
Random Number Generator for Microcontrollers  
by 

Tom Dickens 
tom@tomdickens.com  

Abstract  
The use of random numbers in small microcontrollers can be very useful and fun in 
robotic programming to yield different behaviors from the same robotic-control program. 
Due to limited memory, the lack of floating-point math capabilities, and the limited size 
of integers in some microcontrollers, the practical implementation of a software-based 
random number generator for a microcontroller is difficult. This paper looks at the 
generation of random numbers, and compares a variety of implementations on the 
68HC11 microcontroller. A good implementation is chosen and the 68HC11 source code 
is provided that implements it. 

Keywords  
• Random number generator 
• Microcontroller  
• 68HC11 

Introduction  
The use of random numbers in robotics projects (and other microcontroller projects) can 
be very beneficial. I’ve seen cases where a wall-following robot gets stuck in a corner at 
just the right angle. This is due to the algorithm hard-cored into its brain producing the 
exact same back-up, turn-a-bit, go-forward motion that just oscillates back-and-forth in 
the corner (what a disgrace!). While those of us who know actually what is going on 
inside of the robot can understand this behavior, to the general public this makes the 
robot appear to be quite brainless and dim-witted; the silly thing can’t even find its way 
out of a corner. If the program in the robot used random numbers to slightly alter the 
back-up time and also the degrees turned in the same algorithm, this robot would not 
have the exact same back-and-forth behavior that caused it to be stuck in the corner. It 
would very quickly maneuver out of the corner and continue on its way, making itself 
(and you) look quite intelligent. The availability of random numbers is also critical for 
many algorithms incorporating artificial intelligence (AI) techniques such as genetic 
algorithms and genetic programming, neural networks, and fuzzy logic. 
 
The topic of random number generation (RNG) can be divided into two categories: true 
random number generation and pseudo random number generation. With true random 
number generation the next random number generated is not known, and the sequence of 
random numbers cannot be re-generated. With pseudo random number generation, a 
sequence of “random numbers” is generated using a known algorithm, and the exact same 
sequence can be re-generated; hence the classification of pseudo. For software-based 
systems it is very desirable to use a pseudo random number generator to be able to test 
the software system with a repeatable set of random numbers; you can re-run a test with 



the exact same random numbers being used. Also, with a pseudo random number 
generator that has been formally evaluated, you can be sure of the attributes of the 
resulting sequence of random numbers. 
 
Random number generators provided with workstation-class computers return a 32-bit or 
a 64-bit integer number, or a floating-point number based on that value. In small 
microcontrollers the desired value from a random number generator is generally an 8-bit 
or 16-bit number. I will focus my discussion on an 8-bit random number generator. 
 
In my random number generator study I first defined a set of grading criteria as attributes 
I wanted in a RNG. I then wrote a Java program on a PC to test various RNG algorithms 
against these criteria, and wrote different algorithms in this program to generate 
sequences of random numbers to test. I then used the knowledge gained from the 
successful algorithms and data to write 68HC11-specific assembly language to 
implement the RNG. Lastly I ran the algorithm on the 68HC11 and verified that it 
generated the same sequence seen in the Java code. 

Hardware Methods  
A true random number generator can be implemented in hardware using a white-noise[1] 
source. In [2] and [3] a hardware circuit is detailed which is used to generate random 
numbers using a pair of transistors. In [4] another hardware-based random number 
generator is discussed. While quite useful in many robotic applications, a hardware-based 
random number generator is out of the scope of the focus of this paper. 

Requirements of a “Good” Random Number Generator  
Two famous quotes on random numbers help us to set the stage for our discussion: 
 

“Anyone who considers arithmetical methods of producing random digits is, 
of course, in a state of sin.” John von Neumann (1903-1957). 

 
“The generation of random numbers is too important to be left to chance.” 

Robert R. Coveyou, Oak Ridge National Laboratory in Tennessee (Found in 
Ivars Peterson, 'The Jungles of Randomness' pp 178). 

 
In the “art” of generating random numbers with a software-based algorithm, you must 
determine the attributes you want in a random number generator, and then test candidate 
random number generators against these grading criteria. It is difficult to define a set of 
attributes that are simple to define, easily testable, and complete enough to avoid 
sequences of numbers that follow a simple pattern, such as a simple sequence (0, 1, 2, 3, 
4, 5…) or an increment-by-N sequence (0, 21, 42, 63, 84…). Table 1 shows the list of 
attributes I used in testing candidate random number generators targeted for the 68HC11 
microcontroller. 
 
