

ARM Cross Development with Eclipse

By: James P. Lynch

1 Introduction

I credit my interest in science and electronics to science fiction movies in the
fifties. Robbie the Robot in the movie “Forbidden Planet” especially enthralled
me and I watched every episode of Rocky Jones, Space Ranger on television.
In high school, I built a robot and even received a ham radio operator license at
age 13.

Electronic kits were popular then and I built many Heath kits and Knight kits,
everything from ham radio gear to televisions, personal computers and robots.
These kits not only saved money at the time, but the extensive instruction
manuals taught the basics of electronics.

Unfortunately, surface mount technology and pick-and-place machines
obliterated any cost advantage to “building it yourself” and Heath and Allied
Radio all dropped out of the kit business.

What of our children today? They have home computers to play with, don’t
they? Do you learn anything by playing a Star Wars game or downloading
music? I think not, while these pastimes may be fun they are certainly not
intellectually creative.

A couple years ago, there were 5 billion microcomputer chips manufactured
planet-wide. Only 300 million of these went into desktop computers. The rest
went into toasters, cars, fighter jets and Roomba vacuum cleaners. This is
where the real action is in the field of computer science and engineering.

Can today’s young student or home hobbyist tired of watching Reality
Television dabble in microcomputer electronics? The answer is an unequivocal
YES!

Most people start out with projects involving the Microchip PIC series of
microcontrollers. You may have seen these in Nuts and Volts magazine or
visited the plethora of web sites devoted to PIC computing. PIC microcomputer
chips are very cheap (a couple of dollars) and you can get an IDE (Integrated
Development Environment), compilers and emulators from Microchip and
others for a very reasonable price.

Another inexpensive microcontroller for the hobbyist to work with is the Rabbit
microcomputer. The Rabbit line is an 8-bit microcontroller with development
packages (board and software) costing less that $140.

I’ve longed for a real, state-of-the-art microcomputer to play with. One that can do 32-bit
arithmetic as fast as a speeding bullet and has all the on-board RAM and EPROM
needed to build sophisticated applications. My prayers have been answered recently as
big players such as Texas Instruments, Philips and Atmel have been selling inexpensive
microcontroller chips based on the 32-bit ARM architecture. These chips have
integrated RAM and FLASH memory, a rich set of peripherals such as serial I/O, PWM,
I2C, SSI, Timers etc. and high performance at low power consumption.

A very good example from this group is the Philips LPC2000 family of microcontrollers.
The LPC2106 has the following features, all enclosed in a 48-pin package costing about
$11.80 (latest price from Digikey for one LPC2106).

Key features

• 16/32-bit ARM7TDMI-S processor.
• 64 kB on-chip Static RAM.
• 128 kB on-chip Flash Program Memory. In-System Programming (ISP) and In-

Application Programming (IAP) via on-chip boot-loader software.
• Vectored Interrupt Controller with configurable priorities and vector addresses.
• JTAG interface enables breakpoints and watch points.
• Multiple serial interfaces including two UARTs (16C550), Fast I²C (400 kbits/s)

and SPI™.
• Two 32-bit timers (7 capture/compare channels), PWM unit (6 outputs), Real

Time Clock and Watchdog.
• Up to thirty-two 5 V tolerant general-purpose I/O pins in a tiny LQFP48 (7 x 7

mm2) package.
• 60 MHz maximum CPU clock available from programmable on-chip Phase-

Locked Loop with settling time of 100 us.
• On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.
• Two low power modes: Idle and Power-down.
• Processor wake-up from Power-down mode via external interrupt.
• Individual enable/disable of peripheral functions for power optimization.
• Dual power supply:

o CPU operating voltage range of 1.65 V to 1.95 V (1.8 V +- 8.3 pct.).
o I/O power supply range of 3.0 V to 3.6 V (3.3 V +- 10 pct.) with 5 V tolerant

I/O pads.

Several companies have come forward with the LPC2000 microcontroller chips placed
on modern surface-mount boards, ready to use. Olimex and New Micros have a nice
catalog of inexpensive boards using the Philips ARM family. I wrote a similar tutorial for
the New Micros TiniARM nine months ago and you can see it on their web site
www.newmicros.com.

http://www.newmicros.com/

Olimex, an up-and-coming electronics company in Bulgaria, offers a family of Philips
LPC2100 boards. Specifically they offer three versions with the LPC2106 CPU. You can
buy these from Spark Fun Electronics in Colorado; their web site is www.sparkfun.com
The Olimex boards are also carried by Microcontroller Pros in California, their web site
is www.microcontrollershop.com

This is the Olimex LPC-H2106 header board. You
can literally solder this tiny board onto Radio Shack
perfboard, attach a power supply and serial cable
and start programming. It costs about $49.95
Obviously, it requires some soldering to get started.

This is the Olimex LPC-P2106 prototype board.
Everything is done for you. There’s a power
connector for a wall-wart power supply, a DB-9
serial connector and a JTAG port. It costs about
$59.95 plus $2.95 for the wall-wart power supply.

This is the Olimex LPT-MT development board; it
has everything the prototype board above includes
plus a LCD display and four pushbuttons to
experiment with. It costs about $79.95 plus $2.95 for
the wall-wart power supply.

For starting out, I would recommend the LPC-P2106 prototype board since it has an
open prototype area for adding I2C chips and the like for advanced experimentation.

When you do design and develop something really clever, you could use the LPC-
H2106 header board soldered into a nice Jameco or Digikey prototype board and know
that the CPU end of your project will work straight away. If you need to build multiple
copies of your design, Spark Fun can get small runs of blank circuit boards built for
$5.00 per square inch. You can acquire the Eagle-Lite software from CadSoft for free to
design the schematic and PCB masks.

http://www.sparkfun.com/
http://www.microcontrollershop.com/

So the hardware to experiment with 32-bit ARM microprocessors is available and
affordable. What about the software required for editing, compiling, linking and
downloading applications for the LPC2106 board?

Embedded microcomputer development software has always been considered
“professional” and priced accordingly. It’s very common for an engineer in a technical
company to spend $1000 to $5000 for a professional development package. I once
ordered $18,000 of compilers and emulators for a single project. In the professional
engineering world, time is money. The commercial software development packages for
the ARM architecture install easily, are well supported and rarely have bugs. In fact,
most of them can load your program into either RAM or FLASH and you can set
breakpoints in either. The professional compiler packages are also quite efficient; they
generate compact and speedy code.

The Rowley CrossWorks recommended by Olimex is $904.00, clearly out of the range
for the student or hobby experimenter. I’ve seen other packages going up as high as
$3000. A professional would not bat an eyelash about paying this – time is money.

There is a low cost alternative to the high priced professional software development
packages, the GNU toolset. GNU is the cornerstone of the open-source software
movement. It was used to build the LINUX operating system. The GNU Toolset includes
compilers, linkers, utilities for all the major microprocessor platforms, including the ARM
architecture. The GNU toolset is free.

The editor of choice these days is the Eclipse open-source Integrated Development
Environment (IDE). By adding the CDT plugin (C/C++ Development Toolkit), you can
edit and build C programs using the GNU compiler toolkit. Eclipse is also free.

Philips provides a Windows flash programming utility that allows you to transfer the hex
file created by the GNU compiler/linker into the onboard flash EPROM on the LPC2106
microprocessor chip. The Philips tool is also free.

Macraigor has made available a free Windows utility called OCDremote that allows the
Eclipse/GDB (GNU Debugger) to access the Philips LPC2106 microprocessor via the
JTAG port using an expensive device called the “wiggler”. I’ve had more success
running the open-source Insight debugger than the debugger included with Eclipse;
however it’s only usable for programs running from RAM memory.

At this point, you’re probably saying “this is great – all these tools and they’re FREE!” In
the interest of honesty and openness, let’s delineate the downside of the free open
software GNU tools.

• The GNU tools do not currently generate as efficient code as the professional
compilers.

• The Insight Debugger cannot set a software breakpoint in FLASH since it can’t

erase and reprogram the FLASH.

• The OCDRemote JTAG utility does not support hardware breakpoints.

If you were a professional programmer, you would not accept these limitations. For the
student or hobbyist, the Eclipse/GNU toolset still gives fantastic capabilities for zero
cost.

The Eclipse/GNU Compiler toolset we will be creating in this tutorial operates in two
modes.

A. Application programmed into FLASH

DB-9
Serial Port

COM1

Short the BSL
jumper to download
and program into
flash.

Remove the BSL
jumper to execute

You can use a
standard 9-pin PC
serial cable to
connect COM1 to the
Olimex

board.

In this mode, the Eclipse/GNU development system assembles, compiles and links your
application for loading into FLASH memory. The output of the compiler/linker suite is an
Intel hex file, e.g. main.hex.

The Philips In-System Programming (ISP) utility is started within Eclipse and will
download your hex file and program the flash memory through the standard COM1
serial cable. The Boot Strap Loader (BSL) jumper must be shorted (installed) to run the
ISP flash programming utility.

To execute the application, you remove the BSL jumper and push the RESET button to
start the application.

Unfortunately, the Insight debugger cannot set a software breakpoint (it can’t program
FLASH) and it also doesn’t support hardware breakpoints. This effectively renders the
debugger useless in this mode.

B. Application programmed into RAM

LPT1

The BSL jumper
generally doesn’t
matter while using
JTAG

20-pin
JTAG
Port

Olimex ARM JTAG Adapter
 (WIGGLER)

Install the Debug
JTAG jumper while
running from RAM

In this mode, the Eclipse/GNU development system assembles, compiles and
links your application for loading into RAM memory. The output of the
compiler/linker suite is a GNU main.out file.

The PC is connected from the PC’s printer port LPT1 to the JTAG port through
the Olimex ARM JTAG interface (costs about $19.95 from Spark Fun
Electronics). The Olimex ARM JTAG is a clone of the Macraigor Wiggler.

You can run the OCDRemote program as an external tool from within Eclipse.
The Insight debugger (started from within Eclipse) communicates with the
Macraigor OCDRemote program that operates the JTAG port using the
Wiggler. With the Insight debugger, you can connect to the Wiggler and load
the GNU main.out file into RAM. From this point on, you can set software
breakpoints, view variables and structures and, of course, run the application.

The drawback is that the application must fit within RAM memory on the
LPC2106, which is 64 Kbytes. Still, it’s better than nothing.

My purpose in this tutorial is to guide the student or hobbyist through the myriad
of documentation and web sites containing the necessary component parts of a
working ARM software development environment. I’ve devised a simple sample
program that blinks an LED that is compatible in every way with the GNU
assembler, compiler and linker. There are two variants of this program; a
FLASH-based version and a RAM-based version. I’ve substituted the GNU
Insight graphical debugger instead of the Eclipse debugger because it is
simpler to use and currently more reliable.

If you get this to work, you are well on your way to the fascinating world of
embedded software development. Take a deep breath and HERE WE GO!

If you are very new to ARM microcomputers, there’s no better introductory book
than “The Insider’s Guide to the Philips ARM7-Based Microcontrollers” by
Trevor Martin. Martin is an executive of Hitex, a UK vendor of embedded
microcomputer development software and hardware and he obviously
understands his material.

