
MPLAB MCC18 C-PROGRAMMING TUTORIAL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M.F. van Lieshout 
TU/e, fac. ID 

Or. 14-09-2005 
Transl. 17-05-2006 



Basic rules for programming in C 
There are some basic rules when programming in C: 

- Comments for only 1 line of code start with 2 slashes: // 
//This is a comment 

Add many comments to your code, otherwise it is very hard to remember how 
your program works after a few weeks! 

- Comments for more than 1 line start with /* en end with */ 
/* 
This is a comment. 
This is another comment. 
*/  

- At the end of each line with some instruction, a semi-colon (;) has to be 
placed. 
a=a+3;  

- Parts of the program that belong together (functions, statements, etc.), are 
between { and }. 
void main(void)    //Function 
{ 
     //Add code 
}  

The structure of the program 
The structure of a program in C is as follows: 

- Add libraries with functions. 
This is done with the following line of code: 
#include <filename.h>  

- Declare (global) variables. 
The different types of variables will be discussed later in this document. 

- Making prototypes of the functions. 
A prototype of a function ensures that the function can be called anywhere in 
the program. Without a prototype, only functions can be called if they are 
already declared above of the current function. 

- Functions. 
Functions are very useful to make it easy to repeat tasks. They can have input 
and output variables. The output variable type is in front of the function name 
(int, char, …), the input variable is behind the function, between brackets: 
int calc(int x)  
The function is called in the following way: 
a=calc(3); 

The number 3 is used as input, in the variable a the result will be placed that is 
returned by the function calc. 

- Main function. 
This is the function that will be called first when starting your microcontroller. 
From there, other functions are called. 

 
//A comment begins with 2 slashes 
//example 
#include <18f4550.h> 
 
//Declaring variables 
int a, b, c, par1, d0; 
char zz, s3, temp; 



 
//Making prototypes 
int calc (int p); 
 
//Function 
int calc (int p) 
{ 
p=p+1; 
//Add code 
return p; 
} 
 
//Main function 
void main(void) 
{ 
//Add code 
a=calc(3); 
}  

Variable types 
Type   Memory usage  Possible values 
 
bit   1 bit   0, 1 
char   8 bits   -128…127 
unsigned char  8 bits   0…255 
signed char  8 bits   -128…127 
int   16 bits   -32k7…32k7 
unsigned int  16 bits   0…65k5 
signed int  16 bits   -32k7…32k7  
long int  32 bits   -2G1…2G1 
unsigned long int 32 bits   0…4G3 
signed long int  32 bits   -2G1…2G1 
float   32 bits   ± 10^(±38) 
double   32 bits   ± 10^(±38) 
 
Possible ways to give variable a the decimal value 15: 
a = 15;          //Decimal 
a = 0b00001111;  //Binair 
a = 0x0F;        //Hexadecimal 
 

Operators 
Relational operators: 
>  Greater than 
>=  Greater than or similar to 
<  Less than 
<=  Less than or similar to 
==  Similar to 
!=  Not similar to 
 
Bit operators: 
&  Bitwise AND 
|  Bitwise OR 



^  Bitwise XOR 
<<  Shift to left 
>>  Shift to right 
 
Increasing and decreasing: 
x--;    //This is the same as x = x – 1; 
x++;    //This is the same as x = x + 1;  
 
Example: 
int a, b, c; 
a = 19;      //a     00010011 
b = 6;       //b     00001110 
 
c = a & b;   //c     00000010 � 2 
 

Mathematical operators: 
+  Adding 
-  Subtracting 
*  Multiplication 
/  Division 
%  Modulus (= remainder after division) 

Statements 
IF...ELSE 

 
if (a==0)   //If a is similar to 0... 
{ 
    b++; //...than increase b by 1  
} 
else        //otherwise 
{ 
    b--;    //decrease b by 1 
} 
 
WHILE 
 
while (a>3)     //As long as a is higher than 3 
{ 
    b = b + 3;  //Add 3 to b 
    a--;        //Decrease a by 1 
} 
 
FOR 
 
for (i = 0 ; i < 100 ; i++)   //From i=0 to i=100 w ith step size 1 
{ 
    b++;                      //Increase b by 1 
    a--;                      //Decrease a by 1 
} 

Registers 
The microcontroller is completely controlled with registers. To define outputs, a 
register has to be used, but also when using AD converters. Normally, registers are 8 
bit. All the registers used in MPLAB MCC18 have exact the same name as the name 
stated in the datasheet. Registers can be set in different ways, some examples for the 



register PORTB will follow. PORTB is used for writing to and reading from pins on 
port B (take a look in the datasheet and find out yourself!). Writing a 1 to one of the 
bits of PORTB results in a high voltage on the corresponding output pin. A 0 will 
result in a low voltage. The MSB (most significant bit, the most left one) is used for 
pin B7, the LSB for pin B0. 
 