 
 



Table 1. Attributes for grading a RNG sequence. 

Attribute  Parameters Rational 
Number range Numbers from 0 to 255 are 

generated. 
An 8-bit processor typically 
works with 8-bit integers.* 

Number range 
average 

The average of this number range is 
127.5. 

Definition used in subsequent 
attributes. (255-0)/2 

Cycle length The length of the pseudo random 
sequence shall be at least 16,384 
(214) to 32,768 (215), but preferably 
will be 65,536 (216). 

The longer the RNG cycle is 
the more varied the resulting 
behavior is. 

Number coverage All numbers in the range will be 
included the same number of times 
in the cycle. For example, for a 
cycle length of 65,536, all numbers 
0 through 255 will occur 256 times. 

Through the cycle I want all 
numbers to occur an equal 
number of times so the 
average of the cycle is the 
average of the range, and to 
ensure all possible values can 
be encountered. 

Large window 
average 

The average of 128 sequential 
values in all selections from the 
cycle will vary from the average by 
at most 20% (i.e. 102 to 153). 

To make sure that any 
sequence of this size will 
cover a good range of values. 

Large window 
min/max 

The average of 128 sequential 
values in at least 1 selection will 
vary from the average by at least 
10% above and by another 
selection by at least 10% below 
(i.e. 114 to 140). 

To make sure the window 
averages are not all the same 
or too similar. 

Medium window 
average 

The average of 32 sequential values 
in all selections from the cycle will 
vary from the average by at most 
40% (i.e. 75 to 179). 

To make sure that any 
sequence of this size will 
cover a good range of values. 

Medium window 
min/max 

The average of 32 sequential values 
in at least 1 selection will vary 
from the average by at least 20% 
above and by another selection by 
at least 20% below (i.e. 102 to 
153). 

To make sure the window 
averages are not all the same 
or too similar. 

Small window 
average 

The average of 8 sequential values 
in all selections from the cycle will 
vary from the average by at most 
75% (i.e. 31 to 223). 

To make sure that any 
sequence of this size will 
cover a good range of values. 

                                                 
* A 16-bit number can be generated using two successive 8-bit values. We could add an attribute to 
consider the goodness of a sequence of 16-bit values generated this way, but I decided against this. 



Attribute  Parameters Rational 
Small window 
min/max 

The average of 8 sequential values 
in at least 1 selection will vary 
from the average by at least 35% 
above and by another selection by 
at least 35% below (i.e. 79 to 175). 

To make sure the window 
averages are not all the same 
or too similar. 

Repeated values A specific value may or may not be 
repeated in the cycle. 

I want to discuss this, but do 
not plan to specify a 
requirement or test for this. 

Repeated sequence There is not any sequence of 4 or 
more numbers that is repeated in 
the cycle. 

3 or more repeated numbers 
may be useful/interesting, but 
I don’t want more than 3. 

Value-to-value 
delta 

A sequence made from the 
differences in the sequence values 
will meet the same window average 
and repeated criteria. 

To make sure there are no 
patterns in the deltas. 

Operations allowed The operations used to implement 
the random number generator are 
8-bit add, subtract, shift, and, or, 
exor, and 8-bit to 16-bit multiply. 

These are the commonly 
offered microcontroller 
operations, and are found in 
the 68HC11. 

Size of code The size of the code to implement 
the algorithm is to be as small as 
possible-at most 100 bytes long. 

Smaller is better with the 
limited program space 
available in microcontrollers. 

Required RAM The number of bytes of RAM 
required to be dedicated to the 
RNG should be as few as possible 
and at most 8 bytes. 

Smaller is better with the 
limited RAM space available 
in microcontrollers. 

Approaches  
I investigated two different approaches to implementing a simple random number 
generator for the 68HC11; a table-based method and an algorithm-based method.  
 

Table-based method  
For a table of 256 values, there are 256!, or 8.578e+506, possible ways to order the table. 
My table-based approach uses a table of 128 values, with an algorithm to traverse the 
table in a number of ways to generate a random number cycle 16,384 numbers in length. I 
used a table of 128 values and generated the other 128 values in the set of {0 – 255} by 
EXORing the 128 table values with $FF. An acceptable set of 128 values for this table 
include the criteria that EXORing these 128 values will generate the remaining 128 
values in the set. This gave me an effective table of 256 values using only 128 bytes, plus 
a small number of bytes for the implementation logic. I then traverse this set of 256 
values in 64 different ways to generate a sequence of 16,384 values. Once the driving 
logic of traversing the table was developed, a good set of table values as seen in Table 2 



was determined using a program to try different sets of values* and testing the resulting 
table against the specified grading criteria. I wrote a Java program to do this. 
 

Table 2. 128 values used in my table-based RNG. 

   247, 86,108,103,252, 35,115, 75,202, 70,107, 89, 37, 40,246, 69  
   111,234, 56, 12,249,146, 19, 80,240,230, 45, 38,19 7,223, 65,123  
    26,208, 74,167,130, 79,253,121,173, 93,136,198, 64,204, 90, 20  
    30,233,222, 16, 14,242,182,174,195,105,159,  0, 84,129,250,155  
    10, 28,251, 92, 62,201,192,142,104,168,114, 49,172,124, 39, 67  
   143,254,  7,228,116, 31,154,156, 72, 3 6,194,161, 71,226, 59, 18  
   209,177,118,189,221, 98,135,122, 48,153,117,231,238,164, 52,187  
    44,145,170,213, 77, 97,128,212, 41,160, 11,149,200, 23, 50,179  
 
As this was the first algorithm I got working, I was very attached to it. I then decided to 
investigate equation-based methods for completeness in my research, but I really liked 
my table-based solution and thought I would decide to go with it as the best solution. 

Equation -based method  
An equation-based method uses a seed value. For each random number generated this 
seed value is used in an algorithm to generate a new seed value and also the random 
number. In the case of our 8-bit random number generator we want the seed value to be 
larger than the 8-bit number returned since an 8-bit seed value will allow at most a cycle 
of 256 values. A classic algorithm for generating random numbers[5] is: 
 

unsigned long seed ;  
...  
seed = 1664525L * seed + 1013904223L ;  

 
I implement code using a 16-bit seed value, and looked at different 8-bit selections from 
the newly-calculated seed as the 8-bit random number to return. 

Comparison of Approaches  
The table-based algorithm generated a good set of random numbers. The cycle was 
16,384 numbers long. The resulting memory-size was 4 bytes of RAM. For program 
memory it required 62 bytes, plus 128 bytes for the initial table, for a total of 190 bytes. 
 
The equation-based algorithm also generated a good set of random numbers, and the 
cycle was a full 65,536 numbers. The resulting memory-size was also 4 bytes of RAM. 
For program memory it required only 25 bytes. The resulting equation was: 
 

seed = 181 * seed + 359 ;  
 
where seed is a 16-bit number. The returned 8-bit value is the top half of the seed. 

                                                 
* I used the random number generator in Java to populate the table, checking for the EXOR criteria, then 
tested the resulting table against all of the grading criteria. Running this code found many acceptable 
solutions for the table data; I choose one for my implementation.  



Using a Java program on the PC, I searched for a good set of constants. The numbers 181 
and 359 were used in the equation (both prime numbers), which generated a sequence of 
65,536 values that satisfied the grading criteria. Based on the size of the code and the 
complexity of the algorithm, I have to choose the equation-based algorithm as the best 
random number generator code for my applications with the 68HC11 microcontroller. 

Testing  
The 65,536 sequence of numbers generated by the equation were tested against the 
criteria in Table 1. I list the first part of this sequence in Table 3 below. Notice that the 
number 172 is repeated, which informs us that a number can be repeated in the sequence. 

Table 3. The first part of the 65,536 numbers generated by the equation. 

   1 255 117   4  73 222 125 232  15 167  21 110 230 252  49  27  
  35  65 133  50 218 156 132 185 223 239  99 114 197 223  22 226  
 226 208  81  76  71 229 135 182 203   4 237 226   1 207 119  85  
  60 170 216  82 145 187 13 4 223 211 228 179 190 152 202  84 116  
  50 209  28  68 182  28 128  52 248 145 181   6 139 210 172  63  
 196  68  28  34 183  10 119 181  56   9 242 186 219 229 129 182  
 243   2 216 237 149 132 106  98 148  78 108 218 134   5 210 217  
 189  13  80 163  78 13 7  89  59  13  94  34 102 141  48 159 168  
  35  99 131  69 227  27  68  64 161  59  20  94 241 104 232  35  
  38   6 115 211  85  56  43 113  81 228  66 194 176 172 172   74  
 196 244  31  77 162 226  13 206  30  88 171 146 203 251 237  29  
 254  47 135 179 20 3  23 236  87   6 153  81 206  66  87 170 156  
 213 181 171   5 209 217 199  12  10 165  51 118  22 190 227 199  
  71 136 138  67 178  39 158 237  43 126  81 138  69  50 152 158  
  85 167  38 109 111   0 113 250 103  34 171  11 208 177 201  33  
...  

 
As a follow-on study of the sequence of random numbers, I plotted them as pairs on a 
256x256 grid. In Figure 1 left, three sets of 1024 pairs are plotted as red, blue, and black 
points. In Figure 1 left, half of the 32,768 pairs of numbers are plotted. Both of these 
plots visually look random, while the right figure is starting to look a bit grid-like. 
 

  
Figure 1. Three sets of 1024 pairs (left), and half of the pairs (right) plotted. 



 
In Figure 2 below all 32,768 pairs of numbers in the 65,536 set of random numbers are 
plotted. This does produce a definite pattern, but it was the least pattern-like pattern I 
found in searching many pairs of candidate constants. Another key point of this set is that 
out of 32,768 pairs of numbers, there were 32,768 unique points plotted; there were no 
duplicate points from the pairs of numbers. 
 

 
Figure 2. All 32,768 pairs plotted, resulting in a noticeable pattern. 

Most other constants used for the equation covered far fewer positions when plotted, and 
generated a much more definite and simple pattern. For example, when using 33 and 171 
for the constants, the plot as shown in Figure 3 only covers 9728 out of 32,768 positions. 
 

 
Figure 3. All 32,768 pairs plotted for a different set of constants, resulting in a very noticeable pattern. 

 
After extensive testing and looking at both algorithms and different constant values, I 
settled on the equation-based with the constants 181 and 359. This is the algorithm 
implemented in the 68HC11 example code. 



The Code  
Below is 68HC11 assembly code implement the equation to generate random numbers. 
All lines starting with ‘*’ are comments, and text following a ‘;’ sign are also comments. 
This was assembled with the AS11 assembler* and loaded in a 68HC11E1 on a 
BOTBoard using PCBUG11 for testing. 
 
***** ******************************************************************  
* Author: Tom Dickens  
* Date: 12/10/2002  
* Purpose:  
* 8 - bit random number generator for the 68HC11/68HC12 microcontrollers.  
* Method: A 16 - bit version of the classic S = S * M + A is used.  
* The random number returned is the high byte of the new seed value.  
* The constants M and A were chosen to be M=181 and A=359 for  
* the following reasons:  
*   -  They are both prime numbers.  
*   -  The equation cycles through all 65,536 possible seed values .  
*   -  The 8 - bit random values have the following properties:  
*       -  Each number from 0 to 255 occurs 256 times in the cycle.  
*       -  No sequence of 4 or more numbers is repeated.  
*       -  Every 128 - byte window has an average between 104 and 150 (+ - 20%) 
*       -  Every 32 - byte window has an average between 76 and 178 (+ - 40)  
*       -  Every 8 - byte window has an average between 32 and 218 (+ - 75%) 
*   -  Small RAM and Program space required:  
*       -  Only 4 bytes of RAM are used  
*       -  Only 25 bytes of Program memory is used  
*   -  Fast. Each call to Random takes 64 clock cycles, which  
*           is 32 micro - seconds with an 8MHz crystal.  
* Usage:  
*    JSR Random  ; Register A contains the next random number.  
******************************************** ***************************  
 
***********************************************************************  
* RAM Usage: 4 bytes in zero - page RAM, bytes 0 trough 3.  
***********************************************************************  
 ORG $0000 
 
RandomSeed:  
 RMB 2 ; reserve two bytes in RAM for the SEED value  
SEED_HIGH EQU RandomSeed   ; high byte of the seed  
SEED_LOW EQU RandomSeed+1  ; low byte of the seed  
 
RandomScratch:  
 RMB 2 ; reserve 2 bytes in RAM for scratch space  
 
************************************* **********************************  
* Constants:  
***********************************************************************  
MULTIPLIER EQU 181  
ADDER  EQU 359  
 
***********************************************************************  
* Program start: Example prog ram to display random numbers on Port C.  
*    Change ORG $B600 to $F800 for ‘E2 devices.  
***********************************************************************  
 ORG $B600 
 LDAA #$FF 
 STAA $1007  ; Set port C to output  

                                                 
* Version 2.1, dated 10-Aug-91, by Randy Sargent. 