You can download this e-book for free from the Hitex web site.

http://www.hitex.co.uk/arm/lpc2000book/index.html

There is a controversial section in Chapter 2 with benchmarks showing that the GNU
toolset is 4 times slower in execution performance and 3.5 times larger in code size
than other professional compiler suites for the ARM microprocessors. Already Mr.
Martin has been challenged about these benchmarks on the internet message boards;
see “The Dhrystone benchmark, the LPC2106 and GNU GCC” at this web address:

 http://www.compuphase.com/dhrystone.htm

Well, we can’t fault Trevor Martin for tooting his own horn! In any case, Martin’s book is
a magnificent work and it would behoove you to download and spend a couple hours
reading it. I’ve used Hitex tools professionally and can vouch for their quality and value.
Read his book! Better yet, it’s required reading.

http://www.hitex.co.uk/arm/lpc2000book/index.html
http://www.compuphase.com/dhrystone.htm

2 Installing the Necessary Components

To set up an ARM cross-development environment using Eclipse, you need to
download and install several components. The required parts of the
Eclipse/ARM cross development system are:

1. SUN Java Runtime

2. Eclipse IDE

3. Eclipse CDT Plug-in for C++/C Development

4. CYGWIN GNU C++/C Compiler and Toolset for Windows

5. GNUARM GNU C++/C Compiler for ARM Targets

6. GNUARM Insight Debugger

7. Philips Flash Programmer for LPC2100 Family CPUs

8. Macraigor OCDremote for JTAG debugging

3 JAVA Runtime

The Eclipse IDE was written entirely in JAVA. Therefore, you must have the
JAVA runtime installed on your Windows computer to run Eclipse. Most people
already have JAVA set up in their Windows system, but just in case you don’t
have JAVA installed, here’s how to do it.

The JAVA runtime is available free at www.sun.com. The following screen will
appear. Click on “Downloads – Java 2 Standard Edition” to continue.

http://www.sun.com/

Select the “latest and greatest” Java runtime system by clicking on J2SE 5.0.

Specifically, we need only the Java Runtime Environment (JRE). Click on
“Download JRE 5.0 Update 3.”

The Sun “Terms of Use” screen appears first. You have to accept the Sun
binary code license to proceed. If you develop a commercial product using the
Sun JAVA tools, you will have to pay royalties to them.

Select the “accept”
radio button and click
“continue” to proceed.

One more choice to decide on – we want the “online” installation for Windows.

Here’s a blow-up of the line we must click on. We select “online” so we can install
immediately.

Finally the “file download” window appears. Click on “Run” to download and run the
installation.

`

Now the downloading will start.

After downloading, the installation will proceed automatically.

When the Java Runtime Environment installation completes, you will see this display.
Click on “Finish.”

As a quick check, go to the Windows Start menu and select “Start – Control Panel –
Add or Remove Programs.” Scroll down the list of installed programs and see if the
Java J2SE Runtime Environment was indeed installed!

The Sun Microsystems web site is very dynamic, changing all the time. Don’t be
surprised if some of the example displays shown here are a bit different.

4 Eclipse IDE

The Eclipse IDE is a complete integrated development platform similar to Microsoft’s
Visual Studio. Originally developed by IBM, it has been donated to the Open-Source
community and is now a massive world-wide Open-Source development project.

Eclipse, by itself, is configured to edit and debug JAVA programs. By installing the CDT
plug-ins, you can use Eclipse to edit and debug C/C++ programs (more on that later).

When properly setup, you will have a sophisticated programmer’s editor, compilers and
debugger sufficient to design, build and debug ARM applications.

You can download Eclipse for free at the following web site.

www.eclipse.org

The following Eclipse welcome page will display. Expect some differences from
my example below since the Eclipse web site is very dynamic.

Click on “downloads” to get the latest versions of Eclipse.

The Eclipse download window will appear. Eclipse is constantly being improved
and new releases come several times a year. Usually the safest thing to
download is the “official” latest release. When this tutorial was created, the
latest release was Eclipse SDK 3.0.2.

Click on “downloads”

Click on “Downloads” to get things started.

http://www.eclipse.org/

Click on Eclipse SDK 3.0.2 to
get the latest stable release
for Windows

When working with the Eclipse and CDT, it’s important to be sure that the CDT plugin
you’ve selected is compatible with the Eclipse revision you also selected. Be sure to
study the Eclipse web sites to be sure that you have compatible revisions selected.

If you click on Eclipse SDK 3.0.2 where it says “Download Now:” shown above, this is
the Windows version of the download.

What appears next is a list of download mirror sites that host the Eclipse components. I
selected the University of Buffalo in my home town (and where I got my Master’s
degree).

Great! This mirror site
is in my home town.

When the mirror site starts the download process, you have to select a destination
directory to place the Eclipse zip file. In my case, I created an empty C:/scratch
directory on one of my hard drives (you could use any other drive as well).

First click on Save below.

Now browse to the c:/scratch directory that you created previously.

Click on Save to start the download.

Now the download will start. Eclipse is delivered as a ZIP file. It’s 85 megabytes in
length and takes 8 minutes and 20 seconds to download with my broadband cable
modem. If you have a dialup internet connection, this will be excruciating. If you don’t
have a cable modem high-speed internet connection, I suggest you find somebody who
does and go over there with a blank CDROM and a gift.

When the Eclipse download completes, you should see the following zip file in your
scratch directory.

Contents of folder C:/scratch/

Eclipse is delivered as a ZIP file (eclipse-SDK-3.0.2-win32.zip). You can use WinZip to
decompress this file and load its constituent parts on your hard drive.

If you don’t have WinZip, you can get a free evaluation version from this address:

http://www.winzip.com/

There’s a decent Help file supplied by WinZip. Therefore, we’re going to assume that
the reader is able to use a tool such as WinZip to extract from zip files.

http://www.winzip.com/

In my computer, with WinZip installed, double-clicking on the zip file name (eclipse-
SDK-3.1M7-win32.zip) in the Windows Explorer display above will automatically start
up WinZip.

WinZip will ask you into what directory you wish to extract the contents of the zip file. In
this case, you must specify the root drive C:

Extract Eclipse to
the root directory C:

The WinZip Utility will start extracting all the Eclipse files and directories into a c:/eclipse
directory on your root drive C:.

At this point, Eclipse is already installed (some things are done when you run it
for the first time). The beauty of Eclipse is that there are no entries made into
the Windows registry, Eclipse is just an ordinary executable file. Here’s what
the Eclipse directory looks like.

You can create a desktop icon for conveniently starting Eclipse by right-clicking
on the Eclipse application above and sending it to the desk top.

Right-click on the Eclipse
application and send it to
the desk top.

Now is a good time to test that Eclipse will actually run. Click on the desktop icon to
start the Eclipse IDE.

If the Eclipse Splash Screen appears, we have succeeded. If not, chances are that the
Java Run Time Environment is not in place. Review and repeat the instructions on
installing Java on your computer.

The first order of business is to specify the location of the Workspace. I choose to place
the workspace within the Eclipse directory. You are free to place this anywhere; you can
have multiple workspaces; here is where you make that choice.

When you click OK, the Eclipse main screen will start up.

If you made it this far, you now have a complete Eclipse system capable of developing
JAVA programs for the PC. There are a large number of JAVA books and some really
good ones showing how to develop Windows applications with JAVA using the Eclipse
toolkit.

Eclipse itself was written entirely in JAVA and this shows you just how sophisticated a
program can be developed with the Eclipse JAVA IDE.

However, the point of this tutorial is to show how the Eclipse platform with the CDT
plugins can be used to develop embedded software in C language for the ARM
microcomputers.

5 Eclipse CDT

Eclipse, just by itself, is designed to edit and debug JAVA programs. To equip it
to handle C and C++ programs, you need to download the CDT (C
Development Toolkit) plug-in. The CDT plug-in is simply a collection of files that
are inserted into two Eclipse directories.

The CDT plugin selected must be compatible with the Eclipse SDK 3.0.2
release we just installed! To determine this, click on the following CDT link.

 http://update.eclipse.org/tools/cdt/releases/new

You can let Eclipse install the CDT plugins for you. Start Eclipse and click on
“Help – Software Updates – Find and Install.”

Copy this URL to the clipboard

OK, these CDT releases
will work with Eclipse 3.0.2

This is the most recent CDT
release compatible with Eclipse
3.0.2

We can let Eclipse install the CDT plugins for us.

Start up Eclipse and click on “Help – Software Updates – Find and Install … “

http://update.eclipse.org/tools/cdt/releases/new

Select the “Search for new features to install” radio button and click “Next” Select the “Search for new features to install” radio button and click “Next”

We need to specify the CDT update site, so click on “New Remote Site.”

If you still have the CDT update URL saved above, paste it into the URL text
box below.

 http://download.eclipse.org/tools/cdt/releases/new

Enter “CDT” into the Name text box and click OK.

http://download.eclipse.org/tools/cdt/releases/new

Now check the “CDT” box and click “Next” to continue the CDT installation.

Check the box for “Eclipse C/C++ Development Tools 2.1.1” in the window
below and click “Next” to continue the installation.

Accept the license agreement and click “Next.”

Take the defaults on the next screen and click “Finish” to start the CDT
installation.

The CDT installation will start up.

When the CDT download and installation completes, a pop-up window will
advise you to restart Eclipse. Answer yes and when Eclipse restarts, it will have
the CDT plugins properly installed. Eclipse must be restarted for the CDT
plugins to take effect.

Let’s now test if the CDT Plugin installation was successful. If Eclipse is not already
running, click on the desktop Eclipse icon to start up the Eclipse IDE (Integrated
Development Environment).

Now click on “File – New – Project”. This should display the “new project” window.

If you see C and C++ as possible projects to select, then you know that the CDT has
been installed successfully. Exit from Eclipse and we’ll proceed to downloading the
Cygwin GNU Toolkit.

6 CYGWIN GNU Toolset for Windows

The GNU toolset is an open-source implementation of a universal compiler
suite; it provides C, C++, ADA, FORTRAN, JAVA, and Objective C. All these
language compilers can be targeted to most of the modern microcomputer
platforms (such as the ARM 32-bit RISC microcontrollers) as well as the
ubiquitous Intel/Microsoft PC platforms. By the way, GNU stands for “GNU, not
Unix”, really – I’m serious!

Unfortunately for all of us that have desktop Intel/Microsoft PC platforms, the
GNU toolset was originally developed and implemented with the Linux
operating system. To the rescue came Cygwin, a company that created a set of
Windows dynamic link libraries that trick the GNU compiler toolset into thinking
that it’s running on a Linux platform. If you install the GNU compiler toolset
using the Cygwin system, you can literally open up a DOS command window
on your screen and type in a DOS command like this:

>arm-elf-gcc –g –c main.c

The above will compile the source file main.c into an object file main.o for the
ARM microcontroller architecture. In other words, if you install the Cygwin GNU
toolset properly, you can forget that the GNU compiler system is Linux-based.

Normally, the Cygwin installation gives you a compiler toolset whose target
architecture is the Windows/Intel PC. It does not include a compiler toolset for
the ARM microprocessors, the MIPS microprocessors, and so forth.

It is possible to build a compiler toolset for the ARM processors using the
generic Cygwin GNU toolkit. In his book “Embedded System Design on a
Shoestring”, Lewin A.R.W. Edwards gives detailed instructions on just how to
do that. Fortunately, there are quite a few pre-built tool chains on the internet
that simplify the process. One such tool chain is GNUARM which gives you a
complete set of ARM compilers, assemblers and linkers. This will be done in
the next section of this tutorial.

It’s worth mentioning that the GNUARM tool chain doesn’t include the crucial
MAKE utility, it’s in the Cygwin tool kit we’re about to install. This is why you
have to add two path specifications to your Windows environment; one for the
c:/cygwin/bin folder and one for the c:/programfiles/gnuarm/bin.

The Cygwin site that has the GNU toolset for Windows is:

 www.cygwin.com

http://www.cygwin.com/

The Cygwin web site opens as follows:

The first thing to do is to click on the install icon:

We need to download the setup executable and automatically run it.

Click on “Run” to
download and run
the Cygwin setup
program.

Now the Cygwin wizard will start up. Select “Next” to continue.

Choose “Install from Internet” and then click “Next.”

Now we specify a directory where all the downloaded components go, our c:/scratch
folder will do just fine.

Since I have a high speed internet connection, I always select “Direct Connection.”
Click “Next” to continue.

Now the Cygwin Installer presents you with a list of mirror sites that can deliver the
Cygwin GNU Toolkit. It’s a bit of a mystery which one to choose; I picked
http://planetmirror.com because it sounds cool. You may have to experiment to find one
that downloads the fastest. Click “Next” to continue.

http://planetmirror.com/

Cygwin will download a few bits for a couple of seconds and then display this “Select
Packages” list allowing you to tailor exactly what is included in the down load.

The screen above allows you to specify what GNU packages you wish to install.

Basically, we want an installation that will allow us to compile for the Windows XP / Intel
platform. This will allow us to use Eclipse to build Windows applications (not covered in
this document). Remember that we’ll be installing the GNUARM suite of compilers,
linkers etc. for the ARM processor family shortly.

If you look at the Cygwin “Select Packages” screen below, you’ll see the following line.

You must click on the little circle with the two arrowheads until the line changes to this:

This will force installation of the default GNU compiler suite for Windows/Intel targets.
Here’s the “Select Packages” screen before clicking on the circle with arrowheads.
The following four packages must be selected and changed from “default” to “install.”

Archive Default Archive Install
Devel Default Devel Install
Libs Default Libs Install
Web Default Web Install

Click on the little circle with the arrowheads until you change the four packages listed
above from “default” to “install.”

You should see the screen displayed directly below. Note that the Archive, Devel, Libs
and Web components are selected for “Install”. Everything else is left as “default.”

Click “Next’ to start the download.

Now the Cygwin will start downloading. This creates a huge 700 Megabyte directory on
your hard drive and takes 30 minutes to download and install using a cable modem.

When the installation completes, Cygwin will ask you if you want any desktop icons and
start menu entries set up. Say “No” to both. These icons allow you to bring up the BASH
shell emulator (like the command prompt window in Windows XP). This would allow you
do some Linux operations, but this capability is not necessary for our purposes here.
Click on “Finish” to complete the installation.

Now the Cygwin installation manager completes and shows the following result.

The directory c:\cygwin\bin must be added to the Windows XP path environment
variable. This allows Eclipse to easily find the Make utility, etc.

Using the Start Menu, go to the Control Panel and click on the “System” icon.

Then click on the “Advanced” tab and select the “Environment Variables” icon.
Highlight the “Path” line and hit the “Edit” button. Add the addition to the path as shown
in the dialog box shown below (don’t forget the semicolon separator). The Cygwin FAQ
advises putting this path specification before all the others, but it worked for me sitting at
the end of the list.

We are now finished with the CYGWIN installation. It runs silently in the background
and you should never have to think about it again.

7 Downloading the GNUARM Compiler Suite

At this point, we have all the GNU tools needed to compile and link software for
Windows/Intel computers. It is possible to use all this to build a custom GNU compiler
suite for the ARM processor family. The very informative book “Embedded System
Design on a Shoestring” by Lewin A.R.W. Edwards ©2003 describes how to do this
and it is rather involved.

Fortunately, Pablo Bleyer Kocik and the people at gnuarm.com have come to the
rescue with pre-built GNU compiler suite for the ARM processors. Just download it with
the included installer and you’re ready to go.

Click on the following link to download the GNUARM package.

www.gnuarm.com

The GNUARM web site will display and you should click on the “Files” tab.

The appropriate toolchain to select is Binaries – Cygwin - GCC-3.4.1

The correct package to download is Binaries Cygwin – GCC- 4.0 toolchain

http://www.gnuarm.com/

Just like all the other downloads we’ve done, we direct this one to our empty download
directory on the hard drive. Here we click “Save” and then specify the download
destination.

Once again, our c:/scratch directory will suffice.

As you can see, this download has a very long name!

This download is a 18 megabyte file and takes 30 seconds on a cable modem.

The download directory now has the following setup application with the following
unintelligible filename: bu-2.15_gcc-3.4.1-c-c++-java_nl-1.12.0_gi-6.0.exe

Click on that filename to start the installer.

Click on this
application to start
the GNUARM
installer

The GNUARM installer will now start. Click “Next” to continue.

Accept the GNU license agreement – don’t worry, it’s still free. Click “Next” to continue.

We’ll take the default and let it install into the “Program Files” directory. Click “Next” to
continue.

We’ll also take the defaults on the “Select Components” window. Click “Next” to
continue.

Take the default on this screen. Click “Next” to continue.

It’s very important that you don’t check “Install Cygwin DLLs”. We already have the
Cygwin DLL installed from our Cygwin environment installation. Since all operations are
called from within Eclipse, we don’t need a “desktop icon” either. Click “Next” to
continue.

Click on “Install” to start the GNUARM installation.

Sit back and watch the GNUARM compiler suite install itself.

When it completes, the following screen is presented. Make sure that “Add the
executables directory to the PATH variable” is checked. This is crucial.

This completes the installation of the compiler suites. Since Eclipse will call these
components via the make file, you won’t have to think about it again.

It’s worth mentioning that the GNUARM web site has a nice Yahoo user group with
other users posing and answering questions about GNUARM. Pay them a visit. The
GNUARM web site also has links to all the ARM documentation you’ll ever need.

8 Installing the Philips LPC2000 Flash Utility into Eclipse

The Philips LPC2000 Flash Utility allows downloading of hex files from the
COM1 port of the desktop computer to the Olimex LPC-P2106 board’s flash (or
RAM) memory.

We need to download the latest version of this program from the Philips web
site and unzip and install it into the program files directory. Then we will start
Eclipse and add the LPC2000 Flash Utility as an external tool to be invoked.

Click on the following link to access the Philips LPC2106 web page.

www.semiconductors.philips.com/pip/LPC2106.html

The following web page for the LPC2106 should open.

http://www.semiconductors.philips.com/pip/LPC2106.html

If you scroll down this page, you will see a link to the LPC2000 Flash Utility
download. Click on the ZIP file LPC2000 Flash Utility (date 2004-03-01)

As before, we’ll save the downloaded zip file in our empty c:/scratch directory. This is a
fairly short download, only about 2 megabytes.

We’ll use WinZip to unzip this into the c:/scratch directory.

Now you can see that the download directory has a setup utility and another zip
file containing the LPC2000 Hex Utility. Click on the setup.exe application to
start the installer.

Click on setup to
start the installer

The LPC2000 Flash Utility setup now starts. Click on OK to proceed.

Take the default on this screen below and let it install the LPC2000 Flash Utility into the
Program Files directory.

In a very few seconds, the installer will complete and you should see this screen.

Here we see the utility residing in the Program Files directory, just as promised.

Now that the Philips LPC2000 Flash Utility is properly installed on our
computer, we’d like to install it into Eclipse so that it can be invoked from the
RUN pull-down menu under the “external tools” option. Start Eclipse by
clicking on the desktop icon.

The layout of the Eclipse screen is called a “perspective.” The default
perspective is the “resource” perspective, as shown below.

We need to change it into the C/C++ perspective. In the Window pull-down
menu, select Window – Open Perspective – Other – C/C++ and then click
OK.

Eclipse will now switch to the C/C++ perspective shown below and will
remember it when you exit.

Now we want to add the Philips LPC2000 Flash Utility to the “External Tools”
part of the Run pull-down menu. Select RUN – External Tools – External
Tools.

We want to add a new program to the External Tools list, so click on Program
and then New.

Note below that there’s a new program under the “program” tree with the name
New_configuration and there’s no specifications as to what it is.

In the Name text box, replace New-configuration with LPC2000 Flash Utility.

In the Location text box, use the “Browse File System” tool to find the Philips
LPC2000 Flash Utility in the Program Files directory. Its name is
LPC210x_IPC.exe.

Here’s the External Tools window before editing.

Here’s the External Tools window after our modifications. Click on Apply to accept.

Close everything out and return to the Run pull-down menu. Select Run – External
Tools – Organize Favorites.

We’re now going to put the Philips PLC2000 Flash Utility into the “favorites” list.
Click on “Add” in the window below.

Click the selection box for LPC2000 Flash Utility. This will add it to the favorites list.

Now when we click on the Run pull-down menu and select “External Tools,” we
see the LPC2000 Flash Utility at the top of the list.

Click on LPC2000 Flash Utility to verify that it runs.

Now cancel the LPC2000 Flash Utility and quit Eclipse.

9 Installing the Macraigor OCDremote Utility

OCDRemote is a utility that listens on a TCP/IP port and translates GDB
monitor commands into Wiggler JTAG commands. This permits Eclipse/GDB
to communicate to the Olimex LPC-P2100 board as a target monitor accessed
via Ethernet. Macraigor has always made this utility available on the internet as
“freeware.” The OCDRemote utility can be downloaded at:

http://www.macraigor.com/full_gnu.htm

You should see the following screen open up.

http://www.macraigor.com/full_gnu.htm

If you scroll the above screen down a bit, you should see the download for
OCDRemote. Click on the link “DOWNLOAD Windows OCDRemote v2.12”.

Click on “Run” so it will download and immediately install OCDRemote.

The download phase is quick since the OCDRemote is only a couple of megabytes.

The Macraigor installer should start up; just click “Next” to continue.

The next screen lets you choose where OCDRemote is installed. OCDRemote
normally installs in c:/cygwin/usr/local/bin.

We’ll have to make sure that this directory is on a Windows Path.

Click on “Next” to accept c:/cygwin/usr/local/bin as the OCDRemote
installation directory.

Clicking on “Install” will complete the OCDRemote installation.

The Wizard completion screen lets you restart your computer to put
OCDRemote into the Windows registry.

Just like the Philips ISP Flash Utility, we should install the Macraigor
OCDremote utility as an “external tool” that can be accessed easily from the
Eclipse CDT RUN pull-down menu.

Start up Eclipse and, if necessary, switch to the C/C++ perspective by clicking
“Window – Open Perspective – Other – C/C++.”

Switching perspectives brings up the C/C++ window (perspective) and this will be
remembered when you re-enter Eclipse.

In a procedure similar to installing the Philips Flash Utility as an “External Tool”, click on
“Run – External Tools – External Tools …” This will bring up the External Tools
dialog.

Click on “New” and replace the name with OCDremote. Use the “browse file
system” to find it. It should be in the directory c:/cygwin/usr/local/bin.

The arguments needed to properly start the OCDremote are as follows:

 -cARM7TDMI-S specifies the CPU being accessed
 -p8888 specifies the pseudo TCP-IP port being used
 -dWIGGLER specifies the JTAG hardware being used
 -a1 specifies LPT1 for the Wiggler
 -s7 specifies next-to-slowest speed

It’s a good idea to not tamper with these values. Click on “Apply” to finish the setup.

Just like the Philips LPC2000 Flash Utility, we’d like to include the OCDremote
application in our list of “favorite” External Tools. This allows us to quickly start
the OCDremote JTAG server from within Eclipse.

Click on “Run – External Tools – Organize Favorites”

Now click on “Add…” in the Organize External Tools … window and follow that
by checking “OCDremote” in the Add External Tools Configurations: window.
Click on “OK” to add the OCDremote to the list of favorites.