PORTB = 0b11111111; //All pins of port B are made h igh 
PORTB = 255;        //All pins of port B are made h igh 
PORTB = 0xFF;       //All pins of port B are made h igh 
PORTB = 0b10101010; //Pin B7 on, B6 off, B5 on, B4 off, etc. 
PORTB = 170;        //Pin B7 on, B6 off, B5 on, B4 off, etc. 
PORTB = 0xAA;       //Pin B7 on, B6 off, B5 on, B4 off, etc. 
 

To set or reset one single bit in a register (one of the 8 bits), the register name is used 
and ‘bits.’ is added, as well as the name of the bit. The names of the bits are also 
mentioned in the datasheet. Some examples: 
 
PORTBbits.RB0 = 1   //Pin B0 on 
PORTBbits.RB7 = 0   //Pin B7 off 
 

As said before: everything can be controlled with registers. A short list with some 
often used registers (a complete list can be found in the datasheet, of course): 
 
//Input, output 
PORTA     //PORT A output 
PORTB     //PORT B output 
PORTC     //PORT C output 
PORTD     //PORT D output 
PORTE     //PORT E output 
TRISA     //PORT A direction 
TRISB     //PORT B direction 
TRISC     //PORT C direction 
TRISD     //PORT D direction 
TRISE     //PORT E direction 
//Analog digital converter 
ADCON0    //ADC settings 
ADCON1    //ADC settings 
ADCON2    //ADC settings 
ADRESH    //AD result 
ADRESL    //AD result 
//Timers 
TMR0L     //Timer 0 value 
TMR0H     //Timer 0 value 
T0CON     //Timer 0 settings 
TMR1L     //Timer 1 value 
TMR1H     //Timer 1 value 
T1CON     //Timer 1 settings 
TMR2      //Timer 2 value 
T2CON     //Timer 2 settings 
PR2       //Timer 2 period 
TMR3L     //Timer 3 value 
TMR3H     //Timer 3 value 
T3CON     //Timer 3 settings 
//Interrupts 
RCON, INTCON, INTCON2, INTCON3, PIR1, PIR2, PIE1, P IE2, IPR1, IPR2 
 

All registers are controlled in the same way!!! Some examples: 
TRISB = 0b11110000;    //B4-B7 input, B0-B3 output 



ADCON0bits.ADON = 1;   //ADC on 
ADCON2bits.ADFM = 1;   //ADC result is right justif ied in ADRESL 
                       //and ADRESH 
INTCONbits.GIE = 0;    //All interrupts off 
T1CONbits.TMR1ON = 1;  //Timer 1 on 

Libraries 
Furthermore, there are several libraries with standard functions available. For a 
manual with descriptions of all these functions and libraries, go to 
www.microchip.com , and look for documentation on the compiler MCC18. These 
libraries can be used by adding the #include statement with the library name: 
#include <delays.h> 
#include <adc.h> 

Bootloader 
When a bootloader is used, a special part of code has to beincluded in the program, 
after the #include statements: 
 
//Always include this code, it’s necessary when usi ng a bootloader 
extern void _startup (void); 
#pragma code _RESET_INTERRUPT_VECTOR = 0x000800 
void _reset (void) 
{ 
    _asm goto _startup _endasm 
} 
#pragma code 
 
#pragma code _HIGH_INTERRUPT_VECTOR = 0x000808 
void _high_ISR (void) 
{ 
    ; 
} 
#pragma code 
 
#pragma code _LOW_INTERRUPT_VECTOR = 0x000818 
void _low_ISR (void) 
{ 
    ; 
} 
#pragma code 
//End bootloader code  