 LDAA #$00  
 STAA $1003   ; Clears port C to $00  
 BSR RandomInit  ; Seed = 0  
TopLoop:  
 BSR Random  ; A = random number  
 STAA $1003   ; A - > Port C  
 LDX #$FFFF  
 BSR DelayX   ; wait a bit to see the number  
 BRA TopLoop   ; do it again...  
 
*************************************************************** ********  
* Initialize the random number generator to the start of the sequence  
* by loading the seed value with 0. You can initialize the seed to any  
* value you choose, which will start the random number sequence somewhere  
* else in the cycle of 65,536 se ed values.  
***********************************************************************  
RandomInit:  
 CLR SEED_HIGH 
 CLR SEED_LOW 
 RTS 
 
***********************************************************************  
* Return the next 8 - bit pseudo random number in the se quence  
* of 65,536 numbers, generated from the following equation:  
* SEED = SEED * 181 + 359  
* The random value returned is the high byte of the new SEED.  
* Return value: The A register.  
*                             (bytes, cycles) = (25,64)  
************* **********************************************************  
Random:  
 PSHB    ; (1,3) Remember the current value of B  
* scratch = seed * multiplier  
 LDAA #MULTIPLIER   ; (2,2) A = #181  
 LDAB SEED_LOW  ; (2,3) B = the low byte of the seed  
 MUL    ; (1,10) D = A x B  
 STD RandomScratch   ; (1,4) scratch = D  
 LDAA #MULTIPLIER   ; (2,2) A = #181  
 LDAB SEED_HIGH  ; (2,3) B = the high byte of the seed  
 MUL    ; (1,10) D = A x B  
* low byte of MUL result is added to the high byte of scratch  
 ADDB RandomScratch   ; (2,3) B  = B + scratch_high  
 STAB RandomScratch   ; (2,3) scratch = seed * 181  
*  
 LDD RandomScratch   ; (2,4) D = scratch  
 ADDD #ADDER   ; (3,4) D = D + 359  
 STD RandomSeed  ; (2,4) remember new seed value  
* (A = SEED_HIGH from ADDD instruction)  
 PULB    ; (1,4) Res tore the value of B  
 RTS    ; (1,5) A holds the new 8 - bit random number  
 
************************************************************************  
*  DelayX:  Delay based on the value in.  
********************************************************************** **  
DelayX:  
 PSHX 
LoopX:  
 DEX 
 BNE LoopX 
 PULX 
 RTS 
 

 



Conclusion  
I was able to develop a good random number generator for the 68HC11 that was quite 
small (25 bytes) and which met all of my goodness criteria. This was an equation-based 
algorithm using the equation S = S * 181 + 359, with the returned random number the top 
8-bits of the 16-bit S value. A table-based algorithm was also developed, which also 
generated a good sequence of random numbers, but the algorithm and table required 190 
bytes of program space, much larger than the 25 bytes of the equation-based algorithm. 
The resulting 68HC11 code was successfully tested on an HC11E1 system. 

About The Author  
Tom Dickens is an engineer and Associate Technical Fellow at The Boeing Company, 
specializing in the design and implementation of hardware and software systems. He also 
teaches evenings in the Seattle area at Boeing, the University of Washington, the 
University of Phoenix (Washington campus), and Henry Cogswell College. Tom has 
been an active member of the Seattle Robotics Society for 15 years, has been the editor of 
the SRS newsletter (the Encoder), has served as the SRS secretary, and has served for a 
numbers of years on the SRS board of directors and the SRS Robothon committee. Tom 
maintains a web-site dedicated to the 68HC11 microcontroller at: 
 http://tomdickens.com/6811/intro.html  

References  
[1] Whatis.com: “white noise”, 

http://whatis.techtarget.com/definition/0,,sid9_gci213526,00.html  
[2] ISA Card Random Number Generator,  http://www.cryogenius.com/hardware/isarng/ 
[3] Hardware Random Number Generator, http://www.cryogenius.com/hardware/rng/  
[4] A True Random Number Generator, http://www.vaxman.de/projects/rng/rng.html, 

ulmann@vaxman.de. 
[5] Press, William H. et al, “Numerical Recipes in C, second edition,” Cambridge 

University Press, 1992, page 284. http://www.library.cornell.edu/nr/bookcpdf.html  
 


