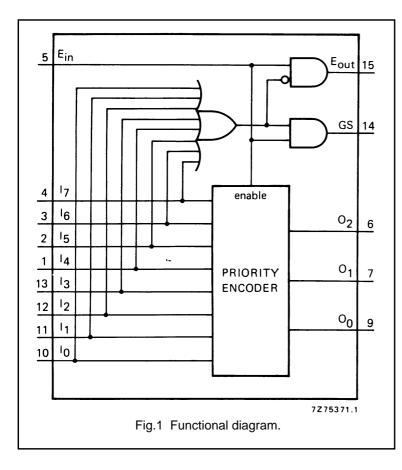
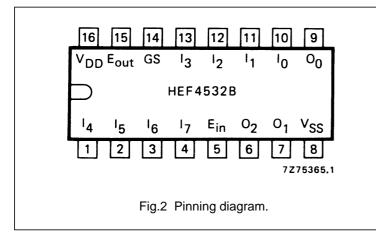

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

Product specification

HEF4532B MSI


DESCRIPTION


The HEF4532B is an 8-input priority encoder with eight active HIGH priority inputs (I_0 to I_7), three active HIGH outputs (O_0 to O_2), an active HIGH enable input (E_{in}), an active HIGH enable output (E_{out}) and an active HIGH group select output (GS).

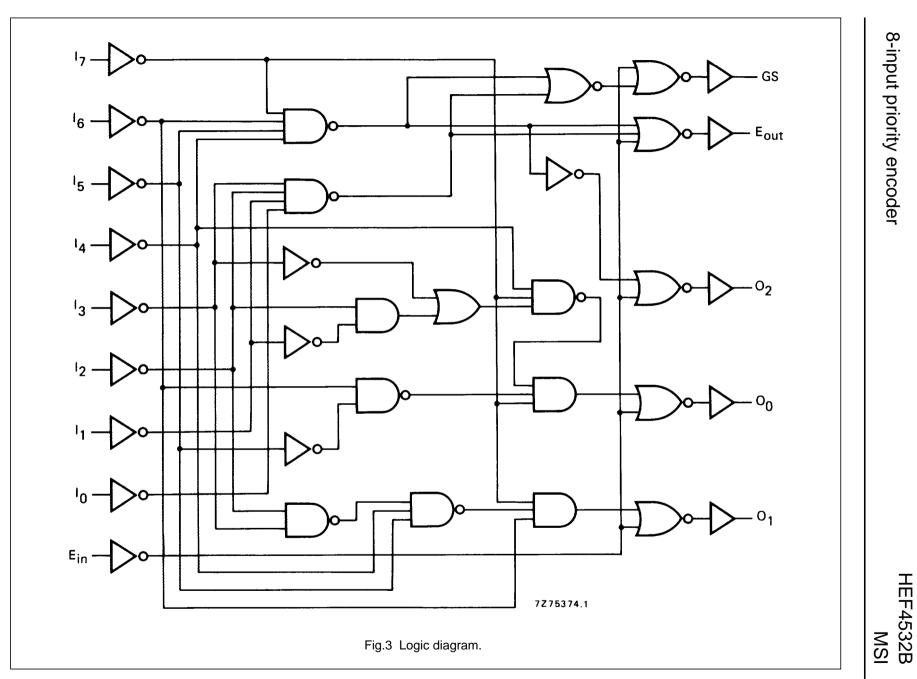
Data is accepted on inputs I_0 to $\mathsf{I}_7.$ The binary code

corresponding to the highest priority input (I_0 to I_7) which is HIGH, is generated on O_0 to O_2 if E_{in} is HIGH. Input I_7 is assigned the highest priority.

GS is HIGH when one or more priority inputs and E_{in} are HIGH. E_{out} is HIGH when I_0 to I_7 are LOW and E_{in} is HIGH. E_{in} , when LOW, forces all outputs (O₀ to O₂, GS, E_{out}) LOW.