Now verify that the OCDremote is in the list of External Tools favorites. Click
on “Run – External Tools” and see that it’s now included in the list of favorites.

Now is a good time to point out that there’s a handy shortcut button in Eclipse to run the
External Tools. Click on the External Tools button’s down arrow to expand the list of
available tools.

Click on either of the
external tools to start
them running.

10 Installing the INSIGHT Graphical Debugger

Eclipse CDT has its own debugger, employing the GDB serial protocol. The
truth is, I’ve been unable to get it to work reliably with the Wiggler using
OCDremote and with the Segger J-Link USB JTAG interface using the J-Link
server written by Nick Randell. As far as JTAG debugging goes, the Eclipse
debugger is just not ready for prime time (they are working on it).

Insight is a pretty good open-source debugger that can be made to work with
the Wiggler JTAG interface. It is already present in the GNUARM directory on
C:/Program Files/ installed earlier.

Let’s install the Insight Debugger as an Eclipse External Tool.

Click on “Run – External Tools – External Tools …”

In the External Tools dialog window below, click on “New-configuration” on the left.

Now fill this dialog in as shown below. The Insight Debugger is the executable file “arm-
elf-insight.exe” and it’s in the c:/Program Files/GNUARM/bin folder.

You can
leave these
two text
boxes blank
for now.

In the External Tools window above, the Insight executable is typed into the Location:
text box. You can use the “Browse File System” button to hunt for it.

The “Working Directory” and “Arguments” text box will contain the project’s
workspace file folder and the project’s arm-elf executable, in this example “main.out”.
For the moment, you can leave these two text boxes blank, we’ll return to them later
when we get ready to run the Insight debugger.

Similar to the Philips Flash Utility and the Macraigor OCDremote, we’d like to add the
Insight debugger to our list of “favorite” External Tools.

Click on “Run – External Tools – Organize Favorites …”.

In the “Organize External Tools …” window on the left below, click on “Add …” and then
“OK”.

In the “Add External Tools Favorites” window on the right below, click and check-mark
the Insight debugger select box and then click “OK” to add it as a favorite.

Finally, click on “OK” to officially add Insight as a favorite External Tool.

As one final confidence check, click on the “Run External Tools” button and
verify that all three tools are properly installed.

It’s worth mentioning that to run the Insight Graphical Debugger; you will click
on OCDremote first to get it running and then click on Insight to start the
debugger.

11 Verifying the PATH Settings

There is one final and very crucial step to make before we complete our tool building.
We have to ensure that the Windows PATH environment variable has entries for the
Cygwin toolset, the GNUARM toolset and the OCDremote JTAG server.

These are the three paths that must be present in the Windows environment:

c:\cygwin\bin
c:\program files\gnuarm\bin
c:\cygwin\usr\local\bin

To verify that these paths are present in Windows and to make changes if required,
start the Windows Control Panel by clicking “Start – Control Panel”.

Now click on the “Advanced” tab below.

Now click on the “Environment Variables” button.

In the Environment Variables window, find the line for “Path” in the System Variables
box on the bottom, click to select and highlight it and then click on “Edit”.

Take a very careful look at the “Edit System Variable” window (the Path Edit, in this
case).

You should see the following paths specified, all separated by semicolons. The path is
usually long and complex; you may find the bits and pieces for GNUARM interspersed
throughout the path specification. I used cut and paste to place all my path
specifications at the beginning of the specification (line); this is not really necessary.

You should see the following paths specified.

 c:\cygwin\bin;c:\program files\gnuarm\bin;c:\cygwin\usr\local\bin

If any of the three is not present, now is the time to type them into the path specification.

I’ve found that not properly setting up the Path specification is the most common
mistake made in configuring Eclipse to do cross-development.

This completes the setup of Eclipse and all the ancillary tools required to cross develop
embedded software for the ARM microcomputer family (Philips LPC2000 family in
specific).

If you stayed with me this far, your patience will soon be rewarded!

Or as Yoda would say, “Rewarded soon, your patience will be!”

12 Creating a Simple Eclipse Project

At this point, we have a fully-functioning Eclipse IDE capable of building C/C++
programs for the ARM microprocessor (specifically for the Olimex LPC-P2106
prototype board).

We will now create an Eclipse C project called “demo2106_blink_flash” that
will blink the board’s red LED_J which is I/O port P0.7. This demo uses no
interrupts and runs totally out of onboard flash memory. It has been
intentionally designed to be as simple and as straightforward as possible.

Click on our Eclipse desktop icon to start Eclipse.

Eclipse should start and present the C/C++ perspective as shown below. If not, select
“Window - Open Perspective – Other - C/C++” to change to the C++ perspective.

To create a project, select File – New – New Project - Standard Make C Project from
the File pull-down menu and click “Next” to continue.

You should see the “New Project” dialog box and enter the project name
(demo2106_blink_flash) in the box as shown below. Click on Next to continue.

The New Project dialog box appears next. If you click on the “Make Builder” tab, you’ll
notice that Eclipse build command is “make.” Make is provided by the Cygwin GNU
tools.

Take the default on the “Build
Command”, Eclipse will always
issue a “make” command to
build your project.

These are the targets
that “make” will run
when you hit the Build
All, Build Project or
Clean toolbar buttons.

Let’s remind ourselves that we installed the Cygwin GNU tools earlier in the tutorial and
the Windows Explorer will show that the make.exe file is indeed in the directory
c:/cygwin/bin, as shown below.

This is a good time to point out the differences between “Build All”, “Build Project” and
“Clean.”

Build All Will execute the command “make clean all.”
 It will first clean (delete) all object, list and output files.
 Then it will rebuild everything, whether needed or not.

Build Project Will execute the command “make all.”
 This will not clean (delete) anything.
 It will only compile those source files that are “out-of-date.”

Clean Will execute the command “make clean.”

Will clean (delete) all object, list and output files.

This is no different from opening up a DOS command window and typing the command
in directly, such as.

 > make clean all

If you click “Finish” on the “New Project” dialog, Eclipse will return to the C/C++
Perspective.

Now the C/C++ perspective shows a bona fide project in the “C/C++ projects”
box on the left. As of now, there are no source files created.

We can now use Eclipse/CDT’s import feature to copy the source files into the project.

Assuming that you successfully unzipped the “demo2106_blink_flash.zip” project files
associated with this tutorial to an empty directory such as c:/scratch, you should have
the following source and make files in that directory.

Click on the “File” pull-down menu and then click on “Import.” Then in the “Import”
window, click on “File System.”

When the “Import – File System” window appears, click on the “Browse” button. Hunt
for the sample project which is stored in the c:/scratch/ directory.

Click on the directory “scratch” and hit the “OK” button in the “Import from directory”
window on the left below.

Click on “Select All” in the Import window below right to
get the source files selected for import into our project.

Now we have to indicate the
destination for our source
files. Click on “Browse” on
the line to the right that says
“Into Folder:”

The proper destination folder appears in the Import Into Folder window below.

Click on the folder name “demo2106_blink_flash” and click “OK.” The directory name
“demo2106_blink_flash” should appear in the text box.

Now the Import dialog is completely filled out; we can click on “finish” to actually import
the source files into our project.

Now the C/C++ perspective main screen will reappear. Click on the “+” expand symbol
in the navigator pane to see if our files have been transferred.

Success is at hand, the expanded Projects view in the Navigator pane on the left shows
our imported files.

This is a good place to identify the imported source files.

 Description of Project Files

lpc210x.h Standard LPC2106 header file
crt.s Startup assembler file
main.c Main C program
makefile GNU makefile
demo2106_blink_flash.cmd GNU Linker script file

13 Description of the LPC210X.H Include File

Let’s look at the lpc210x.h header file. Double-click on it in the Project pane on the left’

ARM peripherals are memory-mapped, so all I/O registers are defined in this file so you
don’t have to type in the absolute memory addresses.

14 Description of the Startup File CRT.S

Now let’s look on the startup assembler file, crt.s. Double-click on it.

This part of the crt.s file has some symbols set to the various stack sizes and mode
bits.

This part of the crt.s file sets up the interrupt vectors.

Note that all of the code and data that follows goes into the .text section. It is also in
ARM 32-bit code (not Thumb).

One label is made global, _startup. This will be available to other modules in the project
and will also appear in the map.

The GNU assembler doesn’t require you .extern anything. If a symbol is not defined in
the assembler file, it is automatically assumed to be external.

The vector table is 32 bytes long and is required to be placed at address 0x000000.

You will see later in this tutorial that the interrupt service routines referenced in the
Vector Table are just endless-loop stubs in the main.c function and the interrupts are
turned off.

The NOP instruction at address 14 is an empty spot to hold the checksum. Page 179 of
the Philips LPC2106 manual states:

The reserved ARM interrupt vector location (0x0000 0014) should contain the 2’s
complement of the check-sum of the remaining interrupt vectors. This causes
the checksum of all of the vectors together to be 0.

Before you fall on your sword, you’ll be happy to know that the Philips Flash Loader will
calculate that checksum and insert it for you. That’s why we show it as a NOP.

This part of the crt.s file sets up the various interrupt modes and stacks.

The label Reset_Handler is the beginning of the code. Recall that the first interrupt
vector at address 0x000000 loads the PC with the contents of the address Reset_Addr,
which contains the address of the startup code at the label Reset_Handler. This trick,
used in the entire vector table, loads a 32-bit constant into the PC and thus can jump to
any address in memory space.

 _vectors: ldr PC, Reset_Addr
 :
 Reset_Addr: .word Reset_Handler

Whenever the LPC2106 is reset, the instruction at 0x000000 is executed first; it jumps
to Reset_Handler. From that point, we are off and running!

The first part of the startup code above sets up the stacks and the mode bits.

The symbol _stack_end will be defined in the linker command script file
demo2106.cmd. Here is how it will be defined. Knowing that the Philips ISP Flash
Loader will use the very top 288 bytes of RAM for its internal stack and variables, we’ll
start our application stacks at 0x4000FEE0.
(Note: 0x40010000 – 0x120 = 0x4000FEE0)

/* define a global symbol _stack_end, placed at the very end of RAM (minus 4 bytes) */
stack_end = 0x4000FEE0 – 4;

Working that out with the Windows calculator, the _stack_end is placed at 4000FEDC.

The code snippet that sets up the stacks and modes is a bit complex, so let’s explain it
a bit.

