acc-eda.com/vhdlref/refguide/language.../sequential_statements/the_process_statement.htm (18 of 18) [12/19/2004 12:09:56 PM]

Port and Generic Mapping

Port and Generic Mapping
The mapping of ports in a component can be described in one of two ways. The
simplest method (and the method used in the preceding example) is called positional
association. Positional association simply maps signals in the architecture (the
actuals) to corresponding ports in the lower-level entity declaration (the formals) by
their position in the port list. When using positional association, you must provide
exactly the same number and types of ports as are declared for the lower-level entity.

Positional association is quick and easy to use, and it is tempting to use this method
almost exclusively. However, there are potential problems with positional association.
The most troublesome problem is the lack of error checking. It is quite easy, for
example, to inadvertently reverse the order of two ports in the list. The result is a
circuit that may compile with no errors, but fail to simulate properly. After the first few
times you accidentally swap the reset and clock lines to one of your lower-level
components, you may decide that it is worth the extra typing to provide a more
complete specification of your port mappings. The method you will use in this case is
called named association.

Named association is an alternate form of port mapping that includes both the actual
and formal port names in the port map of a component instantiation. (Named
association can also be used in other places, such as in the parameter lists for
generics and subprograms.)

We could modify the previous 4-bit adder example to use named association as
follows:

architecture structure of adder4 is
 component half_adder
 port (A, B: in std_logic; Sum, Carry: out std_logic);
 end component;
 component full_adder
 port (A, B, Cin: in std_logic; Sum, Carry: out std_logic);
 end component;
 signal C: std_logic_vector(0 to 2);
begin

 A0: half_adder port map(A => A(0), B => B(0), Sum => S(0), Carry => C(0));
 A1: full_adder port map(A => A(1), B => B(1), Cin => C(0), Sum => S(1), Carry

http://www.acc-eda.com/vhdlref/refguide/language...ncurrent_statements/port_and_generic_mapping.htm (1 of 3) [12/19/2004 12:09:56 PM]

Port and Generic Mapping

=> C(1));
 A2: full_adder port map(A => A(2), B => B(2), Cin => C(1), Sum => S(2), Carry
=> C(2));
 A3: full_adder port map(A => A(3), B => B(3), Cin => C(2), Sum => S(3), Carry
=> Cout);

end structure;

When you specify port mappings using named association, lower-level names (the
formal ports of the component) are written on the left side of the => operator, while the
top-level names (the actuals) are written on the right.

The benefits of named association go beyond simple error checking. Because named
association removes the requirement for any particular order of the ports, you can
enter them in whatever order you want. You can even leave one or more ports
unconnected if you have provided default values in the lower-level component
specification.

Because named association is so much more flexible (and less error prone) than
positional association, we strongly recommend that you get in the habit of typing in the
few extra characters required to use named association.

Generic Mapping
If the lower-level entity being referenced includes generics (described in more detail in
Chapter 8, Partitioning Your Design), you can specify a generic map in addition to the
port map to pass actual generic parameters to the lower-level entity:

architecture timing of adder4 is
 component half_adder
 port (A, B: in std_logic; Sum, Carry: out std_logic);
 end component;
 component full_adder
 port (A, B, Cin: in std_logic; Sum, Carry: out std_logic);
 end component;
 signal C: std_logic_vector(0 to 2);
 begin

 A0: half_adder
 generic map(tRise => 1 ns, tFall => 1 ns);
 port map(A => A(0), B => B(0), Sum => S(0), Carry => C(0)); A1:

http://www.acc-eda.com/vhdlref/refguide/language...ncurrent_statements/port_and_generic_mapping.htm (2 of 3) [12/19/2004 12:09:56 PM]

Port and Generic Mapping

full_adder
 generic map(tRise => 1 ns, tFall => 1 ns);
 port map(A => A(1), B => B(1), Cin => C(0), Sum => S(1), Carry => C(1));
 A2: full_adder
 generic map(tRise => 1 ns, tFall => 1 ns);
 port map(A => A(2), B => B(2), Cin => C(1), Sum => S(2), Carry => C(2));
 A3: full_adder
 generic map(tRise => 1 ns, tFall => 1 ns);
 port map(A => A(3), B => B(3), Cin => C(2), Sum => S(3), Carry => Cout);

 end timing;

Just as with port maps, generic maps can be written using either positional or named
association.

Note: The rules of VHDL allow you to mix positional and named association in the
same port, generic or parameter list. Doing so has little or no benefit, however, and it
may confuse other potential users of your design description.

http://www.acc-eda.com/vhdlref/refguide/language...ncurrent_statements/port_and_generic_mapping.htm (3 of 3) [12/19/2004 12:09:56 PM]

Signal Drivers

Signal Drivers

VHDL includes an elaborate set of rules and language features to resolve situations in
which the same signal is driven to multiple values simultaneously. These situations
can be caused unintentionally (by an incomplete or incorrect design specification), or
they may represent a desired circuit condition, such as a three-state driver connected
to a bus, or they may represent a simple output enable used in a loadable bi-
directional register.

To handle such situations, VHDL introduces the concept of a signal driver. A signal
driver is a conceptual circuit that is created for every signal assignment in your circuit.
By default, this conceptual circuit provides a comparison function to ensure that only
one driver is active at any given time. The following architecture demonstrates a circuit
description that does not meet this requirement:

architecture arch4 of nand_circuit is
 signal Sel, A, B: std_logic;
 signal Y: std_logic;
begin
 Y <= not (A and B) and Sel;
 Y <= not (A or B) and not Sel;
end arch4;

The intent of this circuit is to provide a single output (Y) that functions either as a
NAND gate or as a NOR gate based on the value of Sel. Unfortunately, each of the
two assignments results in a driver being created, resulting in a multiple-driver
situation.

The solution to this, of course, is to completely specify the output Y using only one
signal assignment, as in the following:

architecture arch4 of nand_circuit is
 signal Sel, A, B: std_logic;
 signal Y,Y1,Y2: std_logic;
begin
 Y1 <= not (A and B);
 Y2 <= not (A or B);
 Y <= Y1 and Sel or Y2 and not Sel;

http://www.acc-eda.com/vhdlref/refguide/language_overview/concurrent_statements/signal_drivers.htm (1 of 2) [12/19/2004 12:09:57 PM]

Signal Drivers

end arch4;

In this example, two intermediate signals have been introduced (Y1 and Y2) and the
output Y has been more completely described as a function of these two values.
Another method might be to simply combine the three assignments into a larger
combinational expression (not (A and B) and Sel or not (A or B) and not Sel) or to
use a more concise statement such as a conditional assignment:

architecture arch5 of nand_circuit is
 signal Sel, A, B: std_logic;
 signal Y,Y1,Y2: std_logic;
begin
 Y <= not (A and B) when Sel = '1' else
 not (A or B);
end arch5;

Of course, these simple examples only show how you might resolve multiple driver
situations that have been inadvertently created. You will find that VHDL's signal driver
rules can actually help to detect and correct errors in your design that might otherwise
go unnoticed. For situations that are intentional, however, how can you get around the
rules? The answer is a feature of VHDL called a resolution function. A resolution
function is a special type of function that you (or someone else, such as the IEEE
committee that defined the resolved type std_logic) can write to resolve multiple-
driver situations for a specific type. For example, the resolution function for a four-
value data type consisting of the values '1', '0', 'X' (unknown) and 'Z' (high impedance)
might have a resolution function that specifies:

1) that simultaneous values of '1' and '0' appearing on a signal's drivers will
result in an 'X' value,
2) that both 'Z' and 'X' can be over-ridden by values of '1' or '0', and
3) that 'Z' is over-ridden by 'X'.

The section Objects, Data Types and Operators includes an example of a resolution
function. That section also describes the concepts of signal drivers, resolved types
and resolution functions in more detail. For most design descriptions and test
benches, however, you will not need to use resolved types such as these. (In many
synthesis tools, resolution functions are not supported anyway. They serve only to let
the compiler know whether multiple drivers are allowed for an output.)

http://www.acc-eda.com/vhdlref/refguide/language_overview/concurrent_statements/signal_drivers.htm (2 of 2) [12/19/2004 12:09:57 PM]

Signal and Variable Assignments

Signal and Variable Assignments

One important aspect of VHDL you should clearly understand is the relationship
between sequential statements (in a process or subprogram) and the scheduling of
signal and variable assignments. Signals within processes have fundamentally
different behavior from variables. Variables are assigned new values immediately,
while signal assignments are scheduled and do not occur until the current process (or
subprogram) has been suspended. When you describe complex logic using sequential
assignments, you must carefully consider which type of object (signal or variable) is
appropriate for that part of your design.

Let's look at an example where signal assignments would be appropriate. In this
example, an 8-bit serial cyclic-redundancy-check (CRC) generator, signals are
required because we are attempting to construct a chain of registers. Each register in
the chain is clocked from a common source, and data moves from one register to the
next only when there is an event on Clk. We might describe the data as being
"scheduled."

-- 8-bit Serial CRC Generator.
--
library ieee;
use ieee.std_logic_1164.all;

entity crc8s is
 port (Clk,Set, Din: in std_logic;
 CRC_Sum: out std_logic_vector(15 downto 0));
end crc8s;

architecture behavior of crc8s is
 signal X: std_logic_vector(15 downto 0);
begin
 process(Clk,Set)
 begin
 if Set = '1' then
 X <= "1111111111111111";
 elsif rising_edge(Clk) then
 X(0) <= Din xor X(15);

http://www.acc-eda.com/vhdlref/refguide/language_...al_statements/signal_and_variable_assignments.htm (1 of 3) [12/19/2004 12:09:58 PM]

Signal and Variable Assignments

 X(1) <= X(0);
 X(2) <= X(1);
 X(3) <= X(2);
 X(4) <= X(3);
 X(5) <= X(4) xor Din xor X(15);
 X(6) <= X(5);
 X(7) <= X(6);
 X(8) <= X(7);
 X(9) <= X(8);
 X(10) <= X(9);
 X(11) <= X(10);
 X(12) <= X(11) xor Din xor X(15);
 X(13) <= X(12);
 X(14) <= X(13);
 X(15) <= X(14);
 end if;
 end process;
 CRC_Sum <= X;
end behavior;

Because the data moving from register to register is scheduled, this example would
not work if X was described using a variable instead of a signal. If a variable was
substituted for X, the assignments for each stage of the CRC generation would be
immediate and thus would not describe a chain of registers.

Note also that the assignment of X to CRC_Sum must be placed outside the process.
If we were to write the assignment to CRC_Sum within the process, as in:

 . . .
 X(14) <= X(13);
 X(15) <= X(14);
 end if;

 CRC_Sum <= X;

 end process;

end behavior;

the result would not be what we intend. This is because the assignment of CRC_Sum

http://www.acc-eda.com/vhdlref/refguide/language_...al_statements/signal_and_variable_assignments.htm (2 of 3) [12/19/2004 12:09:58 PM]

Signal and Variable Assignments

will be subject to the execution and signal assignment rules of a process. In this case,
the assignment of a final value to X will be delayed until the process suspends, and
CRC_Sum will not be updated until the next time the process executes. (As it turns
out, the next time the process executes may well be on the falling edge of the clock,
meaning that CRC_Sum would be delayed by half a clock cycle.)

http://www.acc-eda.com/vhdlref/refguide/language_...al_statements/signal_and_variable_assignments.htm (3 of 3) [12/19/2004 12:09:58 PM]

Sequential Statements in Subprograms

Sequential Statements in Subprograms

We've seen examples of how sequential statements are written in a process
statement. The process statement is relatively easy to understand if you think of it as a
small software program that executes independent of other processes and concurrent
statements during simulation.

Functions and procedures (which are collectively called subprograms) are very similar
to processes in that they contain sequential statements executed as independent
'programs' during simulation. The parameters you pass into a subprogram are
analogous to the sensitivity list of a process; whenever there is an event on any object
(signal or variable) being passed as an argument to a subprogram, that subprogram is
executed and its outputs (whether they are output parameters, in the case of a
procedure, or the return value, in the case of a function) are recalculated.

The following example includes a procedure declared within the architecture. The
procedure counts the number of ones and zeroes there are in a std_logic_vector
input (of arbitrary width) and returns the count values as output parameters. The
procedure is used to build two result strings containing the appropriate number of
ones and zeroes, left justified and padded with 'X' values. (For example, an input with
the values "1010001001" would result in the values "1111XXXXXX" and
"000000XXXX".)

entity proc is
 port (Clk: in std_logic;
 Rst: in std_logic;
 InVector: in std_logic_vector(0 to 9);
 OutOnes: out std_logic_vector(0 to 9);
 OutZeroes: out std_logic_vector(0 to 9));
end proc;

architecture behavior of proc is

 procedure CountBits(InVector: in std_logic_vector;
 ones,zeroes: out natural) is
 variable cnt1: natural := 0;
 variable cnt0: natural := 0;
 begin

http://www.acc-eda.com/vhdlref/refguide/language...tements/sequential_statements_in_subprograms.htm (1 of 3) [12/19/2004 12:09:58 PM]

Sequential Statements in Subprograms

 for I in 0 to InVector'right loop
 case InVector(I) is
 when '1' => cnt1 := cnt1 + 1;
 when '0' => cnt0 := cnt0 + 1;
 when others => null;
 end case;
 end loop;
 ones := cnt1;
 zeroes := cnt0;
 end CountBits;

 signal Tmp1, Tmp0: std_logic_vector(0 to 9);
begin

 process(Rst, Clk)
 begin
 if Rst = '1' then
 OutOnes <= (others => '0');
 OutZeroes <= (others => '0');
 elsif rising_edge(Clk) then
 OutOnes <= Tmp1;
 OutZeroes <= Tmp0;
 end if;
 end process;

 process(InVector)
 variable ones, zeroes: natural;
 begin
 Countbits(InVector,ones,zeroes);
 Tmp0 <= (others => 'X');
 Tmp1 <= (others => 'X');
 for I in 0 to ones - 1 loop
 Tmp1(I) <= '1';
 end loop;
 for I in 0 to zeroes - 1 loop
 Tmp0(I) <= '0';
 end loop;
 end process;

end behavior;

http://www.acc-eda.com/vhdlref/refguide/language...tements/sequential_statements_in_subprograms.htm (2 of 3) [12/19/2004 12:09:58 PM]

Sequential Statements in Subprograms

This example shows that a procedure containing sequential statements can be
invoked from within a process—or even from within another procedure. The calling
process simply suspends until the procedure has completed execution.

Note: This example is theoretically synthesizable, but the fact that the procedure has
been written without regard to the width of the inputs will probably make it impossible
to process by synthesis tools. If this design were to be synthesized, the variables cnt1
and cnt0 would have to be given range constraints.

http://www.acc-eda.com/vhdlref/refguide/language...tements/sequential_statements_in_subprograms.htm (3 of 3) [12/19/2004 12:09:58 PM]

If-Then-Else Statements

If-Then-Else Statements

VHDL includes a variety of control statements that can be used to describe
combinational functions, indicate priorities of operations, and specify other high-level
behavior.

The if-then-else construct is the most common form of control statement in VHDL.
The general form of the if-then-else construct is:

 if first_condition then
 statements
 elsif second_condition then
 statements
 else
 statements
 end if;

The conditions specified in an if-then-else construct must evaluate to a Boolean type.
This means that the following example is incorrect:

procedure Mux(signal A, B, S: in std_logic; signal O: out std_logic) is
begin
 if S then -- Error: S is not Boolean!
 O <= B;
 else
 O <= A;
 end if;
end Mux;

Instead, this example must be modified so that the if statement condition evaluates to
a Boolean expression:

 if S = '1' then -- Now it will work...
 O <= B;
 else
 O <= A;
 end if;
 end Mux;

http://www.acc-eda.com/vhdlref/refguide/language_...sequential_statements/if_then_else_statements.htm (1 of 2) [12/19/2004 12:09:59 PM]

If-Then-Else Statements

The statement parts of an if-then-else construct can contain any sequential VHDL
statements, including other if-then-else statement constructs. This means that you
can nest multiple levels of if-then-else statements, in the following form:

 if outer_condition then
 statements
 else
 if inner_condition then
 statements
 end if;
 end if;

See also

 Case Statement

http://www.acc-eda.com/vhdlref/refguide/language_...sequential_statements/if_then_else_statements.htm (2 of 2) [12/19/2004 12:09:59 PM]

Case Statements

Case Statements

Case statements are a type of control statement that can be used as alternatives to if-
then-else constructs. Case statements have the following general form:

 case control_expression is
 when test_expression1 =>
 statements
 when test_expression2 =>
 statements
 when others =>
 statements
 end case;

The test expressions of a case statement must be mutually exclusive, meaning that
no two test expressions are allowed to be true at the same time. Case statements
must also include all possible conditions of the control expression. (The others
expression can be used to guarantee that all conditions are covered.)

The primary difference between descriptions written using case statements from those
written using if-then-else statements is that if-then-else statements imply a priority of
conditions, while a case statement does not imply any priority. (This is similar to the
difference between the conditional and selected assignments described in the section
Concurrent Statements.)

See also

 If-Then-Else Statements
 Sequential Statements

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/case_statements.htm [12/19/2004 12:09:59 PM]

Loops

Loops

Loop statements are a catagory of control structures that allow you to specify
repeating sequences of behavior in a circuit. There are three primary types of loops in
VHDL: for loops, while loops, and infinite loops.

 For Loop
 While Loop
 Infinite Loop
 Loop Termination

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/loops.htm [12/19/2004 12:09:59 PM]

Design Libraries

Design Libraries

A design library is defined in the VHDL 1076 standard as "an implementation-
dependent storage facility for previously analyzed design units". This rather loose
definition has resulted in many different implementations in synthesis and simulation
tools. In general, however, you will find that design libraries are used to collect
commonly-used design units (typically packages and package bodies) into uniquely-
named areas that can be referenced from multiple source files in your design.

In a typical simulation environment, you will specify to the simulator the library into
which you want each design unit compiled (or analyzed, to use the terminology of the
VHDL standard). If you do not specify a library, the design units are compiled into a
default library named work.

For simple design descriptions (such as those that are completely represented within
a single source file), you will use the work library exclusively and will not have to put
much thought into how libraries are implemented in the set of tools you are using.
When you use the work library exclusively, all you need to do is specify a use
statement such as:
use work.my_package.all;

prior to each entity declaration in your design for each package that you have
declared in your source file. (You do not have to place use statements prior to an
architecture declaration if the corresponding entity declaration is preceded by a use
statement.)

If, however, you choose to use named libraries in your designs (and you are
encouraged to do so, as it can dramatically improve your design productivity), then
you should follow a few simple rules to avoid compatibility problems when moving
between different simulation and synthesis environments. First, you should not use the
work library to contain packages that are shared between design units located in
different source files. Although some simulation environments allow previously-
compiled contents of the work library to be accessed at any time (such as during the
separate compilation of a source file), this is not actually defined by the VHDL
standard and may not work in other simulation and synthesis environments.

Some synthesis and simulation tools actually define the work library to be only those
design units that are included in the source file currently being compiled. This is a

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/design_libraries.htm (1 of 2) [12/19/2004 12:10:00 PM]

Design Libraries

simple rule of usage and is the recommended use of work.

To keep your use of libraries as simple as possible, it is recommended that you make
consistent use of VHDL source file names and corresponding library file names, and
avoid the use of work for all but the simplest packages.

Package Visibility
The library statement described in the previous section is used to load a library so
that its contents are available when compiling a source file. However, the library
statement does not actually make the contents of the specified library (the packages
or other design units found in the library) visible to design units in the current source
file. Visibility is created when you specify one or more use statements prior to the
design units requiring access to items in the library.

The use statement is quite flexible. You can specify exactly which items within a
package are to be made visible, specify that all items in a package are to be made
visible, or specify that all items in all packages for a specific library are to be made
visible. The following examples demonstrate some of the possible uses of use
statements:

use mylib.my_package.all; -- All items in my_package are visible

use mylib.my_package.dff; -- Just using the dff procedure

use mylib.all; -- Make everything in the library visible

In general, you will find that it is most convenient to place a library statement (one for
each external library being used) at the beginning of your source file, and place use
statements just prior to those design units requiring visibility of items in the library. To
prevent compatibility problems as described above, you should avoid using work for
shared packages or other design units that cross source file boundaries.

For clarity, it is recommended that you specify both the library and package name in
your use statements, even if you are using all items in the library.

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/design_libraries.htm (2 of 2) [12/19/2004 12:10:00 PM]

For Loop

For Loop

The for loop is a sequential statement that allows you to specify a fixed number of
iterations in a behavioral design description. The following architecture demonstrates
how a simple 8-bit parity generator can be described using a for loop:

library ieee;
use ieee.std_logic_1164.all;

entity parity10 is
 port(D: in std_logic_vector(0 to 9);
 ODD: out std_logic);
 constant WIDTH: integer := 10;
end parity10;

architecture behavior of parity10 is
begin

 process(D)
 variable otmp: Boolean;
 begin
 otmp := false;
 for i in 0 to D'length - 1 loop
 if D(i) = '1' then
 otmp := not otmp;
 end if;
 end loop;
 if otmp then
 ODD <= '1';

 else
 ODD <= '0';
 end if;
 end process;

end behavior;

The for loop includes an automatic declaration for the index (i in this example). You

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/for_loop.htm (1 of 3) [12/19/2004 12:10:00 PM]

For Loop

do not need to separately declare the index variable.

The index variable and values specified for the loop do not have to be numeric types
and values. In fact, the index range specification does not even have to be
represented by a range. Instead, it can be represented by a type or sub-type indicator.
The following example shows how an enumerated type can be used in a loop
statement:

architecture looper2 of my_entity is
 type stateval is Init, Clear, Send, Receive, Error; -- States of a machine
begin
 . . .
 process(a)
 begin
 for state in stateval loop
 case state is
 when Init =>
 ...
 when Clear =>
 ...
 when Send =>
 ...
 when Receive =>
 ...
 when Error =>
 ...
 end case;
 end loop;
 end process;
 . . .
end looper2;

For loops can be given an optional name, as shown in the following example:

 loop1: for state in stateval loop
 if current_state = state then
 valid_state <= true;
 end if;
 end loop loop1;

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/for_loop.htm (2 of 3) [12/19/2004 12:10:00 PM]

For Loop

The loop name can be used to help distinguish between the loop index variable and
other similarly-named objects, and to specify which of the multiple nested loops is to
be terminated (see Loop Termination below). Otherwise, the loop name serves no
purpose.

See also

 Loop Termination
 While Loops
 Infinite Loops

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/for_loop.htm (3 of 3) [12/19/2004 12:10:00 PM]

While Loop

While Loop

A while loop is another form of sequential loop statement that specifies the conditions
under which the loop should continue, rather than specifying a discrete number of
iterations. The general form of the while loop is shown below:
architecture while_loop of my_entity is
begin
 . . .
 process(. . .)
 begin
 . . .
 loop_name: while (condition) loop
 -- repeated statements go here
 end loop loop_name;
 . . .
 end process;
 . . .
end while_loop;

Like the for loop, a while loop can only be entered and used in sequential VHDL
statements (i.e., in a process, function or procedure). The loop name is optional.

The following example uses a while loop to describe a constantly running clock that
might be used in a test bench. The loop causes the clock signal to toggle with each
loop iteration, and the loop condition will cause the loop to terminate if either of two
flags (error_flag or done) are asserted.

process
begin
 while error_flag /= ‘1’ and done /= '1’ loop
 Clock <= not Clock;
 wait for CLK_PERIOD/2;
 end loop;
end process;

Note: Although while loops are quite useful in test benches and simulation models,
you may have trouble if you attempt to synthesize them. Synthesis tools may be
unable to generate a hardware representation for a while loop, particularly if the loop

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/while_loop.htm (1 of 2) [12/19/2004 12:10:01 PM]

While Loop

expression depends on non-static elements such as signals and variables. Because
support for while loops varies widely among synthesis tools, we recommend that you
not use them in synthesizable design descriptions.

See also

 Loop Termination
 For Loops
 Infinite Loops

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/while_loop.htm (2 of 2) [12/19/2004 12:10:01 PM]

Infinite Loop

Infinite Loop

An infinite loop is a loop statement that does not include a for or while iteration
keyword (or iteration scheme). An infinite loop will usually include an exit condition, as
shown in the template below:

architecture inifinite_loop of my_entity is
begin
 . . .
 process(. . .)
 . . .
 loop_name: loop
 . . .
 exit when (condition);
 end loop loop_name;
 end process;
 . . .
end infinite_loop;

An infinite loop using a wait statement is shown in the example below. This example
exhibits exactly the same behavior as the while loop shown previously:

process
begin
 loop
 Clock <= not Clock;
 wait for CLK_PERIOD/2;
 if done = '1' or error_flag = '1' then
 exit;
 end if;
 end loop;
end process;

As with a while loop, an infinite loop probably has no equivalent in hardware and is
therefore not synthesizable.

See also

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/infinite_loop.htm (1 of 2) [12/19/2004 12:10:01 PM]

Infinite Loop

 Loop Termination
 For Loops
 While Loops

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/infinite_loop.htm (2 of 2) [12/19/2004 12:10:01 PM]

Loop Termination

Loop Termination

There are many possible reasons for wanting to jump out of a loop before its normal
terminating condition has been reached. The three types of loops previously described
all have the ability to be terminated prematurely. Loop termination is performed
through the use of an exit statement. When an exit statement is encountered, its
condition is tested and, if the condition is true, the simulator skips the remaining
statements in the loop and all remaining loop iterations, and continues execution at
the statement immediately following the end loop statement.

The following example demonstrates how loop termination can be used to halt a
sequence of test vectors that are being executed when an error is detected:

for i in 0 to VectorCount loop
 ApplyVector(InputVec(i), ResultVec);
 exit when CheckOutput(OutputVec(i), ResultVec) = FatalError;
end loop;

The exit condition is optional; an exit statement without an exit condition will
unconditionally terminate when the exit statement is encountered. The following
example shows an unconditional exit termination specified in combination with an if-
then statement to achieve the same results as in the previous example:

for i in 0 to VectorCount loop
 ApplyVector(InputVec(i), ResultVec);
 if CheckOutput(OutputVec(i), ResultVec) = FatalError then
 exit;
end loop;

When multiple loops are nested, the exit statement will terminate only the innermost
loop. If you need to terminate a loop that is not the innermost loop, you can make use
of loop labels to specify which loop is being terminated. The following example shows
how loop labels are specified in exit statements:

LOOP1: while (StatusFlag = STATUS_OK) loop
 GenerateSequence(InputVec,OutputVec,VectorCount,Seed);
 LOOP2: for i in 0 to VectorCount loop
 ApplyVector(InputVec(i), ResultVec);

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/loop_termination.htm (1 of 2) [12/19/2004 12:10:02 PM]

Loop Termination

 ErrStatus := CheckOutput(OutputVec(i), ResultVec) = TestError;
 if ErrStatus = ERR_COMPARE then
 ReportError();
 exit LOOP2;
 elsif ErrStatus = ERR_FATAL then
 ReportFatal();
 exit LOOP1;
 end if;
 end loop LOOP2;
end loop LOOP1;

See also

 Exit Keyword

http://www.acc-eda.com/vhdlref/refguide/language_overview/sequential_statements/loop_termination.htm (2 of 2) [12/19/2004 12:10:02 PM]

Functions and Procedures

Functions and Procedures

Functions and procedures in VHDL, which are collectively known as subprograms, are
directly analogous to functions and procedures in a high-level software programming
language such as C or Pascal. A procedure is a subprogram that has an argument list
consisting of inputs and outputs, and no return value. A function is a subprogram that
has only inputs in its argument list, and has a return value.

Subprograms are useful for isolating commonly-used segments of VHDL source code.
They can either be defined locally (within an architecture, for example), or they can be
placed in a package and used globally throughout the design description or project.

Statements within a subprogram are sequential (like a process), regardless of where
the subprogram is invoked. Subprograms can be invoked from within the concurrent
area of an architecture or from within a sequential process or higher-level subprogram.
They can also be invoked from within other subprograms.

Subprograms are very much like processes in VHDL. In fact, any statement that you
can enter in a VHDL process can also be entered in a function or procedure, with the
exception of a wait statement (since a subprogram executes once each time it is
invoked and cannot be suspended while it is executing). It is therefore useful to think
of subprograms as processes that (1) have been located outside the body of an
architecture, and (2) operate only on their input and (in the case of procedures) their
output parameters.

Nesting of functions and procedures is allowed to any level of complexity, and
recursion is also supported in the language. (Of course, if you expect to generate
actual hardware from your VHDL descriptions using synthesis tools, then you will need
to avoid writing recursive functions and procedures, as such descriptions are not
synthesizable).

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/functions_and_procedures.htm [12/19/2004 12:10:02 PM]

Declaring a Global Subprogram

Declaring a Global Subprogram

Functions and procedures can be declared either globally, so they are usable
throughout a design description, or they can be declared locally within the declarative
region of an architecture, block, process, or even within another subprogram. If you
are writing a subprogram that will be used throughout your design, you will write the
subprogram declaration in an external package, as shown in the following example:

package my_package is
 function my_global_function(...)
 return bit;
end my_package;

package body my_package is
 function my_global_function(...)
 return bit is
 begin
 . . .
 end my_global_function;
end my_package;
. . .
use work.my_package.my_global_function;
entity my_design is
begin
 . . .
end my_design;

In this example, the function my_global_function() has been declared within the
package my_package. The actual body of the function—the sequence of statements
that define its operation—is placed into a package body. (The reasons why a
subprogram requires a package body in addition to a package are somewhat obscure,
but they have to do with the fact that the statements in a subprogram must be
executed when the design description is simulated, while other declarations appearing
in a package can be completely resolved at the time the VHDL description is first
analyzed by the VHDL compiler.) To use the global function in subsequent
architectures (such as the architecture associated with entity my_design in this
example), a use statement (and library statement, if the package has been compiled
into a named library) must precede the declaration for that architecture or its parent

http://www.acc-eda.com/vhdlref/refguide/language_...larity_features/declaring_a_global_subprogram.htm (1 of 2) [12/19/2004 12:10:02 PM]

Declaring a Global Subprogram

entity.

See also

 Declaring a Local Subprogram

http://www.acc-eda.com/vhdlref/refguide/language_...larity_features/declaring_a_global_subprogram.htm (2 of 2) [12/19/2004 12:10:02 PM]

Declaring a Local Subprogram

Declaring a Local Subprogram

Another way of using subprograms is to declare them locally, such as within an
architecture or block declaration. In the following example, my_local_function() has
been declared entirely within the architecture my_architecture.

architecture my_architecture of my_design is
begin
 my_process: process(...)
 function my_local_function(...)
 return bit is
 begin
 . . .
 end my_local_function;
 begin
 . . .
 end process my_process;
end my_architecture;

This example demonstrates the concept of local scoping. VHDL objects (such as
signals, variables and constants) can be declared at many points in a design, and that
the visibility, or scoping, of those objects depends on where they have been declared.
Subprograms (functions and procedures) also have scoping. In this example, the
function my_local_function can only be referenced within the architecture in which it
has been declared and defined.

Consistent scoping of objects and subprograms is an important part of modular VHDL
coding and of structured programming in general. If you will only be using an object or
subprogram in one section of your overall design, then you should keep the
declaration of that object or subprogram local to that section of the design. This will
make it possible to re-use that section of the design elsewhere with a minimum of fuss
(since you won’t have to remember to declare the object or subprogram globally in the
new design).

See also

 Declaring a Global Subprogram

http://www.acc-eda.com/vhdlref/refguide/language_over.../modularity_features/declaring_a_local_subprogram.htm [12/19/2004 12:10:03 PM]

Functions

Functions

A function is a subprogram that accepts zero or more input arguments and returns a
single output value. Because a function returns a value, it has a type associated with
it. The following is an example of a function that accepts two integer arguments and
returns the greater of the two as an integer value:

function maxval (arg1, arg2: integer) return integer is
 variable result: integer;
begin
 if arg1 > arg2 then
 result := arg1;
 else
 result := arg2;
 end if;
 return result;
end maxval;

The arguments to a function are all inputs to the function. They cannot be modified or
otherwise assigned values within the function. By default, the arguments are of a
constant kind. This means that the arguments are interpreted within the function as if
they had been supplied as constants declared in the function itself. An alternative type
of argument, indicated by the use of the signal keyword, allows the use of signal
attributes (such as 'event) within the function. The following function (which is
provided in the IEEE 1164 standard library) demonstrates the use of a signal
argument in a function:

function rising_edge (signal s: std_logic) return boolean is
begin
 return (s'event and (To_X01(s) = '1') and
 (To_X01(s'last_value) = '0'));
end;

In this example, the keyword signal is critical to the correct operation of the function.
In the absence of the signal keyword, the 'event attribute would not be preserved.

Functions are most commonly used in situations where you require a calculation or
conversion based on the subprogram inputs. Examples of this include arithmetic or

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/functions.htm (1 of 3) [12/19/2004 12:10:03 PM]

Functions

logic functions (such as the one just presented), type conversion functions, and value
checks such as you might use when writing a test bench.

Because they return a value, functions must be used as part of a larger expression.
The following VHDL code fragment demonstrates a type conversion function being
used in an expression to convert an array data type to an integer:

signal Offset: integer range (0 to 1023);
signal BUS1: std_logic_vector(11 downto 0);

. . .

Offset <= to_integer(BUS1) + 136;

Operators as Functions
One interesting feature of VHDL is its support for operator overloading. Operator
overloading allows you to specify custom functions representing symbolic operations
for your own data types. To define a new operation (or modify an existing one), you
simply write a function and enclose its name (which can be a non-numeric name such
as an operator symbol) in double-quote characters.

The following operator function is taken directly from the IEEE 1164 standard logic
package, and demonstrates how operator overloading works:

function "and" (l : std_logic; r : std_logic) return UX01 is
begin
 return(and_table(l, r));
end "and";

In this example, the function and is declared as a function returning the type UX01 (a
four-valued logic type used internally in the standard logic package). The function is
identified during compilation by its name (and) and by the types and number of its
arguments. For example, in the expression:

architecture simple of and_operation is
 signal Y, A, B: std_logic;
begin
 Y <= A and B;
end simple;

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/functions.htm (2 of 3) [12/19/2004 12:10:03 PM]

Functions

the and operation is actually a function defined using the previously listed statements.
In fact, all of the standard operations that you use in VHDL (including such operators
as and, or, not, +, -, *, & and <) are actually functions declared in libraries such as
std and ieee.

Note: In source code listings presented in this document we have used the
typographic convention of listing all VHDL keywords in bold face. As you have just
seen, however, many of the keywords that we list in bold face are actually functions
defined in a standard library.

See also

 Subprogram Overloading

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/functions.htm (3 of 3) [12/19/2004 12:10:03 PM]

Subprogram Overloading

Subprogram Overloading

Because a function or procedure is uniquely identified by its name in combination with
its argument types, there can be more than one function or procedure defined with the
same name, depending on the types of the operands required. This feature (called
subprogram overloading) is important because the function required to perform a
given operation on one type of data may be quite different than the function required
for another type.

It is unlikely that you will need to use subprogram overloading in your own design
efforts. Instead, you will use the standard data types provided for you in the language
standards, and you will use the predefined operators for those data types exclusively.
You might find it useful, however, to look over the operators defined in the standard
libraries so you have a better idea of the capabilities of each standard data type
provided.

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/subprogram_overloading.htm [12/19/2004 12:10:04 PM]

Procedures

Procedures

Procedures differ from functions in that they do not have a return value, and their
arguments may include both inputs and outputs to the subprogram. Because each
argument to a procedure has a mode (in, out, or inout), they can be used very much
like you would use an entity/architecture pair to help simplify and modularize a large
and complex design description.

Procedures are used as independent statements, either within the concurrent area of
an architecture or within the sequential statement area of a process or subprogram.

The following sample procedure defines the behavior of a clocked JK flip-flop with an
asynchronous reset:

procedure jkff (signal Rst, Clk: in std_logic;
 signal J, K: in std_logic;
 signal Q,Qbar: inout std_logic) is
begin
 if Rst = ‘1’ then
 Q <= '0';
 elsif Clk = ‘1’ and Clk’event then
 if J = '1' and K = '1' then
 Q <= Qbar;
 elsif J = '1' and K = '0' then
 Q <= '1';
 elsif J = '0' and K = '1' then
 Q <= '0';
 end if;
 end if;
 Qbar <= not Q;
end jkff;

A procedure may include a wait statement, unless it has been called from within a
process that has a sensitivity list.

Note that variables declared and used within a procedure are not preserved between
different executions of the procedure. This is unlike a process, in which variables
maintain their values between executions. Variables within a procedure therefore do

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/procedures.htm (1 of 2) [12/19/2004 12:10:04 PM]

Procedures

not maintain their values over time, unless the procedure is suspended with a wait
statement.

See also

 Functions
 Procedure Calls
 Wait Statement

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/procedures.htm (2 of 2) [12/19/2004 12:10:04 PM]

Parameter Types

Parameter Types

Subprograms operate on values or objects that are passed in as parameters to the
subprogram. Procedures differ from functions in that they can also pass information
out on the parameter list. (The parameters of a procedure have directions, or modes.)

There are three classes of parameters available for subprograms: constant, variable
and signal. The default class, if no other class is specified, is constant. The
parameters that are used within the function or procedure are called the formal
parameters, while the parameters passed into the function or procedure are called the
actual parameters.

The primary difference between constant, variable and signal parameters is the type
of actual parameters that can be passed into the subprogram when it is called. If the
formal parameter of a subprogram is of class constant, the actual parameter can be
any expression that evaluates to a data type matching that of the formal parameter.
For parameters of class variable or signal, the actual parameters must be variable or
signal objects, respectively.

Parameters of subprograms transfer only the value of the actual parameters (those
parameters specified when the subprogram is called) for the formal parameters (the
parameters specified in the subprogram declaration). Attribute information is not
passed directly into the subprogram. (The attributes that you will most often be
concerned with, such as 'event, will be available if you are using parameters of class
signal.)

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/parameter_types.htm [12/19/2004 12:10:05 PM]

Mapping of Parameters

Mapping of Parameters

The examples presented in this section have used what is refered to as positional
association to describe how actual parameters are paired with formal parameters of
the subprogram.

Positional association is a quick and convenient way to describe the mapping of
parameters, but it can be error-prone.

For this reason, you might want to write your subprogram references using an
alternate form of port map called named association. Named association guarantees
that the correct parameters are connected, and it also gives you the ability to re-order
the parameters as needed.

The following example shows how the same subprogram might be referenced using
both positional and named association:

 dff(Rst,Clk,Data,Result);
 dff(Rst=>Rst,C=>Clk,D=>Data,a=>Result);

The special operator => indicates exactly which lower-level ports are to be connected
to which higher-level signals.

http://www.acc-eda.com/vhdlref/refguide/language_overview/modularity_features/mapping_of_parameters.htm [12/19/2004 12:10:05 PM]

Packages

Packages

Packages are intended to hold commonly-used declarations such as constants, type
declarations and global subprograms. Packages can be included within the same
source file as other design units (such as entities and architectures) or may be placed
in a separate source file and compiled into a named library. This latter method
(described in the section Design Libraries) is useful when you will be using the
contents of a package throughout a large design or in multiple projects.

Packages may contain the following types of objects and declarations:

• Type and subtype declarations
• Constant declarations
• File and alias declarations
• Component declarations
• Attribute declarations
• Functions and procedures
• Shared variables

When items from the package are required in other design units, you must include a
use statement to make the package and its contents visible for each design unit.

The following is an example of a package declaration and its corresponding use
statements:

library ieee;
use ieee.std_logic_1164.all;
package my_types is
 subtype byte is std_logic(0 to 7);
 constant CLEAR: byte := (others=>‘0’);
end my_types;

use work.mytypes.all;
use ieee.std_logic_1164.all;
entity rotate is
 port(Clk, Rst, Load: in std_logic;
 Data: in byte;
 Q: out byte);

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/packages.htm (1 of 4) [12/19/2004 12:10:06 PM]

Packages

end rotate;

architecture rotate4 of rotate is
 signal Qreg: byte;
begin

 Qreg <= Data when (Load = ‘1’) else
 Qreg(1 to byte’LENGTH-1) & Qreg(0);

 dff(Rst, Clk, Qreg, Q);

end rotate4;

In this example, the package my_types includes declarations for a subtype (byte) and
constant (CLEAR) that will be used throughout the subsequent design description.
The statement use work.mytypes.all specifies that all contents of the package
mytypes should be loaded from the default library (work). (As we will see later in this
chapter, the work library is a special library described in the VHDL specification as
one that does not require a library statement and into which all design units are
analyzed by default.) An alternative to using the all keyword in the use statement
would be to specify precisely which items in the default library are to be made visible,
as in use work.mytypes.byte and use work.mytypes.CLEAR.

How Are Packages Used?
When you create your own VHDL design descriptions, you can use packages in a
number of ways. First, you can dramatically simplify your designs by placing
commonly-used declarations (such as byte and CLEAR in the previous example) into
packages that are used throughout your project. You will probably find that using
libraries to collect such packages in one place will simplify the design even further and
make it easier to share commonly-used declarations between different design
descriptions.

Another way you can use packages is to reference pre-written packages that have
been provided for you. One example of such a package is found in the IEEE 1164
Standard Logic standard. The IEEE 1164 standard provides a standard package
named std_logic_1164 that includes declarations for the types std_logic,
std_ulogic, std_logic_vector and std_ulogic_vector, as well as many useful
functions related to those data types.

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/packages.htm (2 of 4) [12/19/2004 12:10:06 PM]

Packages

Packages may also be provided to you by vendors of synthesis and simulation tools.
Synthesis tools, for example, often include packages containing synthesizable type
conversion functions, synthesizable procedures for flip-flops and latches, and other
useful design elements.

Finally, there is a standard package that includes declarations for all the standard data
types (bit, bit_vector, integer and so on). This standard package is defined by the
IEEE 1076 standard and automatically made visible to all design units. (You do not
have to specify a use clause for the standard package.)

Package Bodies
Packages that include global subprograms (functions or procedures) or deferred
constants (see Chapter 3, Exploring Objects and Data Types) must defer part of their
declaration (the part that must be analyzed during simulation) to a separate design
unit called a package body. Every package can have, at most, one corresponding
package body. Package bodies are optional and are only required when a package
includes subprograms or deferred constants.

The following example shows how a package body must be used when a subprogram
(in this case, a procedure describing the behavior of a D flip-flop) is declared in a
package:

package my_reg8 is
 subtype byte8 is std_logic_vector(0 to 7);
 constant CLEAR8: byte8 := (others=>‘0’);
 procedure dff8 (signal Rst, Clk: in std_logic;
 signal D: in byte;
 signal Q: out byte);
end my_reg8;

package body my_reg8 is
 procedure dff8 (signal Rst, Clk: in std_logic;
 signal D: in byte8;
 signal Q: out byte8) is
 begin
 if Rst = ‘1’ then
 Q <= CLEAR8;
 elsif Clk = ‘1’ and Clk’event then
 Q <= D;

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/packages.htm (3 of 4) [12/19/2004 12:10:06 PM]

Packages

 end if;
 end dff;
end my_reg8;

In this example, the procedure dff8 is declared initially in the package my_reg8. This
first declaration is somewhat akin to a "function prototype" as used in the C or C++
languages, and it defines the interface to the procedure. The package body that
corresponds to package my_reg8 (and shares its name) contains the complete
description of the procedure.

 Design Libraries
 Functions and Procedures

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/packages.htm (4 of 4) [12/19/2004 12:10:06 PM]

Components

Components

Components are used to connect multiple VHDL design units (entity/architecture
pairs) together to form a larger, hierarchical design. Using hierarchy can dramatically
simplify your design description and can make it much easier to re-use portions of the
design in other projects. Components are also useful when you want to make use of
third-party design units, such as simulation models for standard parts, or
synthesizable core models obtained from a company specializing in such models.

The following example describes the relationship between the three design units in the
shift and compare example presented in the previous section:

architecture structure of shiftcomp is

 component compare
 port(A, B: in bit_vector(0 to 7); EQ: out bit);
 end component;

 component shift
 port(Clk, Rst, Load: in bit;
 Data: in bit_vector(0 to 7);
 Q: out bit_vector(0 to 7));
 end component;

 signal Q: bit_vector(0 to 7);

begin

 COMP1: compare port map (Q, Test, Limit);
 SHIFT1: shift port map (Clk, Rst, Load, Init, Q);

end structure;

In this example, the two lower-level components (shift and compare) were
instantiated in the higher-level module (shiftcomp) to form a hierarchy of design units.
Each component instantiation is represented by a component name that is unique
within the architecture or block.

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/components.htm (1 of 5) [12/19/2004 12:10:06 PM]

Components

Component instantiations are concurrent statements and therefore have no order-
dependency. A design unit (such as this one) that includes only component
instantiation statements can be thought of as a netlist, such as might be written (or
generated) to represent the connections on a schematic.

Mapping of Ports
The previous example of component instantiation used positional association to
describe how signals at the higher level (in this case shiftcomp) are to be matched
with (i.e., connected to) ports of the entities in the lower-level modules (shift and
compare).

Positional association is a quick and convenient way to describe the mapping of
signals to ports in a component instantiation, but it can be error-prone. Consider, for
example, what would have happened if the component instantiation for the shift
module had been written as follows:

SHIFT1: shift port map (Rst, Clk, Load, Init, Q);

Because the Rst and Clk signals are of the same type (std_logic), the simulator or
synthesis tool would accept this port mapping without complaint, and it would connect
the reset signal to the clock and connect the clock to the reset. The circuit would not
operate as expected, and the problem might be difficult to debug.

For this reason, we generally recommend that you write component instantiations
using an alternate form of port map called named association. Named association
guarantees that the correct signals and ports are connected through the hierarchy,
and it also gives you the ability to re-order the ports as needed.

The following example shows how the same component (a NAND gate) might be
instanced using both positional and named association:

U1: nand2 port map (a, b, y); -- Positional association
U2: nand2 port map (a=>in1,b=>in2,y=>out1); -- Named association

The special operator => indicates exactly which lower-level ports (a, b and y, in this
case) are to be connected to which higher-level signals (in1, in2 and out1).

Named association also makes it possible to leave one or more lower-level ports
unconnected using the keyword open, as shown below:

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/components.htm (2 of 5) [12/19/2004 12:10:06 PM]

Components

U2: count8 port map (C => Clk1, Rst => Clr, L => Load, D => Data,
 Q => , Cin => open);

Note: You might also consider placing each named association on a separate line.
This simplifies debugging because the debugger will identify the exact line where an
association error occurred.

Generics
It is possible to pass instance-specific information other than actual port connections
to an entity using a feature called generics. Generics are very useful for making
design units more general-purpose or for annotating information (such as timing
specifications) to an entity at the time the design is analyzed for simulation or
synthesis.

The following example shows how generics can be used to create a parameterizable
model of a D-type flip-flop:

library ieee;
use ieee.std_logic_1164.all;

entity dffr is
 generic (wid: positive);
 port (Rst,Clk: in std_logic;
 signal D: in std_logic_vector(wid-1 downto 0);
 signal Q: out std_logic_vector(wid-1 downto 0));
end dffr;

architecture behavior of dffr is
begin
 process(Rst,Clk)
 variable Qreg: std_logic_vector(wid-1 downto 0);
 begin
 if Rst = '1' then
 Qreg := (others => '0');
 elsif Clk = '1' and Clk'event then
 for i in Qreg'range loop
 Qreg(i) := D(i);
 end loop;
 end if;

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/components.htm (3 of 5) [12/19/2004 12:10:06 PM]

Components

 Q <= Qreg;
 end process;
end behavior;

In this example, the dffr entity has a generic list in addition to a port list. This generic
list contains one entry, a positive integer, that corresponds to the width of the D input
and Q output. The architecture declaration uses a for loop in conjunction with the
generic (wid) to describe the operation of the D-type flip-flops.

When instantiated in a higher-level design unit, a generic map must be provided in
addition to the port map, as shown below:

architecture sample of reg is

 component dffr
 generic (wid: positive);
 port (Rst,Clk: in std_logic;
 signal D: in std_logic_vector(wid-1 downto 0);
 signal Q: out std_logic_vector(wid-1 downto 0));
 end component;

 constant WID8: positive := 8;
 constant WID16: positive := 16;
 constant WID32: positive := 32;
 signal D8,Q8: std_logic_vector(7 downto 0);
 signal D16,Q16: std_logic_vector(15 downto 0);
 signal D32,Q32: std_logic_vector(31 downto 0);

begin

 FF8: dffr generic map(WID8) port map(Rst,Clk,D8,Q8);
 FF16: dffr generic map(WID16) port map(Rst,Clk,D16,Q16);
 FF32: dffr generic map(WID32) port map(Rst,Clk,D32,Q32);

end sample;

The example shows how three instances of the dffr design unit can be created using
different values for the generic.

See also

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/components.htm (4 of 5) [12/19/2004 12:10:06 PM]

Components

 Component Instantiations

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/components.htm (5 of 5) [12/19/2004 12:10:06 PM]

Configurations

Configurations

Configurations are features of VHDL that allow large, complex design descriptions to
be managed during simulation. (Configurations are not generally supported in
synthesis.) One example of how you might use configurations is to construct two
versions of a system-level design, one of which makes use of high-level behavioral
descriptions of the system components, while a second version substitutes in a post-
synthesis timing model of one or more components.

A configuration declaration is a primary design unit that defines the binding of some or
all of the component instances in your design description to corresponding lower-level
entities and architectures. The configuration declaration can form a simple parts list for
your design, or it can be written to contain detailed information about how each
component is "wired into" the rest of the design (through specific port mappings) and
the values for generics being passed into each entity.

If you think of the configuration declaration as a parts list for your design, you can
perhaps visualize it better as follows: consider a design description in which you have
described an entity named Board with an architecture named structure. In the
architecture structure you have described one instance (U1) of a component called
Chip. Moving down in the hierarchy of your design, let's suppose that the entity Chip
has been written with four alternative architectures named A1, A2, A3 and A4. (There
are many reasons why you might have done this. For example, the default
architecture might be the final synthesizable version of the chip, while the remaining
three are versions intended strictly for high-level simulation.)

There are many applications of configurations in simulation. For large projects
involving many engineers and many design revisions, configurations can be used to
manage versions and specify how a design is to be configured for system simulation,
detailed timing simulation, and synthesis. Because simulation tools allow
configurations to be modified and recompiled without the need to recompile other
design units, it is easy to construct alternate configurations of a design very quickly
without having to recompile the entire design.
Because configurations are not generally supported in synthesis tools, we will not
describe the many advanced uses of configurations for simulation and design
management. Instead, you are encouraged to read about them in the VHDL Language
Reference Manual (IEEE Standard 1076) or in a book more oriented toward simulation
modeling.

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/configurations.htm (1 of 2) [12/19/2004 12:10:07 PM]

Configurations

See also

 Blocks
 Components
 Port and Generic Mapping

http://www.acc-eda.com/vhdlref/refguide/language_overview/partitioning_features/configurations.htm (2 of 2) [12/19/2004 12:10:07 PM]

A Simple Test Bench

A Simple Test Bench

The simplest test benches are those that apply some sequence of inputs to the circuit
being tested (the Unit Under Test, or UUT) so that its operation can be observed in
simulation. Waveforms are typically used to represent the values of signals in the
design at various points in time. Such a test bench must consist of a component
declaration corresponding to the unit under test, and a description of the input
stimulus being applied to the UUT.

The following example demonstrates the simplest form of a test bench, and tests the
operation of a NAND gate:

library ieee; -- Load the ieee 1164 library
use ieee.std_logic_1164.all; -- Make the package 'visible'

use work.nandgate; -- We'll use the NAND gate model from 'work'

-- The top level entity of the test bench has no ports...
--
entity testnand is
end testnand;

architecture stimulus of testnand is
 -- First, declare the lower-level entity...
 component nand
 port (A,B: in std_logic;
 Y: out std_logic);
 end component;

 -- Next, declare some local signals to assign values to and observe...
 signal A,B: std_logic;
 signal Y: std_logic;

begin
 -- Create an instance of the comparator circuit...
 NAND1: nandgate port map(A => A,B => B,Y => Y);

 -- Now define a process to apply some stimulus over time...

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/a_simple_test_bench.htm (1 of 3) [12/19/2004 12:10:07 PM]

A Simple Test Bench

 process
 constant PERIOD: time := 40 ns;
 begin
 A <= '1';
 B <= '1';
 wait for PERIOD;
 assert (Y = '0')
 report "Test failed!" severity ERROR;
 A <= '1';
 B <= '0';
 wait for PERIOD;
 assert (Y = '1')
 report "Test failed!" severity ERROR;
 A <= '0';
 B <= '1';
 wait for PERIOD;
 assert (Y = '1')
 report "Test failed!" severity ERROR;
 A <= '0';
 B <= '0';
 wait for PERIOD;
 assert (Y = '1')
 report "Test failed!" severity ERROR;
 wait;
 end process;
end stimulus;

Reading from the top of this test bench, we see:

• Library and use statements making the standard logic package available
for use (our lower-level NAND gate model has been described using standard
logic).
• An optional use statement referencing the lower-level design unit nand
from the work library.
• An entity declaration for the test bench. Note that test benches do not
generally include an interface (port) list, as they are the highest-level design
unit when simulated.
• An architecture declaration, containing:
• A component declaration corresponding to the unit under test.