HEF4532BP(N):	16-lead DIL; plastic (SOT38-1)
HEF4532BD(F):	16-lead DIL; ceramic (cerdip) (SOT74)
HEF4532BT(D):	16-lead SO; plastic (SOT109-1)
(): Package Desi	gnator North America

PINNING


I ₀ to I ₇	priority inputs
E _{in}	enable input
E _{out}	enable output
GS	group select output
O_0 to O_2	outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

_

ω

HEF4532B MSI

TRUTH TABLE

			I	NPUTS					OUTPUTS				
E _{in}	I ₇	l ₆	I ₅	I ₄	l ₃	l ₂	I ₁	I ₀	GS	0 ₂	0 ₁	O 0	E _{out}
L	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L
н	L	L	L	L	L	L	L	L	L	L	L	L	Н
Н	н	Х	Х	Х	Х	Х	Х	Х	Н	н	н	н	L
н	L	н	Х	X	Х	X	X	Х	н	н	н	L	L
н	L	L	Н	X	Х	X	X	Х	н	н	L	н	L
н	L	L	L	н	Х	X	X	Х	н	н	L	L	L
Н	L	L	L	L	н	Х	Х	Х	н	L	н	н	L
н	L	L	L	L	L	н	X	X	н	L	н	L	L
н	L	L	L	L	L	L	н	Х	н	L	L	н	L
Н	L	L	L	L	L	L	L	Н	Н	L	L	L	L

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial

LOGIC EQUATIONS

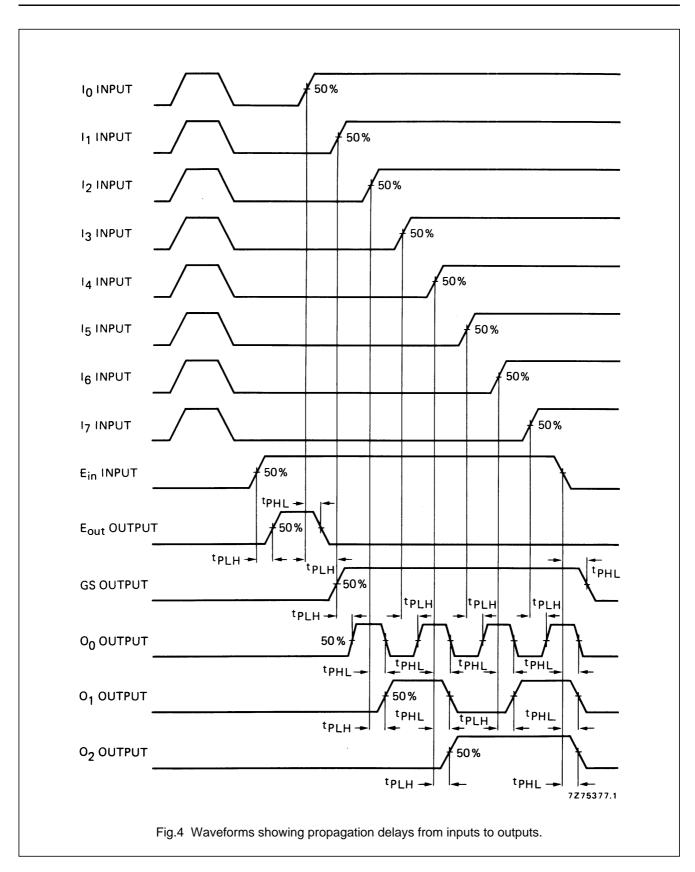
- $O_2 = E_{in} \cdot (I_4 + I_5 + I_6 + I_7)$
- $O_1 = E_{in} \cdot (I_2 \cdot \bar{I}_4 \cdot \bar{I}_5 + I_3 \cdot \bar{I}_4 \cdot \bar{I}_5 + I_6 + I_7)$
- $O_0 = E_{in} \cdot (I_1 \cdot \bar{I}_2 \cdot \bar{I}_4 \cdot \bar{I}_6 + I_3 \cdot \bar{I}_4 \cdot \bar{I}_6 + I_5 \cdot \bar{I}_6 + I_7)$
- $\mathsf{E}_{out} = \mathsf{E}_{in} \cdot \overline{\mathsf{I}}_0 \cdot \overline{\mathsf{I}}_1 \cdot \overline{\mathsf{I}}_2 \cdot \overline{\mathsf{I}}_3 \cdot \overline{\mathsf{I}}_4 \cdot \overline{\mathsf{I}}_5 \cdot \overline{\mathsf{I}}_6 \cdot \overline{\mathsf{I}}_7$
- $GS = E_{in} \cdot (I_0 + I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7)$

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1 620 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	6 600 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	15 970 f _i + Σ (f _o C _L) $ imes$ V _{DD} ²	f _o = output freq. (MHz)
			C_L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