First we load R0 with the address of the end of the stack, as described above.

 ldr r0, =_stack_end

Now we put the ARM into Undefined Instruction mode by setting the MODE_UND bit in
the Current Program Status Register (CPSR). The four modes undefined, irq, abort and
svc all have their own private copies of R13 (sp) and r14 (link return). The FIQ mode
has private copies of registers R8 – R14. Thus, by writing R0 into the stack pointer sp
(R13), it will use 0x4000FEDC as the initial stack pointer if we ever have processing of
an undefined instruction. By subtracting the undefined stack size (4 bytes) from R0,
we’re limiting the stack for UND mode to just 4 bytes.

 msr CPSR_c, #MODE_UND|I_BIT|F_BIT /* This puts the CPU in undefined mode */
 mov sp, r0 /* stack pointer for UND mode is 0x40000FEDC */
 sub r0, r0, #UND_STACK_SIZE /* Register R0 is now 0x4000FED8 */

Now we put the ARM into Abort mode by setting the MODE_ABT bit in the CPSR. As
mentioned above, abort mode has its own private copies of R13 and R14. We now set
the abort mode stack pointer to 0x4000FED8. Again by subtracting the abort stack size
from R0, we’re limiting the stack for ABT mode to just 4 bytes.

 msr CPSR_c, #MODE_ABT|I_BIT|F_BIT /* this puts CPU in Abort mode */
 mov sp, r0 /* stack pointer for ABT mode is 0x4000FED8 */
 sub r0, r0, #ABT_STACK_SIZE /* Register R0 is now 0x4000FED4 */

Now we put the ARM into FIQ (fast interrupt) mode by setting the MODE_FIQ bit in the
CPSR. As mentioned above, FIQ mode has its own private copies of R14 through R8.
We now set the abort mode stack pointer to 0x4000FED4. Again by subtracting the
abort stack size from R0, we’re limiting the stack for FIQ mode to just 4 bytes. We’re not
planning to support FIQ interrupts in this example.

 msr CPSR_c, #MODE_FIQ|I_BIT|F_BIT /* this puts CPU in FIQ mode */
 mov sp, r0 /* stack pointer for FIQ mode is 0x4000FED4
 sub r0, r0, #FIQ_STACK_SIZE /* Register R0 is now 0x4000FED0 */

Now we put the ARM into IRQ (normal interrupt) mode by setting the MODE_IRQ bit in
the CPSR. As mentioned above, IRQ mode has its own private copies of R13 and R14.
We now set the IRQ mode stack pointer to 0x4000FDE0. Again by subtracting the IRQ
stack size from R0, we’re limiting the stack for IRQ mode to just 4 bytes. We’re not
planning to support IRQ interrupts in this example.

 msr CPSR_c, #MODE_IRQ|I_BIT|F_BIT /* this puts the CPU in IRQ mode */
 mov sp, r0 /* stack pointer for IRQ mode is 0x4000FED0 */
 sub r0, r0, #IRQ_STACK_SIZE /* R0 is now 0x4000FECC */

Now we put the ARM into SVC (Supervisor) mode by setting the MODE_SVC bit in the
CPSR. As mentioned above, SVC mode has its own private copies of R13 and R14. We
now set the supervisor mode stack pointer to 0x4000FDDC. Again by subtracting the
SVC stack size(4 bytes) from R0, we’re sizing the stack for SVC mode to 4 bytes.

 msr CPSR_c, #MODE_SVC|I_BIT|F_BIT /* This puts the CPU in SVC mode */
 mov sp, r0 /* stack pointer for SVC mode is 0x4000FECC */
 sub r0, r0, #SVC_STACK_SIZE /* R0 is now 0x4000FEC8 */

The ARM “User” mode and the ARM “System” mode share the same registers and
stack. For this very simple example, we’ll run the application in “User” mode. Setting up
the stack for User mode also sets up the stack for System mode.

Now we put the ARM into USR (user) mode by setting the MODE_USR bit in the CPSR.
We now set the USR mode stack pointer to 0x4000FEC8.

 msr CPSR_c, #MODE_USR|I_BIT|F_BIT /* User Mode */
 mov sp, r0

To summarize the above operations, let’s draw a diagram of the stacks we just created.

RAM STACK USAGE
0x40010000

The next part of the startup file crt.s to investigate is the setup of the .data and .bss
sections, as shown below.

Stack grows downward

(4 bytes)

(4 bytes)

(4 bytes)

(4 bytes)

Philips ISP Flash Loader
 Stack and variables

 (288. bytes)

USR mode / SYS mode stack

(until it collides with

SVC mode (4 bytes)

IRQ mode stack

FIQ mode stack

Abort mode stack

Undefined mode stack

0x4000FFFF last address in internal

0x4000FEE0 bottom of Philips ISP

0x4000FEDC UND stack pointer

0x4000FED8 ABT stack pointer

0x4000FED4 FIQ stack pointer

0x4000FED0 IRQ stack pointer

0x4000FECC SVC stack pointer

RAM 0x4000FEC8 USR / SYS stack

The .data section contains all the initialized static and global variables. The GNU linker
will create a exact copy of the variables in flash with the correct initial values loaded.
The onus is on the programmer to copy this initialized flash copy of the data to RAM.

The location of the start of the .data section in flash is defined by symbol _etext
(defined in the linker command script demo2106.cmd). Likewise, the location of the
start and end of the .data section in destination RAM is given by the symbols _data and
_edata. Both of these symbols are defined in the linker command script.

The .bss section contains all the uninitialized static and global variables. All we have to
do here is clear this area. Likewise, the location of the start and end of the .bss section
in destination RAM is given by the symbols _bss_start and _bss_end. Both of these
symbols are defined in the linker command script.

Two simple assembly language loops load the .data section in RAM with the initializers
in flash and clear out the .bss section in RAM.

The GNU linker specifies two addresses for sections, the Virtual Memory Address
(VMA) and the Load memory Address (LMA). The VMA is the final destination for the
section; for the .data section, this is the RAM address where it will reside. The LMA is
where it will be loaded in Flash memory, the exact copy with the initial values. The GNU
Linker will sort this out for us.

15 Description of the Main Program main.c

Now let’s look at the main program.

The main program starts out with a few function prototypes. Note that the interrupt
routines mentioned in the crt.s assembler program reside in the main() program. We’ve
used the GNU C compiler syntax that identifies the interrupt routines and makes sure
that the compiler will save and restore registers, etc. whenever the interrupt is asserted.

I’ve also included a few do-nothing
variables, both initialized and uninitialized,
to illustrate that the compiler will put the
initialized variables into the .data section
and the uninitialized ones into the .bss
section.

We’re going to try to toggle a single I/O
bit, specifically P0.7 which is the Olimex
red LED.

By the way, with this hardware arrangement:

P0.7 = 1 // turn off LED
P0.7 = 0 // turn on LED

The Philips LPC2106 has 32 I/O pins, labeled P0.0 through P0.31. Most of these pins
have two or three possible uses. For example, pin P0.7 has three possible uses; digital
I/O port, SPI Slave Select and PWM output 2. Normally, you select which function to
use with the Pin Connect Block. The Pin Connect Block is composed of two 32-bit
registers, PINSEL0 and PINSEL1. Each Pin Select register has two bits for each I/O
pin, allowing at least three functions for each pin to be specified.

For example, pin P0.7 is controlled by PINSEL0, bits 14 – 15. The following
specification would select PWM2 output.

 PINSEL0 = 0x00008000; // set PINSEL0 bits 14 – 15 to 01

Fortunately, the Pin Connect Block resets to zero, meaning that all port pins are
General-Purpose I/O bits. So we don’t have to set the Pin Select registers in this
example.

We do have to set the I/O Direction for port P0.7, this can be done in this way.

 IODIR |= 0x00000080; // set IO Direction register, P0.7 as output
 // 1 = output, 0 = input

The ARM I/O ports are manipulated by register IOSET and register IOCLR. You never
directly write to the I/O Port! You set a bit in the IOSET register to set the port bit and
you set a bit in the IOCLR register to clear the port bit. This little nuance will trip up
novice and experienced programmers alike. Alert readers will ask; “What if both bits are
set in IOSET and IOCLR?” The answer is “Last one wins.” The last IOSET or IOCLR
instruction will prevail.

To turn the LED P0.7 off, we can write:

 IOSET = 0x00000080; // turn P0.7 (red LED) off

Likewise, to turn the LED P0.7 on, we can write:

 IOCLR = 0x00000080; // turn P0.7 (red LED) on

As you can see, it’s fairly simple to manipulate I/O bits on the ARM processor.

To blink the LED, a simple FOREVER loop will do the job. I selected the loop counter
values to get a one half second blink on – off time.

 // endless loop to toggle the red LED P0.7
 while (1) {

 for (j = 0; j < 5000000; j++); // wait 500 msec
 IOSET = 0x00000080; // red led off
 for (j = 0; j < 5000000; j++); // wait 500 msec
 IOCLR = 0x00000080; // red led on
 }

This scheme is very inefficient in that it hog-ties the CPU while the wait loops are
counting up.

The Initialize(); function requires some explanation.

We have to set up the Phased Lock Loop (PLL) and that takes some math.

Olimex LPC-P2106 board has a 14.7456 Mhz crystal

We'd like the LPC2106 to run at 53.2368 Mhz (has to be an even multiple of crystal, in this case 3x)

According to the Philips LPC2106 manual: M = cclk / Fosc where: M = PLL multiplier (bits 0-4 of
PLLCFG)
 cclk = 53236800 hz
 Fosc = 14745600 hz

Solving: M = 53236800 / 14745600 = 3.6103515625
 M = 4 (round up)

 Note: M - 1 must be entered into bits 0-4 of PLLCFG (assign 3 to these bits)

 The Current Controlled Oscillator (CCO) must operate in the range 156 Mhz to 320 Mhz

 According to the Philips LPC2106 manual: Fcco = cclk * 2 * P where: Fcco = CCO frequency

 cclk = 53236800 hz

 P = PLL divisor (bits 5-6 of PLLCFG)

 Solving: Fcco = 53236800 * 2 * P
 P = 2 (trial value)
 Fcco = 53236800 * 2 * 2
 Fcc0 = 212947200 hz (good choice for P since it's within the 156 mhz to 320 mhz range

 From Table 19 (page 48) of Philips LPC2106 manual P = 2, PLLCFG bits 5-6 = 1 (assign 1 to these bits)

 Finally: PLLCFG = 0 01 00011 = 0x23

 Final note: to load PLLCFG register, we must use the 0xAA followed 0x55 write sequence to the
PLLFEED register
 this is done in the short function feed() below

With the math completed, we can set the Phase Locked Loop Configuration Register
(PLLCFG)

 // Setting Multiplier and Divider values
 PLLCFG = 0x23;
 feed();

To set values into the PLLCON and PLLCFG registers, you have to write a two-
byte sequence to the PLLFEED register:

 PLLFEED = 0xAA;
 PLLFEED = 0x55;

This sequence is coded in a short function feed();
The net effect of the above setup is to run the ARM CPU at 53.2 Mhz.

Next we fully enable the Memory Accelerator module and set the Flash memory
to run at ¼ the clock speed. Now you see why some people prefer to execute
out of RAM where it’s much faster.

 // Enabling MAM and setting number of clocks used for Flash memory fetch
 // (4 cclks in this case)
 MAMCR=0x2;
 MAMTIM=0x4;

The clock speed of the peripherals is also run at 53.2 Mhz which is the full clock speed.

 // Setting peripheral Clock (pclk) to System Clock (cclk)
 VPBDIV=0x1;

In the final snippet of the main() code, you can see the dummy interrupt service
routines. They are just simple endless loops; we don’t intent to allow interrupts
in this simple example.

16 Description of the Linker Script demo2106_blink_flash.cmd

Let’s look now at the linker command script, demo2106_blink_flash.cmd. I’ve
included extensive annotation to make it very clear how the memory is organized.

The first order of business in the linker command script is to identify the
memory available, this is easy in a Philips LPC2106 – the RAM and FLASH
memory are on-chip and at fixed locations. Page 29 of the Philips LPC2106
User Manual shows the physical memory layout.

On-chip static RAM is from
0x40000000 -
0x4000FFFF
For the LPC2106

On-chip static FLASH is from
0x00000000 - 0x0001FFFF
For the LPC2106

First we define an entry point; specifically _startup as defined in the assembler
function crt.s.

ENTRY(_startup)

The Linker command script uses the following directives to lay out the physical memory.

MEMORY
{
 flash : ORIGIN = 0, LENGTH = 128K /* FLASH ROM */
 ram_isp_low(A) : ORIGIN = 0x40000120, LENGTH = 223 /* variables used by Philips
ISP */
 ram : ORIGIN = 0x40000200, LENGTH = 64992 /* free RAM area */
 ram_isp_high(A) : ORIGIN = 0x4000FFE0, LENGTH = 32 /* variables used by Philips
ISP */
}

You might expect that we’d define only a flash and a ram memory area. In
addition to those, we’ve added two dummy memory areas that will prevent the
linker from loading code or variables into the RAM areas used by the Philips
ISP Flash Utility (sometimes called a boot loader). See page 180 in the Philips
LPC2106 User Manual for a description of the Boot Loader’s RAM usage.

As you’ll see in a minute, we’ll be moving various sections (.text section, .data
section, etc.) into flash and ram.

Note that we created a global symbol (all symbols created in the linker
command script are global) called _stack_end. It’s just located after the
stack/variable area used by the Philips ISP Flash Utility (boot loader) as
mentioned above.

_stack_end = 0x4000FEDC;

Now that the memory areas have been defined, we can start putting things into
them. We do that by creating output sections and then putting bits and pieces
of our code and data into them.

We define below four output sections:

startup - this output section holds the code in the startup function, defined in crt.s

.text - this output section holds all other executable code generated by the
compiler

.data - this output section contains all initialized data generated by the compiler

.bss - this output section contains all uninitialized data generated by the compiler

The next part of the Linker Command Script defines the sections and where they go in
memory.

The first thing done within the SECTIONS command is to set the location counter.

The dot means “right here” and this sets the location counter at the beginning to
0x000000.

 . = 0; /* set location counter to address zero */

Now we create our first output section, located at address 0x000000. This
creates a output section named “startup” and it includes all sections emitted by
the assembler and compiler named .startup. In this case, there is only one
such section created in crt.s.

This startup output section is to go into FLASH at address 0x000000.
Remember that the startup section has the interrupt vectors (must be placed at

0x000000) and the startup code also sets the stacks, modes and copies the
.data and .bss sections.

 startup : { *(.startup) } >flash

Now we can follow the vector table and assembler startup code with all code
generated by the assembler and C compiler; this code is normally emitted in
.text sections. However, constants and strings go into sections such as .rodata
and .glue_7 so these are included for completeness. These code bits all go into
FLASH memory.

 .text : /* collect all sections that should go into FLASH after
startup */
 {
 (.text) / all .text sections (code) */
 (.rodata) / all .rodata sections (constants, strings,
etc.) */
 (.rodata) /* all .rodata* sections (constants, strings,
etc.) */
 (.glue_7) / all .glue_7 sections */
 (.glue_7t) / all .glue_7t sections */
 _etext = .; /* define a global symbol _etext after the last code
byte */
 } >flash /* put all the above into FLASH */

We follow the .text: output section (all the code and constants, etc) with a
symbol definition, which is automatically global in the GNU toolset. This
basically sets the next address after the last code byte to be the global symbol
_etext (end-of-text).

There are two variable areas, .data and .bss. The initialized variables are
contained in the .data section, which will be placed in RAM memory. The big
secret here is that an exact copy of the .data section will be loaded into FLASH
right after the code section just defined. The onus is on the programmer to copy
this section to the correct address in FLASH; in this way the variables are
“initialized” at startup just after a reset.

The .bss section has no initializers. Therefore, the onus is on the programmer
to clear the entire .bss section in the startup routine.

Initialized variables are usually emitted by the assembler and C compiler as
.data sections.

 .data :
 {
 _data = .; // global symbol locates the start of .data section in RAM

 *(.data) // tells linker to collect all .data sections together

 _edata = .; // global symbol locates the end of .data section in RAM

 } >ram AT>flash // load data section into RAM, load copy of .data section
 // into FLASH for copying during startup.

Note first that we created two global symbols, _data and _edata, that locate the
beginning and end of the .data section in RAM. This helps us create a copy
loop in the crt.s assembler file to load the initial values into the .data section in
RAM.

The command >ram specifies the Virtual Memory Address that the .data
section is to be placed into RAM (think of it as the final destination in RAM and
all code references to any variables will use the RAM address.

The command AT >flash specifies the load memory address; essentially an
exact copy of the RAM memory area with every variable initialized placed in
flash for copying at startup.

You might say “why not let the Philips boot loader load the initial values of the
.data section in RAM directly from the hex file?” The answer is that would work
once and only once. When you power off and reboot your embedded
application, the RAM values are lost.

The copy of the .data area loaded into flash for copying during startup is placed
by the GNU linker at the next available flash location. This is conveniently right
after the last byte of the .prog section containing all our executable code.

The .bss section is all variables that are not initialized. It is loaded into RAM
and we create two global symbols _bss_start and _bss_end to locate the
beginning and end for clearing by a loop in the startup code.

 .bss :
 {
 _bss_start = .;
 *(.bss)
 } >ram

 . = ALIGN(4);
}
 _bss_end = . ;
 _end = .;

Now let’s diagram just where everything is in RAM and FLASH memory.

0x40010000

Unused RAM

Unused FLASH

Constants, strings, etc.

High RAM used by Philips ISP

Low RAM used by Philips ISP

stacks

.bss uninitialized variables

.data variables

copy of .data variables

Initialize()

Feed()
Main()

Startup Code

Vector Table

 0x4000FEE0
 0x4000FFFC

RAM

 0x40000234

 0x40000218

 0x40000200

 0x40000000

0x020000

 0x000268

FLASH

0x000020

 0x000000

17 Description of the Makefile

The makefile is the last source file we need to look at. I built the makefile to
comply with the GNU make utility and be as simple as possible.

The general idea of the makefile is that a target (could be a file) is associated
with one or more dependent files. If any of the dependent files are newer than
the target, then the commands on the following lines are executed (to
recompile, for instance). Command lines are indented with a Tab character!

 main.o: main.c
 arm-elf-gcc -I./ -c -O3 -g main.c

In the example above, if main.c is newer than the target main.o, the command
or commands on the next line or lines will be executed. The command arm-elf-
gcc will recompile the file main.c with several compilation options specified. If
the target is up-to-date, nothing is done. Make works its way downward in the
makefile, if you’ve deleted all object and output files, it will compile and link
everything.

GNU make has a helpful “variables” feature that helps you reduce typing. If you define
the following variable:

 CFLAGS = -I./ -c -fno-common -O3 -g

You can use this multiple times in the makefile by writing the variable name as follows:

 $(CFLAGS) will substitute the string -I./ -c -O3 -g

Therefore, the command-

 arm-elf-gcc $(CFLAGS) main.c

is exactly the same as

 arm-elf-gcc -I./ -c -O3 -g main.c

Likewise, we can replace the compiler name arm-elf-gcc with a variable too.

 CC = arm-elf-gcc

Now the command line becomes

 $(CC) $(CFLAGS) main.c

Now our “rule” for handling the main.o and main.c files becomes:

main.o: main.c
 @ echo ".compiling"
 $(CC) $(CFLAGS) main.c

Commands MUST be
indented with a TAB
character!

It’s worth emphasizing that forgetting to insert the TAB character before the
commands is the most common rookie mistake in using the GNU Make system.

The compilation options being used are:

-I./ = specifies include directories to search first (project directory in this
case)

-c = do not invoke the linker, we have a separate make rule for that

-fno-common = gets rid of a pesky warning

-O3 = sets the optimization level (Note: set to –O0 for debugging!)

-g = generates debugging information

The assembler is used to assemble the file crt.s, as shown below:

crt.o: crt.s
 @ echo ".assembling"
 $(AS) $(AFLAGS) crt.s > crt.lst

In the example above, if the object file crt.o is older than the dependent
assembler source file crt.s, then the commands on the following lines are
executed.

If we expand the make variables used, the lines would be:

crt.o: crt.s
 @ echo ".assembling"
 arm-elf-as -ahls -mapcs-32 -o crt.o crt.s > crt.lst

The > crt.lst directive creates a assembler list file.

The assembler options being used are:

-ahls = listing control, turns on high-level source, assembly and symbols

-mapcs-32 = selects 32-bit ARM function calling method

-o crt.o = create an object output file named crt.o

The GNU linker is used to prepare the output from the assembler and C compiler
for loading into Flash and RAM, as shown below:

main.out: crt.o main.o demo2106_blink_flash.cmd
 @ echo "..linking"
 $(LD) $(LFLAGS) -o main.out crt.o main.o

If the target output file main.out is older than the two object files or the linker
command file, then the commands on the following lines are executed.

The Linker options being used are:

-Map main.map = creates a map file

-T demo2106_blink_flash.cmd = identifies the name of the linker script
file

Note that I’ve kept this GNU makefile as simple as possible. You can clearly see
the assembler, C compiler and linker steps. They are followed by the objcopy
utility that makes the hex file for the Philips ISP boot loader and an objdump
operation to give a nice file of all symbols, etc.

18 Compiling and Linking the Sample Application

OK, now it’s time to actually do something. First, let’s “Clean” the project; this
gets rid of all object and list files, etc. Click on “Project – Clean …” and fill out
the Clean dialog window.

You can see the results of the “Clean” operation in the Console window at the bottom.
Expect to see some warnings if there isn’t anything to delete.

To build the project, click on “Project – Build All”. Since we deleted all the object files
and the main.out file via the clean operation, this “Build-all” will assemble the crt.s
startup file, C compile the main.c function, run the linker and then run the objcopy utility
to make a hex file suitable for downloading with the Philips ISP Flash Utility.

We can see the results in the Console Window at the bottom.

19 Setting Up the Hardware

For this tutorial, we’ll be using the Olimex LPC-P2106 Prototype Board.
Connect a straight-through 9-pin serial cable from your computer’s COM1 port
to the DB-9 connector on the Olimex board. Attach the 9-volt power supply to
the PWR connector. Install the BSL jumper and the JTAG jumper.

DB-9
Serial Port

COM1

Short the BSL
jumper to download
and program into
flash.

Remove the BSL
jumper to execute

You can use a
standard 9-pin PC
serial cable to
connect COM1 to the
Olimex

board.

RESET Button

To run the Philips LPC2000 Flash Utility, it’s easiest to just click on the “External Tools”
button and its down arrow to pull-down the available tools. Click on “LPC2000 Flash
Utility” to start the Philips Boot Loader.

The Philips LPC2000 ISP Flash Programming will start up.

Now fill out the LPC2000 Flash Utility screen. Browse the workspace for the main.hex
file. Set the Device to LPC2106. Set the crystal frequency to 14746, as per the Olimex
schematic. The default baud rate, COM port and Time-out are OK as is.

Now click on “Upload to Flash” to start the download.

The Philips ISP Flash Utility will now ask you to reset the target system. This is the tiny
RST button near the CPU chip.

The download will now proceed; you’ll see a blue progress bar at the bottom and then
the status line will say “File Upload Successfully Completed”.

Remove the BSL (boot strap loader) jumper and hit the RST button.

Your application should start up and the LED will start blinking.

To prove that I am as honest as the sky is blue, here it is blinking away!

OK, I admit it; this photo has the reliability of a Bigfoot video!

20 Create a New Project to Run the Code in RAM

Now we will create a new project that will run the blinker code in RAM. Only
minor modifications to three files are required. We will show how to run the
application using the Philips ISP flash utility. Later, we’ll show how to use this
very same RAM-based application with the Insight graphical debugger and a
Wiggler JTAG interface.

Using the techniques previously discussed, create a new project named
demo2106_blink_ram.

Switch to the C/C++ Perspective and you will see that there are now two projects,
although the new one contains no files.

Now using the “File Import” procedure described earlier, fetch the source files for the
project demo2106_flash_ram included in the zip distribution for this tutorial.

The files we import are: crt.s
 demo2106_blink_ram.cmd
 lpc210x.h
 main.c
 makefile.mak

Now if you “Clean and Build” you should see a completed project with all the resultant
files, as shown below.

21 Differences in the RAM Version

File CRT.S

In the startup assembler file, I used a simple trick to move the startup code away from
the vectors to ensure that it doesn’t encroach on the Philips ISP Flash Loader low RAM
area.

Remember that the entire project, code and variables, will be loaded into RAM starting
at address 0x40000000. The location counter is advanced by the directive .=.+0x1C0 to
push the Reset_Handler to address 0x40000200. This leaves a hole where the Philips
ISP Flash Utility will use the low RAM. There are other ways to do this.

File MAIN.C

There is just one extra line of C code in the main program. It directs the LPC2106 to re-
map the interrupt vectors to RAM at 0x40000000.

Since we are not using any interrupts in this example, this addition does not
really matter. I’ve just added it for completeness; you should always do this
when devising a project to run in RAM.

After you follow the next steps and get the application to execute out of RAM,
you can run a little experiment and comment out the MEMMAP = 0x02; line. It
will still run OK.

The reason for that is two-fold. First, we don’t use interrupts in this example.
Second, we use the Philips ISP Flash Loader to force the CPU to start at the
address of Reset_Handler; which is at 0x40000200. This bypasses using the
RESET vector at 0x4000000 to start the application.

File DEMO2106_BLINK_RAM.CMD

The entire project, both code and variables, is going to be loaded into RAM.
Therefore, there are a few changes in the Linker Command Script file
demo2106_blink_ram.cmd.

I added quite a bit of annotation above to make it very clear how the memory (flash and
ram) is organized.

Above I defined two memory areas for flash and RAM, consistent with the LPC2106
memory map. Of course, we’re going to load everything (code and variables) into RAM!

Note that I also created a global symbol, _stack_end, that is used in the startup routine
to build the various stacks. The address is positioned just after the stacks and variables
used by the Philips ISP Flash Utility.

Above is the final part of the Linker Command Script. Notice that everything is loaded
into RAM.

You might ask, “Do we still copy the .data section initializers?” I left the copy operation
intact in file CRT.S but it now essentially copies over itself (wasteful). I wanted to keep
things very similar. You could delete the .data initializer copy code in crt.s to save
space.

You might also ask, “Do we still clear the .bss section?” The answer is absolutely yes,
RAM memory powers on into an unknown state. We want all uninitialized variables to

be zero ar start-up. Of course, stupid programmers rely on uninitialized variables to be
zero at boot-up, this is how they get into trouble with uninitialized variables (not all
compilers do this automatically).

At this point, if you haven’t cleaned and built the project, do it now.

Make sure the BSL jumper is installed.

Now use the “External Tools” toolbar button to find the Philips ISP Flash Utility and start it.
To make sure that we are not fooling ourselves, click on “Erase” to clear the flash
memory.

Now we can be sure that the blinking LED is not the Flash application running.

Click on “Buffer – RAM Buffer Operations.”

The RAM Buffer screen now appears. Click on “Load Hex File.” This is just an
operation that fetches the hex file and puts it into the Philips ISP Flash Utility.

Notice that the button titled “Run from Address” has the value &H40000200 in it. This is
thanks to the ENTRY(Reset_Handler) directive in the linker command script file. The
Philips boot loader will simply load 0x40000200 into the PC register and let her rip!

When you click on the “Load Hex File” button, the following dialog will be presented.

Browse for the main.hex file in the project directory and click “Open”.

The following warning is presented. Since I advanced the location counter past the low
RAM area used by Philips, it still thinks that there’s code in there. If I had elected to
make the interrupt vectors a separate section, I could have avoided this warning.

It will still execute OK, of course, since the hex file has no bytes defined for the area
where we advanced the program counter past the Philips ISP low RAM usage.

Now click on the “Upload to RAM” button to load the hex file into the LPC2106 RAM
memory.

You will see a “progress bar” at the bottom of the screen and it will indicate that the
operation has completed.

You do NOT have to remove the BSL jumper. Click on the “Run from Address” button
to execute the program.

Your application should blink, just like the Flash EPROM version did. Time for the
Bigfoot picture!

 IT BLINKS!

22 Execute the RAM Project with the Insight Debugger

The previous exercise, running the RAM project from the Flash Utility, was of
academic interest but essentially of no practical value. Well, it is kind of cool
that you can do that with a flash utility.

Packaged within the GNUARM toolkit is the Insight Graphical Debugger. You
can start it as an “external tool” very conveniently and it is specifically designed
to debug GNU applications.
We will need the following hardware setup:

LPT1

The BSL jumper
generally doesn’t
matter while using
JTAG

20-pin
JTAG
Port

Olimex ARM JTAG Adapter

Install the Debug
JTAG jumper while
running from RAM

The Olimex ARM JTAG Adapter is a clone of the Macraigor Wiggler JTAG
interface. It costs about $19.95 and all fits into a DB-25 shell. I bought a
straight-through printer cable from my local computer retailer and fitted it from
the LPT1 printer port to the ARM JTAG Wiggler. The Wiggler was then fitted
to the 20-pin JTAG header on the Olimex LPC-P2106 board.

The red stripe on the ribbon cable is pin 1 and should be nearest the power plug.

The Debug JTAG jumper should be fitted. It doesn’t matter if the BSL jumper is
installed or not. Make all these connections with the power off.

A. Blunt Talk About the Wiggler

Let’s talk bluntly about the Wiggler. The Wiggler is one of many products from the
Canadian company Macraigor. It connects the parallel port of your PC to the 20-pin
JTAG header on the Olimex LPC-P2106 board. It is just a simple level shifter and a
transistor. Macraigor charges $150 for it; the Olimex clone is about $19.

There are several schematic diagrams on the web for the Wiggler; notably Leon Heller
has one on the LPC2000 message board on Yahoo. You could build your own but I
doubt you’d save that much money after paying the shipping from Digikey and the gas
to drive to Radio Shack. The Olimex version is a fair deal.

Obviously the Macraigor Company is not happy about all these clones running about, so
recently they slipped an impediment into the works. The latest version of OCDremote;
their free JTAG server for the Wiggler and other products, is expecting a connection
(short circuit) between pins 8 and 15 of the LPT1 printer port. This has made a lot of
people fail.

Olimex has said that they would revise their design and modify their stock of Wigglers
to make this connection, but there are large numbers of the device out there that don’t
have this modification (like my Olimex Wiggler).

Use an ohmmeter on the 25-pin printer connector on the Wiggler to see if these two
pins are connected. If not, you can easily disassemble the Olimex Wiggler and tack-
solder a jumper to do the job. Again, you must connect pin 8 to pin 15.

Pin 1

Pin 8

Pin 15

Pin 25

I used that 30 gauge Radio Shack blue Teflon coated hookup wire and a microscope to
do the soldering above. If you have a good magnifier; the DB-25 pins on the wiggler
have the pin numbers embossed in the white plastic above and below the rows of pins.

We’re not quite finished with our Wiggler suffering. There’s the final issue of the PC
Printer port mode. Most modern PCs, like my new Dell, have the Printer Port defaulted
to “ECP” mode.

The Wiggler will not work with the printer port configured for ECP mode.

The Macraigor web site has a FAQ with the following citation:

What mode must my parallel port be in?

As far as the parallel port is concerned, a Wiggler is a
simple uni-directional device. It will work with the
parallel port in any mode EXCEPT "ECP". It will NOT work
in ECP mode at all.

The Raven works best with a parallel port in EPP mode. It
may work in ECP mode. If the parallel port is in an older
mode, such as uni-directional, AT, or compatible, the
Raven will work but slower.

Remember, the mode is set in the CMOS bios of your
computer.

On my Dell Dimension Desktop PC, the CMOS setup can be entered if you hit
the F2 key as the machine boots up. By maneuvering around the CMOS setup,
you can find the Parallel Port setup and see what mode it is set up as. If it’s
ECP mode, change it to EPP mode, as I did in the screen photograph below.
Save the CMOS setup and exit.

My printer is a USB device, so this action didn’t effect my printer operation.

It’s disappointing to report that the Wiggler cannot set a breakpoint in FLASH.
The OCDremote application cannot deal with GDB –z commands which refer
to hardware breakpoints (the LPC2106 has two hardware breakpoints. This is
the reason that debugging with this simple device is limited to applications
configured to run from RAM exclusively. Obviously, the 64K limitation of the
Philips LPC2106 limits the size of an application you can fit into RAM. However,
it’s better than nothing.

Let’s review the hardware setup one more time.

Power plug from
9 volt wall wart
power supply

Red stripe on ribbon
cable must be next to
Debug JTAG jumper and
the power plug.

The Debug JTAG
jumper MUST be
installed

Doesn’t matter
if the BSL
jumper is
installed or not.

No need to
unplug the
serial cable

Power up the Olimex LPC-P2106 board and press the RST button for good luck!

B. Final Preparations Before Starting Insight Debugger

The following procedure to start the Insight Debugger and download and
debug our RAM application is based on very painful experimentation on my
part. There may be other ways to do this, please have fun trying other
approaches.

Before we start the Insight Graphical Debugger, I should mention that
debuggers absolutely hate compiler optimization. This one is no different.
We have been compiling with –O3 and you will find some strange things
happening when you single-step at that optimization level.

Just to be sure, let’s turn off optimization. Go to the makefile and change the
setting to –O0 and rebuild!

File: makefile.mak

Turn off compiler
optimization by setting
compiler flag to:

-O0 - no optimization

We also need to configure Insight to the specific project we are debugging.
Remember the external tools configuration window set up earlier. Click on the
External Tools toolbar button to bring up this window.

In the “Working Directory” text window, use the “Browse File Space”
button to locate and select the folder that the project resides. In this
example, it’s c:\eclipse\workspace\demo2106_blink_ram.

Under the “Arguments” text window, specify the GNU output file main.out.
These changes will guarantee that Insight starts out with the correct source
files.

C. Start the Macraigor OCDremote application

Click on the “External Tools” toolbar button and start the OCDremote.

Now the OCDremote doesn’t always start. You can tell when the console window at the
bottom has a red error message that says”

Just keep starting it over and over until you get this response in the console window:

If you have trouble getting OCDremote to start; try these remedies:

• You may have accidentally started multiple copies of
OCDremote. Bring up the Windows Task Manager (ctrl-alt-del)
and search the list of running tasks. If there are multiples,
terminate all of them and start over.

• Keep trying; I’ve done it ten times before it started (this is simply Voodoo).

• Go to bed; let it win tonight.

D. Start the Insight Graphical Debugger

Assuming that it’s now running; start the Insight Graphical Debugger by clicking on the
“External Tools” toolbar button and select Insight.

After a few seconds, Insight will start up in its own window.

E. Download the Application into RAM

The first step is to “download” the application (main.out). Click on “Run – Download.”

The Insight debugger recognizes straight away that it is not connected to the target
board. To accomplish this, it will present a “Target Properties” dialog window.

Use the pull-down list to select GDBserver/TCP for the target.

Enter the Macraigor default Hostname as localhost.

Enter the Macraigor default Port as 8888.

Check the box for Set Breakpoint at ‘main’

Click OK to proceed. Insight will connect to the target through the Wiggler. It will
then load the executable code into the LPC2106 RAM memory. There’s a blue
progress bar shown at the bottom right. Be patient, the Wiggler is painfully slow.
This small file takes 6 seconds. Pray that it says “DOWNLOAD FINISHED” in the
status bar at the bottom left.

You’ll see a blue
“progress Bar” here
as it downloads.

F. RUN the Application to MAIN()

Click on the RUN button. The application will start and breakpoint at the main() routine.

You may get either of these GDB windows, just answer YES .

A red box on line 46 indicates that the debugger stopped at main(). If you study the
assembly language generated for main(), you’ll see that the breakpoint is just after the
stack frame setup after entry to main(). A bit quirky, isn’t it?

The Insight Debugger has the following toolbar buttons associated with executing the
application.

 Step

Into
Step
Over

Step
Out of
Func

Step
Into
ASM

Step
Over
ASM

RUN Continue

RUN

(STOP)

 Starts debugging – breaks at main() Note: use this only after
downloading.

Stops a running application

STEP
INTO

 Steps one C executable line

If at a function call, it will step INTO the function.

STEP
OVER

 Steps one C executable line

If at a function call, it will step OVER the function

STEP
OUT OF
FUNCTION

 Steps out of a C Function

CONTINUE Resumes execution to the next breakpoint, watchpoint or exception

If no breakpoints are encountered, it will run continuously

STEP
INTO
ASM

 Steps one Assembler instruction

If at a subroutine branch, it will enter the subroutine

STEP
OVER
ASM

 Steps one Assembler instruction

If at a subroutine branch, it will step over the branch to the next
instruction.

G. Set a Breakpoint

On the far left of the source screen, you’ll see a series of dashes. These indicate C
executable lines where you can set a breakpoint. Just cursor over to one of them and
the cursor will transform into a little circle. Click on the dash and a breakpoint will be set
(a little red box indicates this). Clicking again will remove the breakpoint.

To set a breakpoint, click on
the little dashes on the far
left.

Here we set a breakpoint on
C line 52

Now click on the Continue button to execute from main() to the breakpoint.

The green highlight at line xx indicates that we’ve hit a breakpoint. The status line at the
bottom left also indicates this: Program stopped at line 52.

H. Step Through a Few Lines of Code

Click the “STEP OVER” button, the program executes one line, stopping on the
highlighted line.
The green highlight indicates the line to be executed next.

Click the “STEP OVER” button, the program executes one line. Note that the LED goes
off.

Click the “STEP OVER” button, the program executes one line. Note that the LED goes
on.

Also note that the program executes to the next line with a “dash” on the far left.

I. Instant Inspection of any Variable or Data Structure

Anytime the Insight Debugger is stopped, you can maneuver the cursor over any
variable name and it will display its current value. If the variable is a C Structure, then a
“+” sign will appear that will expand the structure display if clicked.

If you hold the tip of the
cursor over the variable b, a
pop-up window will appear
with its current value.

J. Resuming Execution

To let the program take off and start running continuously or run to the next breakpoint,
you use the “Continue” button.

Now you should see the LED Blinking. The “Run” button has changed shape into a
“Stop” button.

Let’s show that Bigfoot photograph again of the Olimex LPC-P2106 board executing the
blinker application!

 IT BLINKS!

Click on “Stop” to terminate execution.

K. Looking at Assembler Code

You can view the code as simple C Source, assembler source or a mixed version.
On the upper right of the Insight main screen is a pull-down list of these display formats.

Click on “Mixed” to see the combination C Source intermixed with Assembler source
display.

The resultant display looks like this.

You can use the two assembler step buttons to iterate through the assembler code.

L. Inspecting the ARM Registers

You can see the ARM registers by clicking on the “Registers” toolbar button.

You can edit any register by clicking on it
and typing a new value (be careful about
this one!).

There’s a right-click pop-up menu that lets
you change to decimal display, add a
register to the watch window, etc.

M. Displaying the Contents of Memory.

A nice screen dump of the memory is available with the “Memory” toolbar button:

Here I’ve entered the address 0x400004B4, the address of the string “The Rain in
Spain”.

Click on the “Addresses” pull-down menu and then select “Preferences.” This will
allow you to change to a byte-display. If you’re confused, remember that the byte
display doesn’t show the effect of “little endian” memory organization.

N. Inspecting the Stack Frame

I ran the application with a breakpoint set inside the feed() routine.

Click on the “Stack Window” toolbar button to inspect the call stack.

The Stack Window shows that main() called Initialize(). Initialize() then called feed().

O. Inspecting Local Variables

In addition to just maneuvering the cursor over a variable name to see its value, you can
also bring up the “Local Variables” display box by clicking on the “Local Variables”
toolbar button:

Remember that Local Variables are your “stack-based” variables defined within a
function. There is no window for Global Variables; you’ll have to create Watch Windows
for them.

P. Inspecting Breakpoints

You probably know that breakpoints are set by clicking on the little dashes to the far left
of the Insight Source Window (click again and the breakpoints are removed).

Insight also has a breakpoint summary window which can be accessed by clicking the
“Breakpoints” button on the Insight toolbar.

The “Breakpoints” window shows every breakpoint you’ve created.

Using the pull-down menus and the right-click menu, you can easily disable any or all
breakpoints, remove them completely, etc.

Q. Watch Window

The Watch Window allows you to create a display of all your favorite variables that will
be displayed whenever the application has stopped.

There are several ways to add a variable to the Watch Window. The most convenient
method is to hover over a variable with the cursor, right-click and select “Add to
Watch.”

Here we placed the
cursor over the variable
“x” and right-clicked.

We then selected “Add
x to Watch”.

The Watch Window itself can be displayed by clicking on the “Watch Expressions”
toolbar button.

Another easy way to enter variables into the Watch Window is to just type the variable
name into the text box at the bottom. When you hit the “enter” key, it will appear in the
list of watched variables. Here I typed in the variable name “w”.

WARNING

Do not close the watch
window using the

You will loose your setup.

Just minimize it using

You can also type expressions into the Watch Window. For example, you could type in
x + w and this will be displayed.

Structured variables will have + symbols that can be clicked on to expand the structure
so you can see all the inner bits.

Remember that the Watch Window only updates when the Insight Debugger hits a
breakpoint or stops.

R. Entering GDB Commands

For those who know the original text-only GDB debugger well, you can open a “GDB
Console” and start typing.

For example, to ask GDB to display the variable j in the function main(); type the
following command into the Console” window.

S. Some Insight Observations

To restart the application from the beginning, I recommend downloading and hitting
the “Run” button again. It will not ask you for the connection details.

Click the “close” button at the top right when you’re finished debugging. This will
terminate and remove Insight and also terminate OCDremote.

If you crash, you’ll probably have to use the Windows Task Manager (ctrl-alt-del) to
stop OCDremote.

23 The Author Sounds Off

This tutorial was designed for students and hobbyists; those with limited funds. It
described in great detail how to download and install all the component parts of a
complete ARM software development system and gave two simple code examples to try
out. Of course, the beauty of this is that it’s completely free.

If you are a professional engineer attempting to build an ARM development system with
these techniques, you have a fool for a chief engineer. The professional compilers such
as IAR, Rowley, and Keil etc. are more efficient, generally bug free and interface
seamlessly with debuggers. They allow debugging with either ram or flash executables
and flash programming is usually accomplished with a single click. You also have
telephone support with these systems. These professional packages save your
company time and money in the long run.

This tutorial was written for students and grown up “kids at heart”; its purpose is to
foster their interest in computer science and electrical engineering. It’s a shame that the
big players like Microsoft, Kiel, Borland and others don’t develop a “student/hobbyist”
version of their software development packages, priced at a give-away point that a third
world high school student could afford. Bill Gates has criticized my country’s school
system for not developing enough computer scientists and engineers; why not provide a
“non-commercial” version of his Visual Studio for students (and provide code targeting
for every popular microprocessor being sold today)?

I am not happy with the debugger I described in the tutorial. The Wiggler/Insight
combination works only for RAM-based applications and thus limits software to less
than 64K. It’s extremely slow and a bit unreliable. Professional USB or Ethernet-based
debuggers are very expensive and out of the price range of hobbyists.

A better solution might be an Olimex LPC-P2106 board outfitted with one of those Spark
Fun CP2106 USB-to-Serial converters to accept GDB debugger serial protocol from the
PC and convert it into ARM JTAG signals. The JTAG signals are documented at the
ARM web site and the GDB serial protocol is fully specified at the GNU web site. The
LPC2106 could be programmed to know the device ID of the LPC2000 series
microcontroller it is fitted to and convert any download files into flash programming
commands if needed. Even software breakpoints can be handled by reading an 8k
block of code, changing one word and flash programming it back into the target. Just
using parts from Olimex and Spark Fun, this could cost less than $100. The software
programming job would be rather extensive. Still, it’d make a very nice open-source
project. I’m thinking about it.

I’m not finished writing tutorials. My next tutorial will involve using ARM interrupts and
how to design and implement I2C port expanders to interface to LCD displays and
keypads. Later tutorials will go into motion control, free real-time operating systems and
other hardware projects. Stay tuned, just like you, I’m just getting started!

24 About the Author

Jim Lynch lives in Grand Island, New York and is a Project Manager for Control
Techniques, a subsidiary of Emerson Electric. He develops embedded software for the
company’s industrial drives (high power motor controllers) which are sold all over the
world.

Mr. Lynch has previously worked for Mennen Medical, Calspan Corporation and the
Boeing Company. He has a BSEE from Ohio University and a MSEE from State
University of New York at Buffalo. Jim is a single Father and has two children who now
live in Florida and Nevada. He has two brothers, one is a Viet Nam veteran in
Hollywood, Florida and the other is the Bishop of St. Petersburg, also in Florida. Jim
plays the guitar and is collecting woodworking machines for future projects that will
integrate woodworking and embedded computers. Lynch can be reached via e-mail at:
lynchzilla@aol.com

24 Some Books That May Be Helpful

The following is a short compendium of books that I’ve found helpful on the subject of ARM
microprocessors and the GNU tool chain. I’ve reproduced the Amazon.com data on them.

The ARM documentation can be downloaded free from the ARM web site.

http://www.arm.com/documentation/

The Philips Corporation has extensive documentation on the LPC2000 series here:

http://www.semiconductors.philips.com/pip/LPC2106.html

All the GNU documentation, in PDF format, is maintained by, among others, the University of
South Wales in Sidney, Australia. I found the GNU assembler and linker manuals very readable;
the GNU C compiler manuals are very difficult.

http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/

Of course, the bookstore is full of Eclipse books but they are all about the JAVA toolkit. So far,
no one has published anything on the CDT plugin.

Finally, avail yourself of the many discussion groups on the web:

www.yahoo.com GNUARM group
 LPC2000 group

www.sparkfun.com tech support forum

www.newmicros.com tech support forum

www.eclipse.org C/C++ Development Tools User Forum

 HAVE FUN, EVERYBODY!

http://www.arm.com/documentation/
http://www.semiconductors.philips.com/pip/LPC2106.html
http://dsl.ee.unsw.edu.au/dsl-cdrom/gnutools/doc/
http://www.eclipse.org/newsportal/thread.php?group=eclipse.tools.cdt

	ARM Cross Development with Eclipse
	Key features

	Downloading the GNUARM Compiler Suite
	Installing the Philips LPC2000 Flash Utility into Eclipse
	Installing the Macraigor OCDremote Utility