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/a_simple_test_bench.htm (2 of 3) [12/19/2004 12:10:07 PM]

A Simple Test Bench

• Signal declarations for A, B, and Y. These local signals will be used to (1)
apply inputs to the unit under test, and (2) observe the behavior or the output
during simulation.
• A component instantiation statement and corresponding port map
statement that associates the top-level signals A, B and Y with their
equivalent ports in the lower-level entity. Note that the component name used
(UUT) is not significant; any valid component name could have been chosen.
• A process statement describing the inputs to the circuit over time. This
process has been written without the use of a sensitivity list. It uses wait
statements to provide a specific amount of delay (defined using constant
PERIOD) between each new combination of inputs. Assert statements are
used to verify that the circuit is operating correctly for each combination of
inputs. Finally, a wait statement without any condition expression is used to
suspend simulation indefinitely after the desired inputs have been applied. (In
the absence of the final wait statement, the process would repeat forever, or
for as long as the simulator had been instructed to run.)

See also
 Example: Shifter

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/a_simple_test_bench.htm (3 of 3) [12/19/2004 12:10:07 PM]

Using Assert Statements

Using Assert Statements

VHDL’s assert statement provides a quick and easy way to check expected values
and display messages from your test bench. An assert statement has the following
general format:

assert condition_expression
 report text_string
 severity severity_level ;

When analyzed (either during execution as a sequential statement, or during simulator
initialization in the case of a concurrent assert statement), the condition expression is
evaluated. As in an if statement, the condition expression of an assert statement
must evaluate to a boolean (true or false) value. If the condition expression is false
(indicating the assertion failed), the text that you have specified in the optional report
statement clause is displayed in your simulator’s transcript (or other) window. The
severity statement clause then indicates to the simulator what action (if any) should
be taken in response to the assertion failure (or assertion violation, to use the
language of the VHDL specification).

The severity level can be specified using one of the following predefined severity
levels: NOTE, WARNING, ERROR, or FAILURE. The actions that result from the use
of these severity levels will depend on the simulator you are using, but you can
generally expect the simulator to display a file name and line number associated with
the assert statement, keep track of the number of assertion failures, and print a
summary at the end of the simulation run. Assert statements that specify FAILURE in
their severity statement clauses will normally result in the simulator halting.

See also

 Assert Keyword
 Displaying Complex Strings in Assert Statements

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/using_assert_statements.htm [12/19/2004 12:10:08 PM]

Displaying Complex Strings in Assert Statements

Displaying Complex Strings in Assert Statements

A common use of assert and report statements is to display information about signals
or variables dynamically during a simulation run. Unfortunately, VHDL’s built-in
support for this is somewhat limited. The problem is twofold: first, the report clause
only accepts a single string as its argument, so it is necessary to either write multiple
assert statements to output multiple lines of information (as when formatting and
displaying a table), or you must make use of the string concatenation operator & and
the special character constant CR (carriage return) and/or LF (line feed) to describe a
single, multi-line string as shown below:

assert false
 report "This is the first line of the message." & CR & LF &
 "This is the second line of the message.";

The second, more serious limitation of the report statement clause is that it only
accepts a string, and there is no built-in provision for formatting various types of data
(such as arrays, integers and the like) for display. This means that to display such
data in an assert statement, you must provide type conversion functions that will
convert from the data types you are using to a formatted string. The following example
(which is described in more detail later in this chapter) demonstrates how you might
write a conversion function to display a std_logic_vector array value as a string of
characters:

architecture stimulus of testfib is
 . . .
 function vec2str(vec: std_logic_vector) return string is
 variable stmp: string(vec’left+1 downto 1);
 begin
 for i in vec’reverse_range loop
 if (vec(i) = ‘U’) then
 stmp(i+1) := ‘U’;
 elsif (vec(i) = ‘X’) then
 stmp(i+1) := ‘X’;
 elsif (vec(i) = ‘0’) then
 stmp(i+1) := ‘0’;
 elsif (vec(i) = ‘1’) then
 stmp(i+1) := ‘1’;

http://www.acc-eda.com/vhdlref/refguide/language_...splaying_complex_strings_in_assert_statements.htm (1 of 3) [12/19/2004 12:10:08 PM]

Displaying Complex Strings in Assert Statements

 elsif (vec(i) = ‘Z’) then
 stmp(i+1) := ‘Z’;
 elsif (vec(i) = ‘W’) then
 stmp(i+1) := ‘W’;
 elsif (vec(i) = ‘L’) then
 stmp(i+1) := ‘L’;
 elsif (vec(i) = ‘H’) then
 stmp(i+1) := ‘H’;
 else
 stmp(i+1) := ‘-’;
 end if;
 end loop;
 return stmp;
 end;
 . . .
 signal S: std_logic_vector(15 downto 0);
 signal S_expected: std_logic_vector(15 downto 0);
begin
 . . .
 process
 begin
 . . .

 assert (S /= S_expected) -- report an error if different
 report "Vector failure!" & CR & LF &
 "Expected S to be " & vec2str(S_expected) & CR & LF &
 "but its value was " & vec2str(S)
 severity ERROR;

In this example, a type conversion function has been written (vec2str) that converts
an object of type std_logic_vector to a string of the appropriate format and size for
display. As you develop more advanced test benches, you will probably find it useful
to collect such type conversion functions into a library for use in future test benches.

As we will see in later sections of this document, there are other, more powerful ways
to display formatted output, using the built-in text I/O features of the language.

See also

 Assert Statements

http://www.acc-eda.com/vhdlref/refguide/language_...splaying_complex_strings_in_assert_statements.htm (2 of 3) [12/19/2004 12:10:08 PM]

Displaying Complex Strings in Assert Statements

 Functions
 Type Conversions and Type Marks

http://www.acc-eda.com/vhdlref/refguide/language_...splaying_complex_strings_in_assert_statements.htm (3 of 3) [12/19/2004 12:10:08 PM]

Using Loops and Multiple Processes

Using Loops and Multiple Processes

Test benches can be dramatically simplified through the use of loops, constants and
other more advanced features of VHDL. Using multiple concurrent processes in
combination with loops can result in very concise descriptions of complex input and
expected output conditions.

The following example demonstrates how a loop (in this case a while loop) might be
used to create a background clock in one process, while other loops (in this case for
loops) are used to apply inputs and monitor outputs over potentially long periods of
time:

 Clock1: process
 variable clktmp: std_logic := '1';
 begin
 while done /= true loop
 wait for PERIOD/2;
 clktmp := not clktmp;
 Clk <= clktmp;
 end loop;
 wait;
 end process;

 Stimulus1: Process
 Begin
 Reset <= '1';
 wait for PERIOD;
 Reset <= '0';
 Mode <= '0';
 wait for PERIOD;
 Data <= (others => '1');
 wait for PERIOD;
 Mode <= '1';

 -- Check to make sure we detect the vertical sync...
 Data <= (others => '0');
 for i in 0 to 127 loop
 wait for PERIOD;

http://www.acc-eda.com/vhdlref/refguide/language...t_benches/using_loops_and_multiple_processes.htm (1 of 2) [12/19/2004 12:10:09 PM]

Using Loops and Multiple Processes

 assert (VS = '1')
 report "VS went high at the wrong place!" severity ERROR;
 end loop;
 assert (VS = '1')
 report "VS was not detected!" severity ERROR;

 -- Load in the test counter value to check the end of frame detection...
 TestLoad <= '1';
 wait for PERIOD;
 TestLoad <= '0';
 for i in 0 to 300 loop
 Data <= RandomData();
 wait for PERIOD;
 end loop;
 assert (EOF = '1')
 report "EOF was not detected!" severity ERROR;

 done <= true;
 wait;

 End Process;

End stimulus;

In this example, the process labeled Clock1 uses a local variable (clktmp) to describe
a repeating clock with a period defined by the constant PERIOD. This clock is
described with a while loop statement, and it runs independent of all other processes
in the test bench until the done signal is asserted true. The second process,
Stimulus1, describes a sequence of inputs to be applied to the unit under test. It also
makes use of loops—in this case for loops—to describe lengthy repeating stimuli and
expected value checks.

http://www.acc-eda.com/vhdlref/refguide/language...t_benches/using_loops_and_multiple_processes.htm (2 of 2) [12/19/2004 12:10:09 PM]

Writing Test Vectors

Writing Test Vectors

Another approach to creating test stimuli is to describe the test bench in terms of a
sequence of fixed input and expected output values. This sequence of values
(sometimes called test vectors) could be described using multi-dimensional arrays or
using arrays of records. The following example makes use of a record data type,
test_record, which consists of the record elements CE, Set, Din and CRC_Sum. An
array type (test_array) is then declared, representing an unconstrained array of
test_record type objects. The constant test_vectors, of type test_array, is declared
and assigned values corresponding to the inputs and expected output for each
desired test vector.

The test bench operation is described using a for loop within a process. This for loop
applies the input values Set and Din (from the test record corresponding to the current
iteration of the loop) to the unit under test. (The CE input is used within the test bench
to enable or disable the clock, and is not passed into the unit under test.) After a
certain amount of time has elapsed (as indicated by a wait statement), the CRC_Sum
record element is compared against the corresponding output of the unit under test,
using an assert statement.

library ieee;
use ieee.std_logic_1164.all;

use work.crc8s; -- Get the design out of library 'work'

entity testcrc is
end testcrc;

architecture stimulus of testcrc is
 component crc8s
 port (Clk,Set,Din: in std_logic;
 CRC_Sum: out std_logic_vector(15 downto 0));
 end component;

 signal CE: std_logic;
 signal Clk,Set: std_logic;
 signal Din: std_logic;
 signal CRC_Sum: std_logic_vector(15 downto 0);

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/writing_test_vectors.htm (1 of 4) [12/19/2004 12:10:09 PM]

Writing Test Vectors

 signal vector_cnt: integer := 1;
 signal error_flag: std_logic := '0';

 type test_record is record -- Declare a record type
 CE: std_logic; -- Clock enable
 Set: std_logic; -- Register preset signal
 Din: std_logic; -- Serial Data input
 CRC_Sum: std_logic_vector (15 downto 0); -- Expected result
 end record;

 type test_array is array(positive range <>) of test_record; -- Collect them
 -- in an array

 -- The following constant declaration describes the test vectors to be
 -- applied to the design during simulation, and the expected result after a
 -- rising clock edge.
 constant test_vectors : test_array := (
 -- CE, Set, Din, CRC_Sum
 ('0', '1', '0', "----------------"), -- Reset

 ('1', '0', '0', "----------------"), -- 'H'
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "0010100000111100"), -- x283C

 ('1', '0', '0', "----------------"), -- 'e'
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "1010010101101001"), -- xA569

 ('1', '0', '0', "----------------"), -- 'l'
 ('1', '0', '1', "----------------"),

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/writing_test_vectors.htm (2 of 4) [12/19/2004 12:10:09 PM]

Writing Test Vectors

 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "0010000101100101"), -- x2165

 ('1', '0', '0', "----------------"), -- 'l'
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '0', "1111110001101001"), -- xFC69

 ('1', '0', '0', "----------------"), -- 'o'
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '0', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "----------------"),
 ('1', '0', '1', "1101101011011010") -- xDADA
);

begin
 -- instantiate the component
 UUT: crc8s port map(Clk,Set,Din,CRC_Sum);

 -- provide stimulus and check the result

 testrun: process
 variable vector : test_record;
 begin
 for index in test_vectors'range loop
 vector_cnt <= index;
 vector := test_vectors(index); -- Get the current test vector
 -- Apply the input stimulus...
 CE <= vector.CE;

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/writing_test_vectors.htm (3 of 4) [12/19/2004 12:10:09 PM]

Writing Test Vectors

 Set <= vector.Set;
 Din <= vector.Din;

 -- Clock (low-high-low) with a 100 ns cycle...
 Clk <= '0';
 wait for 25 ns;
 if CE = '1' then
 Clk <= '1';
 end if;
 wait for 50 ns;
 Clk <= '0';
 wait for 25 ns;

 -- Check the results...
 if (vector.CRC_Sum /= "----------------"
 and CRC_Sum /= vector.CRC_Sum) then
 error_flag <= '1';
 assert false
 report "Output did not match!"
 severity WARNING;
 else
 error_flag <= '0';
 end if;
 end loop;
 wait;
 end process;
end stimulus;

Note: VHDL 1076-1993 broadened the scope of bit string literals somewhat, making it
possible to enter std_logic_vector data in non-binary forms as in the constant
hexadecimal value x"283C".

http://www.acc-eda.com/vhdlref/refguide/language_overview/test_benches/writing_test_vectors.htm (4 of 4) [12/19/2004 12:10:09 PM]

Keyword: NOT

Keyword: NOT

Not is a logical "not" operator which can be used in an expression. The expression
"not A" returns True if A is false and returns False if A is true.

LRM
 7.2

See also

 Objects, Data Types and Operators

http://www.acc-eda.com/vhdlref/refguide/vhdl_keywords/keyword__not.htm [12/19/2004 12:10:10 PM]

	acc-eda.com
	Accolade VHDL Reference Guide
	Language Overview
	PeakVHDL VHDL Language Guide
	A First Look at VHDL
	Objects, Data Types and Operators
	Using Standard Logic
	Concurrent Statements
	Sequential Statements
	Modularity Features
	Partitioning Features
	Test Benches
	VHDL Keywords
	VHDL Examples Gallery
	Welcome to the VHDL Language Guide
	Simple Example: A Comparator
	First Look: Entities and Architectures
	First Look: Data Types
	First Look: Design Units
	First Look: Levels of Abstraction
	First Look: Sample Circuit
	Understanding Types and Subtypes
	Type Conversions and Type Marks
	IEEE Standard 1164
	Using the Standard Logic Package
	Type Conversion and Standard Logic
	Standard Logic Data Types
	Standard Logic Operators
	Standard Logic Type Conversions
	Edge Detection and Other Functions
	Standard 1076.3
	Using Numeric Data Types
	Numeric Standard Operators
	Numeric Resize Functions
	Numeric Type Conversion Functions
	Numeric Matching Functions
	Numeric Translation Functions
	Reading and Writing Files with Text I/O
	Keyword: ABS
	Keyword: ACCESS
	Keyword: AFTER
	Keyword: ALIAS
	Keyword: ALL
	Keyword: AND
	Keyword: ARCHITECTURE
	Keyword: ARRAY
	Keyword: ASSERT
	Keyword: ATTRIBUTE
	Keyword: BEGIN
	Keyword: BLOCK
	Keyword: BODY
	Keyword: BUFFER
	Keyword: BUS
	Keyword: CASE
	Keyword: COMPONENT
	Keyword: CONFIGURATION
	Keyword: CONSTANT
	Keyword: DISCONNENT
	Keyword: DOWNTO
	Keyword: ELSE
	Keyword: ELSIF
	Keyword: END
	Keyword: END BLOCK
	Keyword: END CASE
	Keyword: END COMPONENT
	Keyword: END FOR
	Keyword: END GENERATE
	Keyword: END IF
	Keyword: END LOOP
	Keyword: END PROCESS
	Keyword: END RECORD
	Keyword: END UNITS
	Keyword: ENTITY
	Keyword: EXIT
	Keyword: FILE
	Keyword: FOR
	Keyword: FUNCTION
	Keyword: GENERATE
	Keyword: GENERIC
	Keyword: GENERIC MAP
	Keyword: GROUP
	Keyword: GUARDED
	Keyword: IF
	Keyword: IMPURE
	Keyword: IN
	Keyword: INERTIAL
	Keyword: INOUT
	Keyword: IS
	Keyword: LABEL
	Keyword: LIBRARY
	Keyword: LINKAGE
	Keyword: LITERAL
	Keyword: LOOP
	Keyword: MAP
	Keyword: MOD
	Keyword: NAND
	Keyword: NEW
	Keyword: NEXT
	Keyword: NOR
	Keyword: NULL
	Keyword: OF
	Keyword: ON
	Keyword: OPEN
	Keyword: OR
	Keyword: OTHERS
	Keyword: OUT
	Keyword: PACKAGE
	Keyword: PACKAGE BODY
	Keyword: PORT
	Keyword: PORT MAP
	Keyword: POSTPONED
	Keyword: PROCEDURE
	Keyword: PROCESS
	Keyword: PURE
	Keyword: RANGE
	Keyword: RECORD
	Keyword: REGISTER
	Keyword: REJECT
	Keyword: REM
	Keyword: REPORT
	Keyword: RETURN
	Keyword: ROL
	Keyword: ROR
	Keyword: SELECT
	Keyword: SEVERITY
	Keyword: SIGNAL
	Keyword: SLA
	Keyword: SLL
	Keyword: SRA
	Keyword: SRL
	Keyword: SUBTYPE
	Keyword: THEN
	Keyword: TO
	Keyword: TRANSPORT
	Keyword: TYPE
	Keyword: UNAFFECTED
	Keyword: UNITS
	Keyword: UNTIL
	Keyword: USE
	Keyword: VARIABLE
	Keyword: WAIT
	Keyword: WHEN
	Keyword: WHILE
	Keyword: WITH
	Keyword: XNOR
	Keyword: XOR
	Example: Shifter
	Example: Tcount
	Example: Video
	Example: Parity
	Example: Fib93
	Example: Crc8s
	Conditional Signal Assignment
	VHDL Operators
	Using Signals
	Using Variables
	Using Constants and Literals
	Understanding VHDL Operators
	Understanding VHDL Attributes
	The Concurrent Area
	Concurrent Signal Assignments
	Component Instantiations
	Blocks
	Selected Signal Assignment
	Delay Specifications
	Conditional vs. Selected Assignment
	Procedure Calls
	Generate Statements
	Concurrent Processes
	The Process Statement
	Port and Generic Mapping
	Signal Drivers
	Signal and Variable Assignments
	Sequential Statements in Subprograms
	If-Then-Else Statements
	Case Statements
	Loops
	Design Libraries
	For Loop
	While Loop
	Infinite Loop
	Loop Termination
	Functions and Procedures
	Declaring a Global Subprogram
	Declaring a Local Subprogram
	Functions
	Subprogram Overloading
	Procedures
	Parameter Types
	Mapping of Parameters
	Packages
	Components
	Configurations
	A Simple Test Bench
	Using Assert Statements
	Displaying Complex Strings in Assert Statements
	Using Loops and Multiple Processes
	Writing Test Vectors
	Keyword: NOT