HEF4532B

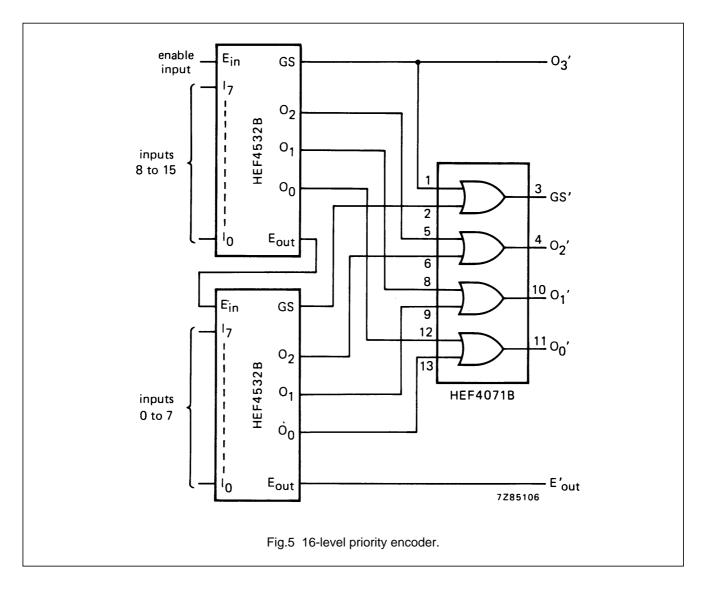

8-input priority encoder

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig.4

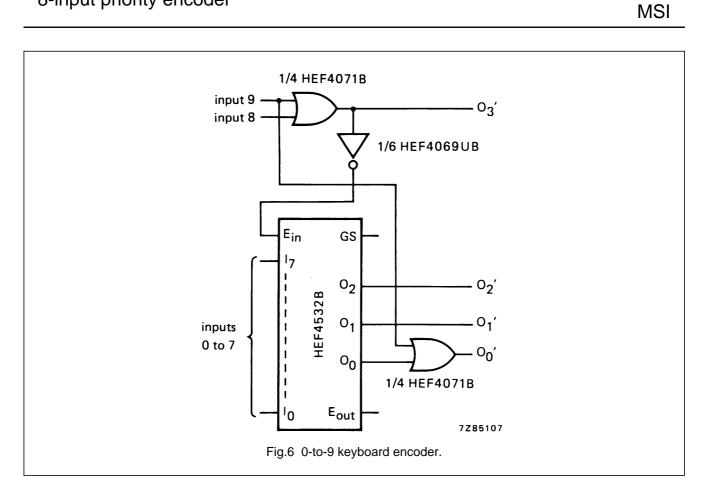
	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$E_{in} \rightarrow E_{out}$	5			95	190	ns	68 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
	5			80	160	ns	53 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$E_{in} \to GS$	5			85	170	ns	58 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
	5			80	160	ns	53 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$E_{in} \to O_n$	5			80	160	ns	53 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			85	170	ns	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$I_n \rightarrow O_n$	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$I_n \rightarrow GS$	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
Output transition	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
times	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
HIGH to LOW	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

HEF4532B MSI



HEF4532B MSI

APPLICATION INFORMATION


Some examples of applications for the HEF4532B are:

- Priority encoder
- Keyboard encoder

HEF4532B

8-input priority encoder

TRUTH TABLE (for Fig.6)

				INPU	TS					OUTPUTS				
9	8	7	6	5	4	3	2	1	0	GS	O'3	O '2	O ' ₁	O' ₀
Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	Н	L	L	Н
L	Н	Х	Х	Х	Х	Х	Х	Х	X	L	н	L	L	L
L	L	Н	Х	Х	Х	Х	Х	Х	Х	Н	L	Н	н	Н
L	L	L	Н	X	Х	Х	Х	X	X	н	L	н	н	L
L	L	L	L	н	Х	Х	Х	Х	X	н	L	Н	L	н
L	L	L	L	L	н	Х	Х	X	X	н	L	Н	L	L
L	L	L	L	L	L	Н	Х	Х	Х	Н	L	L	Н	Н
L	L	L	L	L	L	L	н	Х	X	н	L	L	н	L
L	L	L	L	L	L	L	L	н	X	н	L	L	L	н
L	L	L	L	L	L	L	L	L	н	н	L	L	L	L

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial